Страничная организация виртуальной памяти. Страничная память

Страничная организация памяти применяется только в защищенном режиме , если в регистре управления CR0 бит PG = 1.

Основное применение страничного преобразования адреса связано с реализацией виртуальной памяти, которая позволяет программисту использовать большее пространство памяти, чем физическая основная память.

Принцип виртуальной памяти предполагает, что пользователь при подготовке своей программы имеет дело не с физической ОП, действительно работающей в составе компьютера и имеющей некоторую фиксированную емкость, а с виртуальной (кажущейся) одноуровневой памятью, емкость которой равна всему адресному пространству, определяемому размером адресной шины (L ша) компьютера:

Для 32-разрядного микропроцессора:

Программист имеет в своем распоряжении адресное пространство, ограниченное лишь разрядностью адресной шины, независимо от реальной емкости оперативной памяти компьютера и объемов памяти, которые используются другими программами, параллельно обрабатываемыми в мультипрограммной ЭВМ.

Виртуальная память , обеспечивая возможность программисту обращаться к очень большому объему непрерывного адресного пространства, предоставляемого в его монопольное распоряжение, обладает обычными свойствами: побайтовая адресация, время доступа, сравнимое со временем доступа к оперативной памяти.

На всех этапах подготовки программ, включая загрузку в память, программа представляется в виртуальных адресах, и лишь при выполнении машинной команды виртуальные адреса преобразуются в физические. Для каждой программы, выполняемой в мультипрограммном режиме, создается своя виртуальная память. Каждая программа использует одни и те же виртуальные адреса от нулевого до максимально большого в данной архитектуре.



Для преобразования виртуальных адресов в физические физическая и виртуальная память разбиваются на блоки фиксированной длины, называемые страницами . Объемы виртуальной и физической страниц совпадают. Страницы виртуальной и физической памяти нумеруются. Отсутствующие в физической памяти страницы обычно хранятся во внешней памяти. Фиксированный размер всех страниц позволяет загрузить любую нужную виртуальную страницу в любую физическую.

Как отмечалось выше, при страничном представлении памяти виртуальный (логический) адрес представляет собой номер виртуальной страницы и смещение внутри этой страницы. В свою очередь, физический адрес - это номер физической страницы и смещение в ней.

Правила перевода номеров виртуальных страниц в номера физических страниц обычно задаются в виде таблицы страничного преобразования. Такие таблицы формируются системой управления памятью и модифицируются каждый раз при перераспределении памяти. Операционная система постоянно отслеживает состояние виртуальных страниц той или иной программы и определяет, находится ли она в оперативной памяти, и если находится, то в каком конкретно месте. Прикладные программы не касаются процесса страничного преобразования адреса и могут использовать все адресное пространство. Процессор автоматически формирует особый случай неприсутствия, когда программа обращается к странице, отсутствующей в физической памяти. При обработке этого особого случая ОС загружает затребованную страницу из внешней памяти, при необходимости отправляя некоторую другую страницу на диск (процесс свопинга).

Перевод виртуальных адресов в физические проиллюстрирован на рис. 3.12.

Рис. 3.12. Принцип преобразования виртуального страничного адреса в физический

Рассмотрим пример преобразования адреса виртуальной страницы в адрес физической страницы. Пусть компьютер использует адресное пространство, предполагающее разбиение на страницы объемом V стр = 1I, и имеет оперативную память V ОЗУ = 3 страницы. Пусть на компьютере одновременно выполняются четыре программы, имеющие следующее количество страниц: V A = 2, V B = 1, V C = 3, V D = 2. Переключение между программами происходит через время кванта t k = 1. Время выполнения каждой страницы любой программы составляет t = 2t k . Полагаем, что страницы программ загружаются в оперативную память по мере необходимости и по возможности в свободные области ОЗУ. Если вся память занята, то новая страница замещает ту, к которой дольше всего не было обращений.

При таких условиях таблица загрузки оперативной памяти и таблицы страничного преобразования для каждой программы будут иметь вид, представленный в табл. 3.2.

В таблице распределения оперативной памяти выделены номера активных в данном такте страниц. В таблицах страничного преобразования прочерками отмечены ситуации, когда данная виртуальная страница отсутствует в оперативной памяти.

Таблица 3.2. Пример страничного распределения памяти в мультипрограммной ЭВМ
Страница Такты
Динамическое распределение оперативной памяти
ОЗУ 0 АО АО АО DO DO DO CO CO CO C1 C1 C1 C1 C1 C1 C1
B0 B0 B0 A0 A0 A0 D0 D0 D0 D1 D1 D1 D1 D1 D1
C0 C0 C0 B0 B0 B0 A1 A1 A1 A1 A1 A1 C2 C2
Таблица страничного преобразования для программы А
A 0 - - - - - - - - - - -
- - - - - - - - - -
Таблица страничного преобразования для программы В
B 0 - - - - - - - - - -
Таблица страничного преобразования для программы С
С 0 - - - - - - - - - -
- - - - - - - - -
- - - - - - - - - - - - - -
Таблица страничного преобразования для программы D
D 0 - - - - - - - - - -
- - - - - - - - - -

Если каждая страница имеет объем 1000 адресуемых ячеек, то, например, в такте 9 обращение по виртуальному адресу 1100 программы A (виртуальная страница 1, смещение в странице равно 100) приведет к обращению по физическому адресу 2100 (физическая страница 2, смещение в физической странице такое же, как и в виртуальной, то есть 100).

Рассмотрим теперь применение этих общих принципов страничного преобразования адреса в микропроцессоре с архитектурой IA-32 при объеме страницы в 4 Кбайт.

