Результаты тестов: сравнение производительности. Программы в которых проводилось тестирование

Процессор - это сердце компьютера. Он может быть запредельно мощным или откровенно слабеньким. Но именно он решает, насколько быстро будет работать ПК. Количество поддерживаемой оперативной памяти тоже целиком и полностью зависит от процессора. Сейчас на рынке очень много моделей с различными характеристиками: от дешевых и маломощных "камней" для офисных ПК до суперпроизводительных "монстров", рассчитанных на тяжелые задачи. Как бы то ни было, выбор процессора нужно осуществлять, предварительно взвесив все за и против. Но есть на рынке модель, которая устроит практически всех: и геймеров, и обычных пользователей. Это AMD Phenom II X3 720 Black Edition. Разберем этот процессор подробнее.

Немного о компании

Компания AMD начала свою трудовую деятельность в 1969 году. Долгое время производитель был монополистом в сфере выпуска электронных вычислительных машин. Но вскоре появился Intel, и наши герои уже который год ведут борьбу с этой компанией за первенство в области выпуска компьютерных чипов и комплектующих. Долгое время АМД была вынуждена сдавать позиции. Их чипы не шли ни в какое сравнение с продукцией "Интел". И только в последние годы компания начала возвращать себе былое величие. Одной из вех стал выпуск AMD Phenom II X3 720.

Это первый процессор от АМД, который смог конкурировать с интеловскими поделками в плане производительности и энергопотребления. Неудивительно, что компания стала и дальше развивать эту линейку. "Феномы" завоевали любовь пользователей по всему миру. Этот процессор для ПК стал самым продаваемым в России и странах СНГ. И все благодаря удачной конструкции, грамотному маркетингу и оптимизации. Выпуск этого процессора стал звездным часом АМД. Отныне они находятся примерно на одной ступени с "Интел".

Позиционирование процессора

Он относится к категории low-end. Это значит, что устройство из бюджетной ценовой категории, предназначенное для массовой продажи. Однако есть некоторые различия с откровенными "бюджетниками". Оно заключается в технических характеристиках чипа. Никогда еще столь мощные процессоры не были такими доступными. Один только кэш третьего уровня размером 6 мегабайт о многом говорит. Остальные характеристики тоже не отстают. И все это за откровенно смешные деньги. Неудивительно, что прочное положение "Интел" заметно пошатнулось.

Процессор AMD Phenom II X3 стал действительно народным продуктом. По данным ритейлеров, он установлен в каждом третьем персональном компьютере. Несмотря на то что сейчас процессор смотрится несколько архаичным со своими тремя ядрами, у него имеются богатые возможности для разгона. А это о многом говорит. В частности, о том, что он ярко выделяется даже на фоне low-end гаджетов.

Комплект поставки

Чип упакован в коробку из картона черного цвета с графическим изображением и логотипом АМД. На ней крупными буквами написано Black Edition, что кажется немного лишним. Коробка и так черная. На торце расположено окно, через которое можно посмотреть на сам процессор. Но ничего интересного вы там не увидите. Кроме маркировки модели. На коробке расписаны основные технические характеристики процессора и его тактовая частота (самое главное).

Внутри находится кулер с радиатором, инструкция по эксплуатации на разных языках и сам процессор. Положить сюда что-нибудь еще можно было бы. Но вопрос - что? Что еще нужно в комплекте с процессором? AMD Phenom II X3 720 добротно упакован в пузырчатый целлофан. Это полностью исключает возможность повреждения при транспортировке. Вот такой спартанский и нехитрый комплект поставки.

Технические характеристики

AMD Phenom II X3 720 создан под Но он прекрасно может стать и на сокеты АМ2 и АМ2+. Установка его проста. Она не вызовет проблем ни у кого. Главное - не забыть намазать термопасту перед установкой кулера, идущего в комплекте. Номинальная тактовая частота составляет 2 800 мегагерц, а множитель равен 14. Но это далеко не предел, так как этот процессор просто создан для разгона. Процессор имеет трехъядерную конструкцию и 6 Мегабайт кэша третьего уровня. Это весьма приличный результат.

Этот процессор для ПК работает с полным набором инструкций и имеет в своем распоряжении различные технологии, которые перечислять сейчас нет никакого смысла, ибо на общую производительность сего "камня" они никак не влияют. Стоит отметить, что хоть этот процессор и относится к разряду морально устаревших, но он поддерживает почти все современные материнские платы и видеокарты.

Возможности разгона

AMD Phenom II X3 720 имеет широчайшие возможности разгона благодаря разблокированному множителю. После разгона этот процессор для ПК демонстрирует точно такую же производительность, как и многие современные четырехъядерные процессоры. Так, к примеру, его удалось разогнать до тактовой частоты 3 600 мегагерц. А теперь сравните со "стоковой" 2 800, и вам все станет ясно. Теперь уже таких процессоров не делают. А значит, его пока рано списывать со счетов.

В синтетических тестах производительности процессор демонстрирует чудеса выносливости. Не стоит только забывать, что перед разгоном требуется заменить систему охлаждения, ибо стандартный вентилятор не рассчитан на такие мощности. И неплохо было бы скачать с официального сайта АМД такую штуку, как программа для температуры процессора. Она может контролировать нагрев "камня" в реальном времени. Если температура достигнет критического максимума, то разгон нужно прекратить и вернуть стандартные настройки. Хотя бы на некоторое время.