Основой страничного преобразования служит 32-разрядныйлинейный адрес , полученный на этапе сегментного преобразования логического адреса . Страничное преобразование выполняется при значении бита PG = 1 в управляющем регистре CR0.

В этом случае старшие 20 разрядов линейного адреса фактически представляют собой номер виртуальной страницы. Однако при прямом одноступенчатом преобразовании этого номера в номер физической страницы необходима таблица из 2 20 элементов длиной 4 байта каждый (20-разрядный номер страницы плюс некоторая дополнительная информация), т. е. 4 Мбайт. В мультипрограммной среде такая таблица может потребоваться для каждой задачи. Эта таблица должна постоянно храниться в оперативной памяти, чтобы существенно не увеличивать время формирования физического адреса. Для этих целей потребуется постоянное резервирование существенной части емкости ОЗУ, что на этапе появления первых ЭВМ на основе МП с архитектурой IA-32 было практически невозможно.

Вместо этого микропроцессор использует двухступенчатое страничное преобразование адреса. Корневая страница, называемая каталогом таблиц страниц (КТС), содержит 1024 32-разрядных элемента каталога таблиц страниц (ЭКТС - PDE page directory entry). Каждый из них адресует подчиненную таблицу страниц (ТС), то есть всего допускается до 1024 подчиненных таблиц страниц. Каждая из таблиц страниц содержит 1024 32-разрядных элемента таблицы страниц (ЭТС - PTE page table entry), каждый из которых и адресует физическую страницу. Таким образом, общее количество адресуемых физических страниц равно 2 20 , то есть все виртуальное адресное пространство (4 Кбайт * 220 элементов = 2 32 байт). Каждая таблица занимает 1024 4 = 4 Кбайт, то есть ровно 1 страницу. Общий объем таблиц, используемых для страничного преобразования, не уменьшился, а даже несколько возрос за счет использования каталога таблиц страниц. Однако, вопервых, практически всегда в системе этот размер можно существенно уменьшить за счет того, что некоторые линейные адреса никогда не будут сформированы (а эту информацию дают таблицы дескрипторов сегментов), и для них не нужно создавать таблицу страниц. А во-вторых, в оперативной памяти должны постоянно находиться лишь каталог таблиц страниц и таблица страниц выполняемой в настоящее время программы. Остальные таблицы страниц могут временно храниться во внешней памяти.

Рис. 3.13. Страничное преобразование линейного адреса в физический

Таким образом, преобразование линейного адреса в физический имеет вид, представленный на рис. 3.13.

Старшие 20 разрядов линейного адреса разбиваются на два 10-разрядных поля: поле номера элемента каталога таблиц страниц и поле номера элемента таблицы страниц . Так как и каталог таблиц страниц , и каждая таблица страниц занимают ровно 1 страницу и выровнены по границе страницы, то младшие 12 разрядов их базового адреса равны нулю, и для определения их физического адреса достаточно 20-разрядного поля.

Для каталога таблиц страниц его 20-разрядный адрес находится в регистре управления CR3. КТС постоянно находится в памяти и не участвует в свопинге.

Старшие 20 разрядов физического адреса таблицы страниц извлекаются из ЭТС. Структуры элемента КТС и элемента ТС схожи (рис. 3.14).

Рис. 3.14. Структура элементов каталога таблиц страниц и таблицы страниц

Старшие 20 разрядов элемента дают базовый адрес таблицы страниц (в ЭКТС) или физической страницы (в ЭТС). Биты P, A, R/W и U/S имеют определенное сходство с аналогичными атрибутами дескриптора сегмента, другие биты имеют специфическое назначение.

Бит присутствия P показывает, отображается ли адрес страничного кадра (таблицы страниц или страницы памяти) на страницу в физической памяти. При P = 1 страница присутствует в ОЗУ. При P = 0 страницы в памяти нет, и обращение к этой странице вызывает прерывание типа "страничное нарушение".

Бит доступа А устанавливается микропроцессором в состояние А = 1 при обращении к данному страничному кадру для записи или чтения информации.

Бит модификации D (Dirty - "грязный") устанавливается процессором равным 1 в элементе ЭТС при записи на данную страницу. Для элементов каталога таблиц страниц значение бита D является неопределенным. При загрузке страницы в память операционная система сбрасывает бит D. Если при необходимости выгрузки страницы во внешнюю память оказывается, что для нее D = 0, это означает, что к странице в памяти не было обращений на запись, во внешней памяти есть ее точная копия, и реально передавать страницу из памяти на диск не нужно. Тем самым экономится время при свопинге.

Бит чтения-записи R/W и бит U/S (user/supervisor - пользователь/супервизор) определяют права доступа к таблице страниц или к странице для программ с различными уровнями привилегий. Для страниц существует только 2 уровня привилегий: уровень супервизора (U/S = 0), соответствующий значению DPL сегмента 0, 1, 2, и уровень пользователя (U/S = 1), соответствующий DPL = 3. Если к странице осуществляется запрос с уровнем привилегий 3 (программы пользователя), то при значении U/S = 0 ему запрещается доступ к соответствующей таблице или странице. Если U/S = 1, то при значении R/W = 0 разрешается только чтение таблицы или страницы, а при R/W = 1 - и чтение, и запись.

При запросах с большими привилегиями (системные программные уровни 0, 1, 2) допускается з0апись и чтение таблиц и страниц при любых значениях U/S, R/W (табл. 3.3).

Биты PWT и PCD используются для управления работой кэш-памяти при страничной адресации. Бит PCD - запрещение кэширования страницы. При PCD = 1 кэширование запрещено. Бит PWT - бит обратной записи страниц. Определяет метод обновления внешней кэш-памяти (кэш 2-го уровня). При PWT= 1 - обновление проводится методом сквозной записи (как для внутреннего кэша), при PWT = 0 - методом обратной записи.

Биты 9…11 в ЭКТС и ЭТС зарезервированы за операционной системой. Процессор никогда не использует и не изменяет эти биты. Разработчики ОС могут привлечь эти биты для хранения информации о "старении" страниц, чтобы определять страницы, подлежащие замене из внешней памяти, и для других целей.

Старшие 10 разрядов линейного адреса совместно с содержимым регистра управления CR3 определяют необходимый элемент каталога таблиц страниц . Следующие 10 разрядов линейного адреса содержат номер элемента в выбранной таблице страниц.

Так как и ЭКТС, и ЭТС имеют длину 4 байта, для получения смещения начала элемента относительно начала соответствующей таблицы необходимо его номер умножить на 4.

Последние 12 разрядов линейного адреса содержат смещение в странице. Таким образом, сумма смещения в странице и базового адреса страницы, извлеченного из ЭТС, дает физический адрес искомого байта.

Существуют две другие схемы организации виртуальной памяти:

· сегментная;

· сегментно-страничная.

Идеи сегментации изложены во введении к разделу 10. При сегментной организации виртуальный адрес по-прежнему является двумерным и состоит из двух полей - номера сегмента и смещения внутри сегмента. Заметим, что с точки зрения ОС сегменты являются логическими сущностями и их главное назначение хранение и защита однородной информации (кода, данных и т.д.).

С точки зрения пользователя процесс представляется обычно не как линейный массив байтов, а как набор сегментов переменного размера (данные, код, стек). Сегментация - схема управления памятью, поддерживающая этот взгляд пользователя. Сегменты содержат процедуры, массивы, стек или скалярные величины, но обычно не содержат информацию смешанного типа.

Программисты, пишущие на языках низкого уровня должны иметь представление о сегментной организации, явным образом меняя значения сегментных регистров (это хорошо видно по текстам программ, написанных на Ассемблере). Логическое адресное пространство - набор сегментов. Каждый сегмент имеет имя, размер и другие параметры (уровень привилегий, разрешенные виды обращений, флаги присутствия). Пользователь специфицирует каждый адрес двумя величинами: именем сегмента и смещением. (В отличие от схемы пэйджинга, где пользователь задает только один адрес, который разбивается hardware на номер страницы и смещение, прозрачным для программиста образом.)

Каждый сегмент - линейная последовательность адресов от 0 до максимума. Различные сегменты могут иметь различные длины, которые могут меняться динамически (например, сегмент стека). В элементе таблицы сегментов помимо физического адреса начала сегмента (если виртуальный сегмент содержится в основной памяти) содержится длина сегмента. Если размер смещения в виртуальном адресе выходит за пределы размера сегмента, возникает прерывание.

Логический адрес - упорядоченная пара v=(s,d), номер сегмента и смещение внутри сегмента.

В системах, где сегменты поддерживаются аппаратно, эти параметры обычно хранятся в таблице дескрипторов сегментов, а программа обращается к этим дескрипторам по номерам‑селекторам . При этом в контекст каждого процесса входит набор сегментных регистров , содержащих селекторы текущих сегментов кода, стека, данных и др. и определяющих, какие сегменты будут использоваться при разных видах обращений к памяти. Это позволяет процессору уже на аппаратном уровне определять допустимость обращений к памяти, упрощая реализацию защиты информации от повреждения и несанкционированного доступа.



Рис. 11.2 Преобразование логического адреса при сегментной организации памяти.

Аппаратная поддержка сегментов относительно слабо распространена (главным образом на процессорах архитектуры Intel) и характеризуется довольно медленной загрузкой селекторов в сегментные регистры, выполняемая при каждом переключении контекста и при каждом переходе между разными сегментами. В системах с чисто страничной организацией памяти для описания типового адресного пространства процесса, представляющего собой набор сегментов, сегментация реализуется на уровне, независимом от аппаратуры.

Хранение в памяти сегментов большого размера может оказаться неудобным. Возникает идея их пейджинга. При сегментно-страничной организации виртуальной памяти происходит двухуровневая трансляция виртуального адреса в физический. В этом случае виртуальный адрес состоит из трех полей: номера сегмента виртуальной памяти, номера страницы внутри сегмента и смещения внутри страницы. Соответственно, используются две таблицы отображения - таблица сегментов, связывающая номер сегмента с таблицей страниц, и отдельная таблица страниц для каждого сегмента.

Рис. 11.3 Формирование физического адреса при сегментно-страничной организации памяти.

Сегментно-страничная организация виртуальной памяти позволяла совместно использовать одни и те же сегменты данных и программного кода в виртуальной памяти разных задач (для каждой виртуальной памяти существовала отдельная таблица сегментов, но для совместно используемых сегментов поддерживались общие таблицы страниц).

Ассоциативная память.

Поиск нужной страницы в многоуровневой таблице страниц, требующий несколько обращений к основной памяти на пути преобразования виртуального адреса к физическому занимает много времени. В ряде обстоятельств такая задержка недопустима. Эта проблема также находит решение на уровне архитектуры компьютера.



В соответствии со свойством локальности большинство программ в течение некоторого промежутка времени делают ссылки к небольшому числу страниц, таким образом, только небольшая часть таблицы страниц работает напряженно.