Скрытое ядро

Официально "Феном" Black Edition считается трехъядерным процессором. Но мало кто знает, что у него имеется скрытое заблокированное ядро. Физически-то в нем 4 ядра! И есть способ это самое что даст некоторый прирост в производительности. Однако для этого нужна подходящая материнская плата. Идеально подходит GIGABYTE GA-MA790XT-UD4P. Она позволяет активировать опцию Advanced Clock Calibration. После включения соответствующего пункта в БИОСе подключается четвертое ядро. И процессор переходит на совсем другой уровень. А теперь представьте возможности разгона уже четырехъядерного процессора.

Такая практика вполне в духе АМД. Компания специально расположила скрытое ядро в архитектуре процессора для того, чтобы продавать его как трехъядерный, а точно такой же, но со всеми четырьмя ядрами они продавали на порядок дороже. Это гениальный маркетинговый ход. Только "народные умельцы" быстро нашли скрытое ядро и научились превращать "бюджетные" процессоры в премиумные. Только все-таки требуется программа для температуры процессора (ее отслеживания) во избежание неприятностей.

Страница 1 из 3

В Phenom II помимо разгона ядер процессора и шины HyperTransport (далее HT), появилась возможность разгонять контроллер памяти CPU-NB . И тут появляется вопрос, как же влияет на производительность процессора Phenom II разгон шины HT и контроллера памяти CPU-NB , есть ли смысл разгонять их. Для выяснения их влияния на производительность процессора Phenom II , было проведено тестирование.

Немного об особенностях работы процессоров Phenom II

1. Процессоры Phenom II серии Black Edition , можно легко разгонять прямо из под Windows, для этого достаточно программы которая умеет менять его множитель, например PhenomMrsTwk. Эта программа может из под Windows изменить множитель и напряжение на процессоре, тем самым избавляя от необходимости каждый раз заходить в биос, чтобы изменить частоту процессора.

Также эта программа полезна тем, что позволяет не только повысить, но и понизить множитель, снижая частоту CPU, также снижается энергопотребление и нагрев производимый процессором. Это полезно например когда вам не нужна высокая производительность, к примеру во время прослушивания музыки, просмотра видео или работы в Word"e.

2.В процессорах Phenom II кэш L3 работает на частоте равной частоте контроллера памяти, то есть повышая частоту контроллера памяти CPU-NB , также повышается частота кеша L3 . В свою очередь это повышает не только работу с оперативной памятью, но и так же внутренние операции процессора. Но надо обязательно знать, CPU-NB имеет собственное напряжение, которое при его разгоне надо тоже обязательно повышать. И надо позаботится об хорошем охлаждении процессора, так как разгон CPU-NB также повышает тепловыделение.
В моём случае разгон CPU-NB до 2600mhz и 1.3v поднимает температуру в просто на 3-4 градуса. А в нагрузке на 4-6 градусов.

3.Универсальная шина HT , в серверных процессорах Opteron служит в основном как мост соединяющий между собой процессоры , которые установлены на одном мат.плате, поэтому у них большая необходимость в её скорости. А в настольных процессорах Phenom II , в быстрой шине HT нету большой необходимости, так как единственным устройством который нуждается в ней это видеокарта, другим устройствам скорость шины HT просто избыточна.
Обычно для большей стабильности при разгоне HT, надо немного поднять напряжение в биосе на HT Link.

Методика тестирования

Изначально планировалось протестировать CPU-NB и HT, на частотах 1000mhz, 2000mhz и 2600mhz. Но сначала столкнулся с тем, что мат.плата не позволяет снизить частоту CPU-NB ниже 1200mhz и тестирование на частоте CPU-NB 1000mhz не было проведено. После выяснилось, что при HT 1000mhz и CPU-NB 2600mhz система напрочь отказалась стартовать, из-за этого тестирование при таких частотах CPU-NB и HT не было проведено.
Разгон процессора упирался в 3600mhz стабильных под Win7 x64. К слову в WinXp Sp3 процессора стабильно работал на 3700мгц, как потом выяснилось 64 битные ОС немного снижают максимально стабильный разгон. Оперативная память функционировала на частоте 1333mhz с таймингами 7-7-7-24-33 1T. Выяснять производительность работы процессора от таймингов памяти, я не стал. Но согласно статистике разгона взятой с форума overclocker.ru, почти все модули памяти DDR3 1333mhz способны работать с таймингами 7-7-7 при небольшом увеличении напряжения, обычно до 1.6v-1.65v. Поэтому тестировать с большими таймингами, я считаю не целесообразно.

Программы в которых проводилось тестирование

Каждая из программ в ходе тестирования, прогонялась от трёх и более раз, для того чтобы получить более точные результаты тестирования. Каждая программа на момент начала тестирования была взято последней версии, кроме игры Left 4 Dead2 которая была установлена в мой ПК пару месяцев назад.


Наша лаборатория уже давно сотрудничает с командой Team IRONMODS. Когда процессоры AMD Phenom II для Socket AM3 показались на горизонте, мы попросили представителя команды Ton "TiTON" Khowdee провести экстремальный разгон нашего образца X3 720 Black Edition - чипа, который по утверждению AMD должен разгоняться лучше Phenom II X4 940 BE. Собственно, данная статья и посвящена этому нелёгкому процессу.