Естественное решение - снабдить компьютер аппаратным устройством для отображения виртуальных страниц в физические без обращения к таблице страниц, то есть иметь небольшую, быструю кэш-память, хранящую необходимую на данный момент часть таблицы страниц. Это устройство называется ассоциативная память , иногда также употребляют термин ассоциативные регистры (иногда translation lookaside buffer (TLB)).

Одна запись в таблице в ассоциативной памяти содержит информацию про одну виртуальную страницу, ее атрибуты и кадр, в котором она находится. Эти поля в точности соответствуют полям в таблице страниц.

Отображение виртуальных страниц, хранимых в ассоциативной памяти, осуществляется быстро, однако кэш память является дорогостоящей и имеет ограниченный размер. Число записей в TLB от 8 до 2048.

Память называется ассоциативной, потому что в отличие от таблицы страниц, которая проиндексирована по номерам виртуальных страниц, здесь происходит одновременное сравнение номера виртуальной страницы с соответствующим полем во всех строках этой небольшой таблицы. Поэтому эта память является дорогостоящей. В строке, поле виртуальной страницы которой совпало с искомым значением, находится номер страничного кадра.

Рассмотрим функционирование менеджера памяти при наличии ассоциативной памяти. Вначале он ищет виртуальную страницу в ассоциативной памяти. Если страница найдена - все нормально за исключением случаев нарушения привилегий, когда запрос на обращение к памяти отклоняется.

Если страницы нет в ассоциативной памяти, то она ищется через таблицу страниц. Происходит замена одной из страниц в ассоциативной памяти найденной страницей. В таблице такая загруженная страница помечается битом модификации, что будет учтено при следующей загрузке ассоциативной памяти из таблицы страниц.

Процент раз, когда номер страницы находится в ассоциативной памяти, называется hit (совпадение) ratio (пропорция, отношение). Таким образом, hit ratio - часть ссылок, которая может быть сделана с использованием ассоциативной памяти. Обращение к одним и тем же страницам повышает hit ratio.

Например, предположим, что для доступа к таблице страниц необходимо 100 нс, а для доступа к ассоциативной памяти 20 нс. С 90% hit ratio среднее время доступа - 0.9*20+0.1*100 = 28 нс.

Вполне приемлемая производительность современных ОС доказывает эффективность использования ассоциативной памяти. Высокое значение вероятности нахождения данных в ассоциативной памяти связано с наличием у данных объективных свойств: пространственной и временной локальности.

Необходимо обратить внимание на следующий факт. При переключении процессов нужно добиться того, чтобы новый процесс не видел в ассоциативной памяти информацию, относящуюся к предыдущему процессу, например, очищать ее. Т.о. использование ассоциативной памяти увеличивает время переключения контекстов.

Иерархия памяти.

Все предыдущие рассуждения справедливы и для других пар запоминающих устройств, например, для оперативной памяти и внешней памяти. В этом случае уменьшается среднее время доступа к данным, расположенным на диске, и роль кэш-памяти выполняет буфер в оперативной памяти.

Рассмотренная нами схема трехуровневой памяти (ассоциативная, основная, вторичная) является частным случаем многоуровневой памяти. На пример, как показано на рис. 11.5, разновидности памяти могут быть организованы в иерархию по убыванию скорости доступа и возрастанию цены.

.

Рис. 11.5 Иерархия памяти компьютера

Считается, что затраты, связанные с переписью информации из одной памяти в другую окажутся меньше выигрыша в быстродействии, который получается за счет сокращения времени выборки из более быстрых слоев памяти. Информация о странице, которая находится в памяти верхнего уровня, хранится также на уровнях с большими номерами. Если процессор не обнаруживает нужную страницу на i-м уровне, он начинает искать ее на последующих уровнях. Когда нужная страница найдена, она переносится в более быстрые уровни. При этом происходит вытеснение какой-то старой страницы, обычно той, которая дольше всего не использовалась. Идея состоит в том, чтобы те страницы, которые чаще всего нужны в настоящее время, находились в более быстрых частях памяти. Эффективность такой схемы обусловлена все тем же свойством локальности (подробнее о локальности и связанным с ним понятием рабочего множества страниц будет рассказано в следующей главе). В результате среднее время доступа для многоуровневой схемы памяти оказывается весьма близким ко времени доступа первого уровня.

Размер страницы

Дизайнеры ОС для существующих машин редко имеют возможность влиять на размер страницы. Однако для вновь создаваемых компьютеров решение относительно оптимального размера страницы является актуальным. Как и можно было ожидать нет одного наилучшего размера. Скорее есть набор факторов, влияющих на размер. Обычно размер страницы это степень двойки от 2**9 до 2**14 байт.

Чем больше размер страницы, тем меньше будет размер структур данных, обслуживающих преобразование адресов, но тем больше будут потери, связанные с тем, что память можно выделять только постранично.

Как следует выбирать размер страницы? Во-первых, нужно учитывать размер таблицы страниц, здесь желателен большой размер страницы (страниц меньше, соответственно и таблица страниц меньше). С другой стороны память лучше утилизируется с маленьким размером страницы. В среднем половина последней страницы процесса пропадает. Необходимо также учитывать объем ввода-вывода для взаимодействия с внешней памятью и другие факторы. Проблема не имеет хорошего ответа. Историческая тенденция состоит в увеличении размера страницы. Как правило, размер страниц задается аппаратно, например, на Intel - это 4096 байт (или 4 Кбайт), на DEC PDP-11 - 8 Кбайт, на DEC VAX - 512 байт, на других архитектурах, таких как Motorola 68030, размер страниц может быть задан программно.

Итак, рассмотрены аппаратные особенности поддержки виртуальной памяти. Перейдем к ее программной поддержке.

Страничная организация виртуальной памяти

В большинстве современных операционных систем виртуальная память организуется с помощью страничной адресации. Оперативная память делится на страницы: области памяти фиксированной длины (например, 4096 байт), которые являются минимальной единицей выделяемой памяти (то есть даже запрос на 1 байт от приложения приведёт к выделению ему страницы памяти). Процесс обращается к памяти с помощью адреса виртуальной памяти, который содержит в себе номер страницы и смещение внутри страницы. Процессор преобразует номер виртуальной страницы в адрес соответствующей ей физической страницы при помощи буфера ассоциативной трансляции. Если ему не удалось это сделать, то требуется обращение к таблице страниц (так называемый Page Walk), что может сделать либо сам процессор, либо операционная система (в зависимости от архитектуры).

(слайд №12)

Рис. 16.4. Пример страничной организации.

Страничная организация (paging) – стратегия управления памятью, при которой:

· логическая память делится на страницы – смежные области одинаковой длины, обычно – степень 2 (например, 512 слов);

· физическая память, соответственно, делится на фреймы такого же размера;

· распределение логической памяти происходит с точностью до страницы;

· физическая память процесса может не быть непрерывной;

· связь между логической и физической памятью процесса осуществляется с помощью таблицы страниц системной структуры, выделяемой процессу для трансляции его логических адресов в физические .

При страничной организации ОС хранит информацию обо всех свободных фреймах. Поскольку память выделяется с точностью до страницы, возможна внутренняя фрагментация.

Цели страничной организации – обеспечить возможность не смежного распределения физической памяти для процессов, а также расширить пространство логической памяти.

На рис. 16.4 приведен пример страничной организации, который демонстрирует, что, в отличие от непрерывной логической памяти процесса, соответствующие фреймы страниц в основной памяти могут быть расположены не смежно: логической странице 0 соответствует фрейм 1, странице 1 – фрейм 4, странице 2 – фрейм 3, странице 3 – фрейм 7.

(слайд №13)

Рис. 16.5. Пример страничной организации блоками по 4 страницы.

На рис. 16.5 приведен другой возможный пример страничной организации: логическая и физическая память разбита на блоки по 4 страницы подряд; в таблице страниц хранится не номер страницы, а номер блока страниц. Например, в элементе 0 таблицы страниц хранится номер блока 5, по которому адрес начала блока вычисляется домножением содержимого элемента таблицы страниц на размер блока, равный 4 (результат – 20).



Реализация таблицы страниц

Использование ассоциативной памяти. Таблица страниц – непрерывная область физической памяти. В системе имеется базовый регистр таблицы страниц (page table base register – PTBR), указывающий на таблицу страниц и хранящий ее длину.

Таким образом, при страничной организации любой доступ к памяти требует фактически не одного, а двух обращений в память – одно в таблицу страниц, другое – непосредственно к данным или команде. В этом – некоторый недостаток и неэффективность страничной организации, по сравнению с более простыми методами управления памятью.

(слайд №14)

Рис. 16.3. Архитектура трансляции адресов при страничной организации.

При страничной организации логический адрес обрабатывается системой особым образом – как структура (p, d): его старшие разряды обозначают номер страницы , младшие – смещение внутри страницы. Номер страницы (p) трактуется как индекс в таблице страниц, соответствующий элемент которой содержит базовый адрес начала страницы в физической памяти . Смещение внутри страницы (d) добавляется к ее базовому адресу. В результате формируется физический адрес, передаваемый в устройство управления памятью. Архитектура трансляции адресов при страничной организации изображена на рис. 16.3 .

(слайд №15)

Рис. 16.7. Схема трансляции адресов с использованием ассоциативной памяти.

Проблема двух обращений решается введением ассоциативной памяти (cache) страниц, называемой также буфер трансляции адресов (translation lookaside buffer – TLB). Ассоциативная память, по существу, является ассоциативным списком пар вида: (номер страницы, номер фрейма). Ее быстродействие значительно выше, чем у основной памяти и у регистров.

Схема трансляции адресов с использованием ассоциативной памяти изменяется: если номер страницы из логического адреса найден в ассоциативной памяти, то из ее элемента извлекается соответствующий номер фрейма. Если же номер страницы отсутствует в ассоциативной памяти, он выбирается обычным образом из таблицы страниц, но заносится в ассоциативную память. Таким образом, в ассоциативной памяти накапливается информация о наиболее часто используемых страницах.

Модифицированная схема трансляции адресов с использованием TLB иллюстрируется рис. 16.7 .

В системах со страничной организацией основная и внешняя память (главным образом дисковое пространство) делятся на блоки или страницы фиксированной длины. Каждому пользователю предоставляется некоторая часть адресного пространства, которая может превышать основную память компьютера и которая ограничена только возможностями адресации, заложенными в системе команд. Эта часть адресного пространства называется виртуальной памятью пользователя. Каждое слово в виртуальной памяти пользователя определяется виртуальным адресом, состоящим из двух частей: старшие разряды адреса рассматриваются как номер страницы, а младшие - как номер слова (или байта) внутри страницы.