Статья задумывалась как хардкорная демонстрация возможностей последних процессоров AMD Phenom II X3 720 Black Edition. В общем-то, это не традиционный обзор процессора. Мы не будем пытаться достичь стабильной работы в режиме 24x7. Вместо этого мы сфокусируем внимание на прохождении тестов на максимально возможной частоте. Последнему процессору AMD Black Edition придётся очень нелегко. Он будет заморожен с помощью жидкого азота, а напряжение будет выкручено до максимума. Мы будем балансировать на тонкой грани между сумасшедшими скоростями и полным уничтожением CPU. Что ж, давайте зададим процессору AMD жару: посмотрим, какие награды по производительности нас ждут, если мы пойдём этим нелёгким путём.


Нажмите на картинку для увеличения.

Перед тем, как мы оценим скрытую мощь процессора AMD Phenom II X3 720 Black Edition, нам нужно зафиксировать исходные показатели. Мы будем использовать небольшой набор тестов, который даст нам исходные результаты. SuperPi 1.5, давний фаворит оверклокеров, является однопоточным приложением, которое высчитывает определённое количество знаков после запятой в числе Pi. Похожая на SuperPi, утилита WPrime является относительно новым многопоточным приложением, которое может выигрывать от всех ядер процессора. Futuremark 3DMark06 покажет нам, какой прирост производительности можно ожидать от графических тестов.

Все наши скриншоты содержат несколько окон CPU-Z, отображающих системные параметры. Итак, базовые результаты.

  • SuperPi 1.5 @ 24,609 с;
  • SuprePi 1.5 32m @ 28 мин. 27,703 с;
  • Wprime 32 и 1024 @ 18,797 с и 600,31 с (10 мин 0,31 с);
  • 3DMark06 14k, CPU Score @ 3463.

Нажмите на картинку для увеличения.
Нажмите на картинку для увеличения.
Нажмите на картинку для увеличения.

Разгон AMD Phenom II X3 720 Black Edition | Стенд для разгона в картинках


Нажмите на картинку для увеличения.

Разгон с жидким азотом требует специального оборудования. Самый важный элемент тестового стенда - цилиндр, который специально разработан для охлаждения процессора до температур ниже нуля. Цилиндры, как правило, изготавливают из алюминия или меди, они оптимизированы либо под сухой лёд, либо под жидкий азот. Медь является идеальным материалом для разгона при температурах ниже нуля, поскольку этот материал очень хорошо выносит температуры.

Цилиндр Sumo XL Copper CPU был специально придуман и изготовлен оверклокером Cpt.Planet, который тоже входит в команду Team IRONMODS.


Нажмите на картинку для увеличения.

Теперь, когда мы провели базовые тесты, настало время подготовить материнскую плату для охлаждения CPU жидким азотом. Для тестов мы будем использовать лак для ногтей и пеноизоляцию. Это только один из способов изолировать плату; есть и другие методы, от использования вазелина до ластиков.


Нажмите на картинку для увеличения.

Сначала с материнской платы нужно снять стандартную скобу крепления кулера CPU. Затем мы наносим тонкий слой лака для ногтей и сушим поверхность. Это даёт плате тонкий изолирующий и водонепроницаемый защитный слой. После того, как лак для ногтей высохнет, мы расстилаем вокруг сокета CPU слой пеноизоляции. В нём мы делаем вырезы для конденсаторов и MOSFET. После установки CPU мы накладываем второй слой пеноизоляции, который открывает только верхнюю часть процессора. Цель такой изоляции - обеспечить воздухонепроницаемое уплотнение, чтобы избежать конденсации. Лак для ногтей и слой пеноизоляции наносятся и на материнскую плату с задней стороны, до установки цилиндра охлаждения CPU.


Нажмите на картинку для увеличения.

Цилиндр крепится на место с помощью резьбовых стержней и рифлёных гаек, которые удерживают его и обеспечивают должное давление на распределитель тепла. Мы оборачиваем цилиндр ещё одним слоем пеноизоляции, чтобы предотвратить образование конденсата и помочь ему сохранять низкую температуру.


Нажмите на картинку для увеличения.

Когда материнская плата изолирована, а на процессор монтирован цилиндр охлаждения, настало самое время заморозить CPU. При монтаже цилиндра он имеет температуру окружающей среды. Пройдёт пара часов, прежде чем жидкий азот охладит цилиндр до нужной температуры. Мы потратили почти литр жидкого азота, прежде чем CPU достиг температуры -190 °C.


Нажмите на картинку для увеличения.

По мере кипения жидкого азота, холодные пары выходят из цилиндра и опускаются на материнскую плату, омывая модули памяти Crucial Ballistix Tracer. Ключевым преимуществом тестов с жидким азотом является то, что окружающие компоненты всегда окружены туманом с температурой ниже нуля, который помогает охлаждать чипсет и MOSFET.


Нажмите на картинку для увеличения.