Управление различными уровнями памяти осуществляется программами ядра операционной системы, которые следят за распределением страниц и оптимизируют обмены между этими уровнями. При страничной организации памяти смежные виртуальные страницы не обязательно должны размещаться на смежных страницах основной физической памяти. Для указания соответствия между виртуальными страницами и страницами основной памяти операционная система должна сформировать таблицу страниц для каждой программы и разместить ее в основной памяти машины. При этом каждой странице программы, независимо от того находится ли она в основной памяти или нет, ставится в соответствие некоторый элемент таблицы страниц. Каждый элемент таблицы страниц содержит номер физической страницы основной памяти и специальный индикатор. Единичное состояние этого индикатора свидетельствует о наличии этой страницы в основной памяти. Нулевое состояние индикатора означает отсутствие страницы в оперативной памяти.

Для увеличения эффективности такого типа схем в процессорах используется специальная, полностью ассоциативная кэш-память, которая также называется буфером преобразования адресов (TLB – translation-lookaside buffer). Хотя наличие TLB не меняет принципа построения схемы страничной организации, с точки зрения защиты памяти, необходимо предусмотреть возможность очистки его при переключении с одной программы на другую.

Поиск в таблицах страниц, расположенных в основной памяти, и загрузка TLB может осуществляться либо программным способом, либо специальными аппаратными средствами. В последнем случае для того, чтобы предотвратить возможность обращения пользовательской программы к таблицам страниц, с которыми она не связана, предусмотрены специальные меры. С этой целью в процессоре предусматривается дополнительный регистр защиты, содержащий описатель (дескриптор) таблицы страниц или базово-граничную пару. База определяет адрес начала таблицы страниц в основной памяти, а граница - длину таблицы страниц соответствующей программы. Загрузка этого регистра защиты разрешена только в привилегированном режиме. Для каждой программы операционная система хранит дескриптор таблицы страниц и устанавливает его в регистр защиты процессора перед запуском соответствующей программы.

Отметим некоторые особенности, присущие простым схемам со страничной организацией памяти. Наиболее важной из них является то, что все программы, которые должны непосредственно связываться друг с другом без вмешательства операционной системы, должны использовать общее пространство виртуальных адресов. Это относится и к самой операционной системе, которая, вообще говоря, должна работать в режиме динамического распределения памяти. Поэтому в некоторых системах пространство виртуальных адресов пользователя укорачивается на размер общих процедур, к которым программы пользователей желают иметь доступ. Общим процедурам должен быть отведен определенный объем пространства виртуальных адресов всех пользователей, чтобы они имели постоянное место в таблицах страниц всех пользователей. В этом случае для обеспечения целостности, секретности и взаимной изоляции выполняющихся программ должны быть предусмотрены различные режимы доступа к страницам, которые реализуются с помощью специальных индикаторов доступа в элементах таблиц страниц.

Следствием такого использования является значительный рост таблиц страниц каждого пользователя. Одно из решений проблемы сокращения длины таблиц основано на введении многоуровневой организации таблиц. Частным случаем многоуровневой организации таблиц является сегментация при страничной организации памяти. Необходимость увеличения адресного пространства пользователя объясняется желанием избежать необходимости перемещения частей программ и данных в пределах адресного пространства, которые обычно приводят к проблемам переименования и серьезным затруднениям в разделении общей информации между многими задачами.

Конец работы -

Эта тема принадлежит разделу:

Принципы функционирования ЭВМ. Учебное пособие по курсам «технология программирования» и «операционные системы»

В пособии излагаются базовые принципы организации и функционирования ЭВМ рассмотрен состав минимальной ЭВМ с шинной организацией назначение и.. илл библиограф наим..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Принципы фон неймана
Большинство современных ЭВМ строятся на базе принципов, сформулированных американским ученым, одним из “отцов” кибернетики Дж. фон Нейманом. Впервые эти принципы были опубликованы фон Нейманом в 19

Состав и функционирование минимальной ЭВМ с шинной организацией
Шинная организация является простейшей формой организации ЭВМ. Подобная ЭВМ имеет в своем составе следующие функциональные блоки (см. рис. 1). Устройство управления (УУ) -

Команды ЭВМ
В данном разделе пособия кратко рассмотрим набор команд, используемых в типичных ЭВМ и действия, реализуемые этими командами.


Первая из команд (сравнение) производит, как отмечалось выше, вычитание значения операнда B из операнда A. Если A>B, то результат будет положителен и, соответственно, флаг знака во флаговом реги

Системные интерфейсы с изолированной и общей системой шин
В предыдущих разделах при описании обобщенного алгоритма работы центрального процессора мы намеренно опустили из рассмотрения вопрос о том, как процессор “отличает” порты внешних устройств от ячеек

Способы обмена данными в машинах с шинной организацией. Механизм прерываний
Рассмотрев алгоритм функционирования процессора и способы организации системы шин в ЭВМ, попытаемся выяснить, какие особенности в работу и организацию ЭВМ вносит необходимость обеспечения взаимодей

Программно - управляемый обмен данными
Так как скорость работы периферийного оборудования обычно ниже скорости работы процессора, чтобы осуществить операцию обмена процессор должен убедиться, что устройство готово к выполнению операции

Обмен по прерываниям
Чтобы понять, что такое прерывание, обратимся к следующему примеру. Некоторый человек сидит в кресле и читает книгу. В это время на кухонной плите что-то готовится, и, кроме того, его прия

Внепроцессорный прямой доступ к памяти
Обмен данными с медленнодействующими периферийными устройствами, например, с посимвольным принтером, организуется по прерываниям, инициирующим передачу каждого слова или байта. Если подпрограмма об

И еще о прерываниях
Описанный выше механизм прерываний, или аппаратные прерывания, является эффективным способом организации взаимодействия процессора с медленными внешними устройствами и начал