С процессорами Phenom II AMD удалось предотвратить серьёзную головную боль для оверклокеров, известную как "cold bug/холодный глюк". Большинство процессоров в прошлом страдало из-за тех или иных типов "холодных глюков". Подобные ошибки приводили к потере стабильности во время разгона, а множество таких ошибок могло привести к полному выключению компьютера или отказу от загрузки. Не у всех чипов "холодные глюки" проявляют себя одинаково. У некоторых первых Phenom подобные ошибки начинали проявляться при такой высокой (или низкой, смотря как посмотреть) температуре, как 0 °C, а другие чипы можно было охладить до -40 °C, прежде чем "холодные глюки" заявляли о себе.

Phenom II оказался довольно приятным событием для оверклокеров, поскольку теперь о "холодных глюках" можно забыть. Некоторые процессоры удалось без всяких проблем охладить до температур ниже -200 °C с помощью жидкого гелия. Причина, по которой вы могли не слышать о подобных рекордах раньше - они были попросту невозможны.

CPU-Z - популярная утилита, которая отображает текущую тактовую частоту процессора, памяти, а также и другую важную информацию. CPU-Z - это не тест, как вы наверняка знаете. Файл валидации можно загрузить на сервер CPU-Z, чтобы потом доказать истинность разгона. Собственно, так делают все хардкорные оверклокеры, представляя доказательство разгона. Впрочем, подобные скриншоты часто называют "суицидом", поскольку единственная их цель - получить как можно более высокую частоту, не обращая внимания на состояние "железа".

С напряжением 1,888 В, множителем 29x и температурой -197 °C мы смогли получить "скриншот-суицид" с процессором AMD Phenom II X3 720 Black Edition, разогнанным до 5,8 ГГц. Процессор смог заработать на 5,8 ГГц, что на 3 ГГц больше, чем штатная тактовая частота 2,8 ГГц. Подняв напряжение до 1,94 В, мы попытались достичь планки 6 ГГц. Увы, но даже с дополнительным напряжением нам это не удалось.


Нажмите на картинку для увеличения.

SuperPi 1M - очень короткий тест, который использует только одно ядро. У многоядерных процессоров не все ядра разгоняются одинаково. Многие оверклокеры выбирают самое сильное ядро, чтобы проводить на нём тест, привязывая к нему утилиту через "Диспетчер задач" Windows. Собственно, именно поэтому скорости SuperPi 1M часто бывают быстрее других тестов, которые либо накладывают нагрузку на более продолжительный период времени, либо требуют, чтобы все ядра работали одинаково хорошо.

На частоте 5,6 ГГц мы смогли запустить прогон SuperPi 1M, который завершился за 13,000 секунд. Это более, чем на 89% быстрее по сравнению с 24,609 секунды при штатном значении частот.


Нажмите на картинку для увеличения.

SuperPi 32M выполняется намного дольше, поэтому скорости обычно меньше SuperPi 1M. Мы смогли успешно пройти прогон SuperPi 32M на частоте 5,2 ГГц. Core 1 у процессора было намного более сильным, чем другие ядра. Если вы посмотрите на скриншот утилиты AMD OverDrive, то обнаружите, что ядро Core 1 работало на частоте 5,2 ГГц, а ядра Core 0 и 3 - на частоте 4 ГГц. Возможность процессоров AMD регулировать частоты ядер независимо друг от друга обеспечивает хорошую гибкость разгона.

На частоте 5,2 ГГц мы смогли пройти данный тест за 16 минут и 36 секунд по сравнению с 28 минутами на штатных частотах. Прирост производительности составил более 71%.


Нажмите на картинку для увеличения.

Мы продолжали тестирование, и каждый тест становился всё более и более трудным. WPrime использует все три ядра для вычисления определённого количества знаков после запятой у числа Pi. Все ядра работают под полной загрузкой, поэтому процессор нагружен до предела.

В тесте WPrime 32M мы смогли запустить все три ядра на частоте 5,1 ГГц, после чего мы завершили тест за 10,609 секунды против 18,797 секунды на штатных частотах. Тест после охлаждения CPU жидким азотом выполнялся на 77% быстрее.


Нажмите на картинку для увеличения.

В тесте WPrime 1024m мы смогли запустить все три ядра только на частоте 4,8 ГГц, хотя это всё равно является разгоном на 2 ГГц. Мы завершили тестовый прогон за 353,703 секунды против 600 секунд на штатных тактовых частотах. То есть мы получили 70% прирост производительности.


Нажмите на картинку для увеличения.

Futuremark 3DMark06 - графический тест, который, в частности, имеет специальный прогон для оценки производительности CPU. Во время прогона на штатных частотах AMD Phenom II X3 720 Black Edition смог достичь результата 3463. Когда процессор работал при температуре -190 °C на частоте 4,5 ГГц, мы смогли получить результат CPU 5262 балла, что более чем на 52% быстрее. Кроме того, мы получили приятный прирост производительности 3000 баллов для суммарного результата.

Разгон AMD Phenom II X3 720 Black Edition | Очищаем тестовый стенд


Нажмите на картинку для увеличения.

Теперь, когда мы провели все тесты с помощью охлаждения жидким азотом, настало время снять замёрзшее "железо". После нескольких часов тестов, на держателях образовался слой инея. Для более длительного тестирования многие оверклокеры оборачивают цилиндр вторым слоем изоляции, чтобы предотвратить конденсацию. В принципе, пока цилиндр холодный, никакой проблемы с инеем нет. Но если данная область будет нагреваться, то иней начнёт таять, а это может привести к замыканиям на плате.


Нажмите на картинку для увеличения.

Когда мы перевернули материнскую плату, то обнаружили, что подложка крепления полностью покрылась инеем, как часть материнской платы, включая область сокетов DIMM. К счастью, мы нанесли на эти участки лак для ногтей, так что плата защищена от инея.


Нажмите на картинку для увеличения.

После снятия цилиндра стало очевидным, что вокруг CPU и сокета нет инея или влаги. Это означает, что процессор выдержит ещё один раунд тестов под экстремальными условиями.


Нажмите на картинку для увеличения.

Сегодня мы разогнали новейший процессор AMD Phenom II X3 720 Black Edition. AMD вышла явным победителем, по крайней мере, если считаться с мнением хардкорных оверклокеров. Чип с лёгкостью нарастил 100% от штатной тактовой частоты без существенных проблем. X3 720 Black Edition явно станет любимым процессором тех пользователей, которые любят разгонять свои системы за пределы спецификаций производителя.

Как вы уже знаете, компания AMD успешно осуществила переход на 45 нм техпроцесс, и первые такие процессоры появятся в продаже в самое ближайшее время. В условиях кризиса, для AMD этот шаг очень важен, поскольку таким образом компания решает сразу несколько задач. Самые главные из них - себестоимость и производительность процессоров. Начнем с себестоимости. Тут все достаточно просто - более тонкий техпроцесс позволяет изготавливать процессорные ядра меньшего размера, что увеличивает количество ядер на одной пластине. Следовательно, себестоимость каждого ядра снижается и при сохранении цены реализации - прибыль увеличивается. Однако не факт, что новый 45 нм техпроцесс поможет AMD добиться этого экономического эффекта. Все дело в том, что производительность первых процессоров Phenom значительно уступала конкурентам в лице разнообразных Intel Core. Соответственно, все усилия компании AMD по переходу на 45 нм тех.процесс были направлена на увеличение производительности CPU, что подразумевает улучшение и модернизацию ядра Phenom, которое получило название Phenom II. В свое время компания Intel перешла с 65 нм на 45 нм тех.процесс и при этом произвела только «косметические» изменения ядра Core. Производительность ядра осталась на прежнем уровне, но себестоимость изготовления процессоров значительно упала. Дело в том, что в Intel могли себе позволить не наращивать производительность, пока их процессоры не имели достойных конкурентов. Итак, в чем заключаются основные изменения ядра Phenom II. Во-первых, значительно (более чем в 1,5 раза) увеличено количество транзисторов. Теперь на ядре размером 258 кв. мм помещается 758 млн транзисторов (у Phenom эти цифры, соответственно - 285 кв. мм и 450 млн). Львиная доля дополнительных транзисторов отведена под кэш-память третьего уровня. Ее размер вырос до 6 Мб против 2 Мб у Phеnom I. Кроме того, уменьшена латентность кэш-памяти, увеличена ее ассоциативность, а интегрированный контроллер памяти работает теперь как с памятью DDR2, так и с DDR3. Тут нужно оговориться, что подобный универсальный контроллер памяти есть только у процессоров AM3, в то время как Phenom II AM2+ поддерживает память только стандарта DDR2. Все это конечно хорошо, но самым главным фактором является то, что 45 нм процессоры имеют меньшее тепловыделение и более высокий частотный потенциал. Это означает, что компания AMD наконец-то способна выпускать процессоры с частотами выше 2,6 ГГц (предел для 65 нм тех.процесса). Что касается типичного уровня тепловыделения, то для топовых 4-ядерных процессоров этот показатель снижен с 125 Вт до 95 Вт.

Пара слов об ассортименте новых процессоров AMD Phenom II. Первоначально компания представила только две 4-ядерные модели в упаковке AM2+: 940 и 920. Затем, ассортимент был расширен за счет процессоров в упаковке AM3: 4-ядерные 925, 910 (6 Мб L3), 4-ядерные 810, 805 (4 Мб L3) и 3-ядерные 720, 710 (6 Мб L3). Для простоты восприятия представим следующую таблицу:

AMD Phenom II X4
Модель OPN Частота, ГГц Кэш L2, Mb Кэш L3, Mb HT, ГГц Сокет VCore ядра TDP, Вт Tемп, max, °C Память
940 Black Edition HDZ940XCJ4DGI 3,0 2 6 1,8 AM2+ 0,875 - 1,5 В 125 62 DDR2-1066
920 HDX920XCJ4DGI 2,8 2 6 1,8 AM2+ 0,875 - 1,5 В 125 62 DDR2-1066
910 HDX910WFK4DGI 2,6 2 6 2,0 AM3 0,875-1,425 В 95 71 DDR2-1066 / DDR3-1333
810 HDX810WFK4FGI 2,6 2 4 2,0 AM3 0,875-1,425 В 95 71 DDR2-1066 / DDR3-1333
805 HDX805WFK4FGI 2,5 2 4 2,0 AM3 0,875-1,425 В 95 71 DDR2-1066 / DDR3-1333
AMD Phenom II X3
720 Black Edition HDZ720WFK3DGI 2,8 1.5 6 2,0 AM3 0,850-1,425 В 95 73 DDR2-1066 / DDR3-1333
710 HDX710WFK3DGI 2,6 1.5 6 2,0 AM3 0,875-1,425 В 95 73 DDR2-1066 / DDR3-1333

Явный перевес в пользу разъема AM3 вполне понятен: такие процессоры способны работать на материнских платах как с разъемом AM3, так и на AM2+. Таким образом, процессоры AM3 более универсальны, нежели их AM2+ собратья. Последние, кстати, не способны работать на AM3 платах в силу механической несовместимости - разъем AM3 имеет только 938 контактов. Проверьте сами:

Итак, для тестирования мы получили 3-ядерный процессор Phenom II X3 720.