Режимы адресации
При выполнении программы многим командам требуется доступ к памяти для выборки данных, записи промежуточных и окончательных результатов вычислений. Для любого такого обращения, что уже отмечалось в

Иерархическая организация памяти
Память в современных компьютерах строится по иерархическому принципу. Одним из явлений, характерных для фоннеймановских ЭВМ является принцип локальности. Это означает, что за ограниченный промежуто

Кэш-память
Как уже говорилось выше, назначение кэш-памяти – временное хранение данных и команд, часто используемых процессором. Основной структурной единицей кэш-памяти является так называемая строка кэша (ca

Сегментная организация виртуальной памяти
Другой подход к организации памяти опирается на тот факт, что программы обычно разделяются на отдельные области-сегменты. Каждый сегмент представляет собой отдельную логическую единицу информации,

Процесс переадресации виртуальной памяти
Процесс переадресацииопишем на примере микропроцессора 80386 фирмы Intel. Процесс переадресации показан на рис. 19 и 20.Перед исполнением загрузочные модели помещаются в оперативну

Форматы данных
Основными типами данных, которые встречаются при обработке информации в ЭВМ, являются числа, представленные в двоичной системе счисления, а также алфавитно-цифровые символы. Некоторые ЭВМ также осу

Информационная модель ЭВМ
Обработка чисел, символьной информации, логическая обработка, обработка сигналов - это все частные случаи общего понятия над названием «обработка информации». Для ЭВМ характерен признак: информация

Простейший конвейер, производительность конвейера
Существует достаточно простое общеизвестное правило – чтобы выполнить некоторую работу быстрее, необходимо разделить ее между несколькими исполнителями и заставить их действовать од­новременно. Раз

Структурные конфликты
Структурные конфликты возникают, если на различных участках конвейера производится обращение к одному, недублированому ре­сурсу. Подобная ситуация возникает, например, если процессор имеет единую к

Конфликты по данным
Конфликты по данным возникают, когда несколько последова­тельно выполняемых команд оказываются логически зависимыми друг от друга. Если порядок обращения к данным при конвейерной обработке некоторо

Сокращение потерь на выполнение команд перехода и минимизация конфликтов по управлению
Конфликты по управлению могут вызывать даже большие потери производительности конвейера, чем конфликты по данным. Когда выполняется команда условного перехода, она может либо изме­нить, либо не изм

ЭВМ с канальной организацией
В основе этого типа организации ЭВМ лежит множественность каналов связи между устройствами и функциональная специализация узлов. Упрощенная схема организации ЭВМ с каналами приведена на ри

микропроцессора :

Программист имеет в своем распоряжении адресное пространство , ограниченное лишь разрядностью адресной шины, независимо от реальной емкости оперативной памяти компьютера и объемов памяти, которые используются другими программами, параллельно обрабатываемыми в мультипрограммной ЭВМ.

Виртуальная память , обеспечивая возможность программисту обращаться к очень большому объему непрерывного адресного пространства, предоставляемого в его монопольное распоряжение, обладает обычными свойствами: побайтовая адресация , время доступа , сравнимое со временем доступа к оперативной памяти.

На всех этапах подготовки программ, включая загрузку в память, программа представляется в виртуальных адресах , и лишь при выполнении машинной команды виртуальные адреса преобразуются в физические. Для каждой программы, выполняемой в мультипрограммном режиме, создается своя виртуальная память . Каждая программа использует одни и те же виртуальные адреса от нулевого до максимально большого в данной архитектуре.

Для преобразования виртуальных адресов в физические физическая и виртуальная память разбиваются на блоки фиксированной длины, называемые страницами . Объемы виртуальной и физической страниц совпадают. Страницы виртуальной и физической памяти нумеруются. Отсутствующие в физической памяти страницы обычно хранятся во внешней памяти. Фиксированный размер всех страниц позволяет загрузить любую нужную виртуальную страницу в любую физическую.

Как отмечалось выше, при страничном представлении памяти виртуальный ( логический) адрес представляет собой номер виртуальной страницы и смещение внутри этой страницы. В свою очередь , физический адрес - это номер физической страницы и смещение в ней.

Правила перевода номеров виртуальных страниц в номера физических страниц обычно задаются в виде таблицы страничного преобразования . Такие таблицы формируются системой управления памятью и модифицируются каждый раз при перераспределении памяти. Операционная система постоянно отслеживает состояние виртуальных страниц той или иной программы и определяет, находится ли она в оперативной памяти, и если находится, то в каком конкретно месте. Прикладные программы не касаются процесса и могут использовать все адресное пространство . Процессор автоматически формирует особый случай неприсутствия, когда программа обращается к странице, отсутствующей в физической памяти. При обработке этого особого случая ОС загружает затребованную страницу из внешней памяти, при необходимости отправляя некоторую другую страницу на диск (процесс свопинга).

Перевод виртуальных адресов в физические проиллюстрирован на рис. 3.12 .


Рис. 3.12.

Рассмотрим пример преобразования адреса виртуальной страницы в адрес физической страницы . Пусть компьютер использует адресное пространство , предполагающее разбиение на страницы объемом V стр = 1I , и имеет оперативную память V ОЗУ = 3 страницы. Пусть на компьютере одновременно выполняются четыре программы, имеющие следующее количество страниц: V A = 2 , V B = 1 , V C = 3 , V D = 2 . Переключение между программами происходит через время кванта t k = 1 . Время выполнения каждой страницы любой программы составляет t = 2t k . Полагаем, что страницы программ загружаются в оперативную память по мере необходимости и по возможности в свободные области ОЗУ . Если вся память занята, то новая страница замещает ту, к которой дольше всего не было обращений.