Штатная частота данного процессора равна 2,8 ГГц, и при штатной опорной частоте HTT, равной 200 МГц, мы получаем множитель 14. Однако особенность этой модели заключается в том, что множитель можно изменять как в сторону понижения, так и в сторону повышения, что гораздо интереснее. Таким образом AMD хочет привлечь внимание значительной части компьютерных энтузиастов легкостью разгона. И, чтобы как-то подчеркнуть эту особенность, процессоры AMD со свободным множителем имеют суффикс Black Edition. Теперь посмотрим на информацию предоставляемую утилитой CPU-Z:

По сравнению с ядром Toliman увеличен только объем кэш-памяти L3; остальные характеристики такие же: каждое ядро имеет кеш-память первого уровня объемом 128 Кб, из которых 64 Кб отведены под данные, а вторые 64 Кб - под инструкции. Далее - каждое ядро оснащено 512 Кб кэш-памятью второго уровня. Неизменным остался набор поддерживаемых технологий (С1E, Cool & Quiet) и наборы дополнительных инструкций, начиная от MMX, 3DNow! и заканчивая SSE4A, x86-64.

Разгон

Исходя из предварительной информации, мы можем ожидать довольно неплохих результатов разгона. Более тонкий технологический процесс просто обязан обеспечить существенный рост тактовых частот, а свободный множитель - легкость их достижения. Итак, увеличиваем напряжение Vcore до 1,5 В и начинаем увеличивать множитель. Итоговый результат был зафиксирован на частоте 3,6 ГГц:

Дальнейшее увеличение напряжения и подбор множителя и частоты HTT позволило увеличить результат всего на 18 МГц:

По сравнению с первым поколением процессоров Phenom мы отмечаем прирост частотного потенциала на полгигагерца, что очень хорошо. Таким образом, даже если Phenom II имеет такую же «удельную» производительность на 1 МГц, как и Phenom I, то он значительно лучше последнего в плане разгона. Но, по заявлениям AMD, Phenom II должен быть быстрее своего предшественника. Насколько быстрее? Сейчас проверим.

исследуем особенности разгона и оцениваем прирост в современных играх для младших процессоров из нового семейства

Разгон процессоров обычно преследует две цели: спортивную или практическую. Спортивный разгон предполагает достижение ультимативного уровня производительности, который еще не скоро будет доступен для серийных процессоров. С этой целью обычно берутся процессоры из числа топовых моделей, а затем, с применением дорогостоящих систем жидкостного охлаждения или даже заморозки, выжимаются порою совершенно фантастические частоты, которые в стандартных условиях мы едва ли увидим в ближайшие несколько лет. Кстати, в этом отношении Phenom II оказался весьма интересным объектом для экспериментов, поскольку не содержит, так называемого, cold bug, то есть, способен работать и при очень низких температурах, например, при охлаждении жидким азотом или гелием. В частности, недавний рекорд разгона Phenom II X4 940, принадлежащий финской команде, составил 6,5 ГГц, что и было зафиксировано на видео .

Практический разгон не предполагает установления рекордов, а служит лишь цели получить более высокую производительность за меньшие деньги. Иными словами, высокие частоты не являются самоцелью - важно, на какие расходы (в том числе, на системную плату, кулеры, блок питания) придется пойти, дабы обеспечить стабильность работы разогнанной системы. В качестве процессоров с этой целью берутся перспективные по характеристикам, но обычно недорогие, обладающие высоким разгонным потенциалом при воздушном, реже водяном, охлаждении. И, надо отметить, что младшие Phenom II неплохо соответствуют этому описанию, поскольку, во-первых, и на штатной частоте убедительные результаты в тестах, во-вторых, имеют интегрированный контроллер памяти DDR2/DDR3 и монолитную архитектуру ядра, то есть перспективны и для будущих многопоточных приложений, наконец, в третьих, производятся по самому прогрессивному технологическому процессу на сегодняшний день: 45 нм SOI, что должно способствовать меньшему тепловыделению, в том числе и в режиме разгона. Однако когда речь идет не о топовых моделях, которые производители уже сами ориентируют на энтузиастов и предусматривают возможности для упрощения разгона, для младших моделей достижение высоких результатов зачастую требует следования определенным правилам. Существуют свои хитрости и особенности, которые мы и планируем исследовать на этот раз.

Краткая теория

Рассматриваемые модели Phenom II могут устанавливаться на платы с разъемом как Socket AM2+, так и AM3, но мы пока рассматриваем первый вариант, как наиболее актуальный в настоящий момент. Платы с поддержкой DDR3 тоже есть в нашей лаборатории, и, собственно, вопрос сравнения производительности с разными типами памяти стоит следующим в плане. Однако, совершенно очевидно, что массовой платформой, тем более для младших процессоров в линейке, на первых порах будут платы с DDR2-памятью. Кто-то просто решит обновить процессор на уже имеющейся плате, но и для сборки нового компьютера, многие, прикинув разницу цен на DDR2 и DDR3 и учитывая широкий выбор разнообразных плат под Socket AM2+, тоже выберут этот вариант.

Заявленный TDP этих процессоров равен 95 Вт, соответственно, подходящим для работы в штатном режиме является абсолютное большинство существующих плат, но, разумеется, для успешного разгона желательно выбрать плату с запасом, благо поддержка и процессоров с TDP=125 Вт на платах с Socket AM2+ распространена широко. Ведь такое значение характерно и для средних моделей в линейке «первых» Phenom, поэтому производители старались снабдить даже недорогие платы мощными схемами питания, что сейчас очень пригодится в разгоне, позволяя достичь высоких результатов без избыточных вложений в платформу. И это уже подтверждается на практике, при изучении разгона на разных платах мы уже отмечали, что зависимость результатов разгона от нюансов схемотехники той или иной платы для этого процессора действительно оказалась минимальной. Логично предположить, что для младших моделей, запросы которых в части питания еще скромнее, определяющую роль будет играть наличие необходимых настроек в BIOS, а «железные» характеристики (параметры стабилизатора напряжения и прочее) и вовсе отойдут на второй план. Само собой, какие-то нюансы наверняка будут, и мы по-прежнему будем уделять внимание разгонному потенциалу в тестированиях плат, но, условно говоря, если плата уже хорошо показала себя в разгоне Phenom, наверняка она справится и с Phenom II. Поэтому на этот раз мы проводили все разгонные эксперименты на одной плате: (BIOS F3).

Теоретические пределы для разгона с повышением напряжения для младших моделей шире, чем у старших, ведь их штатное напряжение обычно ниже, а рекомендуемый максимум тот же (1,55 В), но в реальности. зачастую, подъем напряжения выше определенного уровня не расширяет разгонный потенциал, поэтому оптимальную величину необходимо подбирать в каждом случае экспериментально. Максимально допустимая температура в корпусе составляет 71-73 градуса, однако большинство пользователей привыкли даже температуру ядра поддерживать на более низких значениях, а в таких напряженных условиях компьютерным компонентам приходится работать разве что в условиях интеграции в какое-то промышленное оборудование. Впрочем, для разогнанного процессора температурные пределы стабильности всегда ниже, собственно, отсюда и берется мода на системы охлаждения с явно избыточными возможностями теплоотвода. Однако при прочих равных, процессор, выдерживающий на штатной частоте тяжелые температурные условия, менее требователен к охлаждению и в разогнанном состоянии.

Мы в качестве кулера взяли тот же «видавший виды» Zalman CNPS9700 AM2, который справился с охлаждением 940-ой модели, разогнанной до 3,8 ГГц. Очевидно, что потребности участников нынешнего эксперимента он должен покрыть с запасом. Этот же кулер с помощью крепежа от универсальной модели NT устанавливался и на процессор Intel Core 2 Quad Q8200, который принимал участие в тестах с целью сравнения результатов (системная плата - MSI P45 Neo3 V2).

Использовалась аналогичная видеокарта (ATI Radeon HD4870 X2), но неразогнанная, на референсных частотах. В качестве блока питания использовался Seasonic M12D-750 мощностью 750 Вт. Впрочем, столь высокая мощность в реальности не требуется, для сравнения стенд был запитан с помощью AcBel ATX-550CA-AB8FB мощностью 550 Вт, который тоже справился с нагрузкой, хотя в моменты пиковой нагрузки (в играх, и поднятых до максимума частотах) загруженность блока поднималась до 80-85%, что все же многовато и в каких-то условиях может привести к нестабильности или ограничить разгонный потенциал. Нетрудно догадаться, что львиную долю в энергетические потребности компьютера, в целом, вносит мощная видеокарта, и, скажем, если сменить ее на Radeon HD4850, блока такой мощности хватает с запасом для разгона не только процессора, но и самой видеокарты. А для разогнанной системы с HD4870 X2 все же лучше ориентироваться на блоки мощностью 600-700 Вт. В любом случае, речь только о фирменных блоках, да они и преобладают в продаже среди моделей такого класса мощности.

Разгон

В отношении доставшегося нам Phenom II X3 720, сразу отметим, что наш экземпляр, судя по всему, был переквалифицирован в трехъядерники, по естественным причинам, то есть имеет дефект в четвертом ядре. Соответственно, в ответ на попытку разблокировки, компьютер просто зависал, приходилось сбрасывать CMOS перемычкой. Напомним, что, судя по отзывам пользователей на форумах, для трехъядерной модели активация пункта Advanced Clock Calibration в BIOS неожиданно приводит к разблокировке четвертого ядра (достаточно задать значение Auto). Бонус, конечно, щедрый. Судя по всему, он действительно существует, но, возможно, и неожиданный для самого производителя. В таком случае, желающим получить потенциально разблокируемый процессор, наверное, следует поторопиться, пока о такой возможности известно лишь для первых серийных партий.