При таких условиях таблица загрузки оперативной памяти и таблицы страничного преобразования для каждой программы будут иметь вид, представленный в табл. 3.2.

В таблице распределения оперативной памяти выделены номера активных в данном такте страниц. В таблицах страничного преобразования прочерками отмечены ситуации, когда данная виртуальная страница отсутствует в оперативной памяти.

Таблица 3.2. Пример страничного распределения памяти в мультипрограммной ЭВМ
Страница Такты
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Динамическое распределение оперативной памяти
ОЗУ 0 АО АО АО DO DO DO CO CO CO C1 C1 C1 C1 C1 C1 C1
1 B0 B0 B0 A0 A0 A0 D0 D0 D0 D1 D1 D1 D1 D1 D1
2 C0 C0 C0 B0 B0 B0 A1 A1 A1 A1 A1 A1 C2 C2
Таблица страничного преобразования для программы А
A 0 0 0 - - 1 1 1 - - - - - - - - -
1 - - - - - - - - 2 2 2 2 2 2 - -
Таблица страничного преобразования для программы В
B 0 - 1 1 1 - 2 2 2 - - - - - - - -
Таблица страничного преобразования для программы С
С 0 - - 2 2 2 - 0 0 0 - - - - - - -
1 - - - - - - - - - 0 0 0 0 0 0 0
2 - - - - - - - - - - - - - - 2 2
Таблица страничного преобразования для программы D
D 0 - - - 0 0 0 - 1 1 1 - - - - - -
1 - - - - - - - - - - 1 1 1 1 1 1

Если каждая страница имеет объем 1000 адресуемых ячеек, то, например, в такте 9 обращение по виртуальному адресу 1100 программы A ( виртуальная страница 1, смещение в странице равно 100) приведет к обращению по физическому адресу 2100 ( физическая страница 2, смещение в физической странице такое же, как и в виртуальной, то есть 100).

Рассмотрим теперь применение этих общих принципов страничного преобразования адреса в микропроцессоре с архитектурой IA-32 при объеме страницы в 4 Кбайт.

Основой страничного преобразования служит 32-разрядный линейный адрес , полученный на этапе сегментного преобразования логического адреса . Страничное преобразование выполняется при значении бита PG = 1 в управляющем регистре CR0 .

В этом случае старшие 20 разрядов линейного адреса фактически представляют собой номер виртуальной страницы . Однако при прямом одноступенчатом преобразовании этого номера в номер физической страницы необходима таблица из 2 20 элементов длиной 4 байта каждый (20-разрядный номер страницы плюс некоторая дополнительная информация ), т. е. 4 Мбайт. В мультипрограммной среде такая таблица может потребоваться для каждой задачи. Эта таблица должна постоянно храниться в оперативной памяти, чтобы существенно не увеличивать время формирования физического адреса . Для этих целей потребуется постоянное резервирование существенной части емкости ОЗУ , что на этапе появления первых ЭВМ на основе МП с архитектурой IA-32 было практически невозможно.

Вместо этого микропроцессор использует двухступенчатое страничное преобразование адреса . Корневая страница, называемая каталогом таблиц страниц (КТС), содержит 1024 32-разрядных элемента каталога таблиц страниц (ЭКТС - PDE page directory entry ). Каждый из них адресует подчиненную таблицу страниц (ТС), то есть всего допускается до 1024 подчиненных таблиц страниц. Каждая из таблиц страниц содержит 1024 32-разрядных элемента таблицы страниц (ЭТС - PTE page table entry ), каждый из которых и адресует физическую страницу. Таким образом, общее количество адресуемых физических страниц равно 2 20 , то есть все виртуальное адресное пространство (4 Кбайт * 2 20 элементов = 2 32 байт ). Каждая таблица занимает 1024 * 4 = 4 Кбайт, то есть ровно 1 страницу. Общий объем таблиц, используемых для страничного преобразования , не уменьшился, а даже несколько возрос за счет использования каталога таблиц страниц . Однако, во-первых, практически всегда в системе этот размер можно существенно уменьшить за счет того, что некоторые линейные адреса никогда не будут сформированы (а эту информацию дают таблицы дескрипторов сегментов), и для них не нужно создавать таблицу страниц. А во-вторых, в оперативной памяти должны постоянно находиться лишь каталог таблиц страниц и таблица страниц выполняемой в настоящее время программы. Остальные таблицы страниц могут временно храниться во внешней памяти.


Рис. 3.13.

Таким образом, преобразование линейного адреса в физический имеет вид, представленный на рис. 3.13 .

Старшие 20 разрядов линейного адреса разбиваются на два 10-разрядных поля: поле номера элемента каталога таблиц страниц и поле номера элемента таблицы страниц . Так как и каталог таблиц страниц , и каждая таблица страниц занимают ровно 1 страницу и выровнены по границе страницы, то младшие 12 разрядов их базового адреса равны нулю, и для определения их физического адреса достаточно 20-разрядного поля.

Для каталога таблиц страниц его 20-разрядный адрес находится в регистре управления CR3. КТС постоянно находится в памяти и не участвует в свопинге .

Старшие 20 разрядов физического адреса таблицы страниц извлекаются из ЭТС. Структуры элемента КТС и элемента ТС схожи (рис. 3.14).


Рис. 3.14.

Старшие 20 разрядов элемента дают базовый адрес таблицы страниц (в ЭКТС) или физической страницы (в ЭТС). Биты P , A , R/W и U/S имеют определенное сходство с аналогичными атрибутами дескриптора сегмента, другие биты имеют специфическое назначение.