Однако, с точки зрения изучения разгона, эта процедура не представляет интереса. Скорее всего, четырехъядерник, полученный таким образом, будет разгоняться хуже (если вообще будет), так что аналогичный уровень производительности, как у соответствующих четырехъядерников, вряд ли будет достигнут (тем более, если сравнивать с учетом разгонного потенциала 900-ой серии). Нам было интересно узнать, до каких частот разгонится именно трехъядерная модель, и каков будет результат в тестах, поэтому мы, не мудрствуя, воспользовались разблокированными у данного процессора множителями и подняли частоты ядер и CPU NB. Что получилось.

Что и говорить, Phenom II продолжает радовать, причем явно напрашивается оценить в тестах эффект от подъема частоты CPU NB, что для процессоров из первого семейства Phenom не имело смысла (подъем исчерпывался значением около 2200 МГц, и мы привыкли лишь, наоборот, снижать множитель, когда приходилось разгонять процессоры с подъемом опорной частоты). Множитель памяти был установлен на максимум (для получения DDR2-1066), что с учетом небольшого подъема частоты шины и дало частоту, приведенную в таблице. Кстати, процессор исправно стартовал, позволял загрузить Windows и даже провести некоторые тесты на частоте ядер до 3,9 ГГц, но мы придерживаемся правила указывать значение, проверенное с помощью получасового прогона теста стабильности из утилиты AMD OverDrive.

Процессор Phenom II X4 810, с одной стороны, обещает продемонстрировать более высокий потенциал в разгоне при меньшем напряжении, характерный для процессоров с уменьшенным объемом кэш-памяти в целом. Но в то же время при разгоне исключительно за счет опорной частоты, возникают свои трудности. К счастью, применительно к AMD-платформе обычно решаемые пропорциональным снижением частоты шины HT и памяти, благо это может быть сделано независимо от частоты процессора. В частности, поскольку разгон шины HT выше штатной никак не сказывается на производительности, мы во всех случаях фиксировали множитель этой шины таким образом, чтобы получить значение в пределах 2-2,2 ГГц (но если разгон не удается, не поленитесь перепробовать значения в пределах 1-2 ГГц, на некоторых платах это неожиданно приводит к расширению возможности наращивания частот других компонентов, тогда как, с точки зрения производительности однопроцессорного компьютера, и 1 ГГц частота HT более чем достаточна). Что касается частоты памяти, то вроде бы логично корректировать ее для получения частот, примерно равных DDR2-1066, благо наша память была рассчитана на такую частоту. Но как неожиданно оказалось, при таком подходе, из процессора удавалось выжать лишь 3,5 ГГц. Зато, снизив частоту памяти до уровня DDR2-800, мы сразу смогли выставить 3,8 ГГц, а абсолютно стабильный режим получился при откате лишь на 30 МГц и похвально низком напряжении.

Интересно, что необходимость выставить такой множитель для памяти не зависит от реальной частоты CPU NB, повышение которой можно было бы заподозрить в нестандартной нагрузке на память, то есть, даже приведя эту частоту к штатной, возможность дальнейшего разгона вычислительных ядер появляется только после снижения частоты памяти. Еще более интересно, что на платформе с DDR3 аналогичного эффекта не только не наблюдается, а наоборот, разгон памяти оказывается возможен и ограничен лишь возможностями самой памяти. Так, наш процессор продолжил разгон и легко перенес установку опорной частоты в 300 МГц, при этом память выдерживала и множитель, при котором она работала с частотой DDR3-1600! Таким образом, этот процессор поддерживает своеобразный разгон с продолжением. Например, сейчас пользователь может поставить его в имеющуюся систему, и даже теоретически не волноваться по поводу «упущенной выгоды», имея стандартную DDR2-800, все равно утилизировать DDR2 с большей частотой не получится (вернее, только на штатных частотах или с заведомо слабым разгоном вычислительных ядер). А со временем, когда DDR3 и соответствующие платы окажутся привлекательной покупкой, можно будет продолжить эксперименты.

Кстати, имея не очень сильный кулер, на практике, наиболее оправдана именно такая стратегия: повысить напряжение лишь до 1,45-1,48 В и разгонять в таких условиях, поднимая напряжение понемногу и ступенчато. И вполне возможно, что вы таким образом получите даже лучший результат, нежели установив сразу максимально рекомендуемые для воздушного охлаждения 1,55 В, стабильный максимум может прийтись на гораздо более низкие значения. А напряжение для CPU NB, если плата позволяет задавать собственное значение, можно, как правило, выставить меньше, чем для ядер, в диапазоне 1,25-1,35 В.

Итак, резюмируем, какие требования к плате для максимального разгона Phenom II X4 810 получаются в «сухом остатке» на платформе Socket AM2+:

  • возможность регулировки множителя CPU NB (на практике придется снизить, как правило, на одну ступень);
  • возможность выставить множитель для памяти равный x1,33, то есть соответствующий при штатной опорной частоте DDR2-533;
  • возможность повышения опорной частоты до 290-300 МГц.

Еще одна важная ремарка: необходимо проконтролировать, чтобы пункт Cool"n"Quiet в BIOS был выключен (при значении Auto некоторые платы продолжают попытки снижать напряжение, что приводит к нестабильной работе), если вы хотите задействовать разгон только на время запуска ресурсоемких приложений, например, игр, имеет смысл разгонять с помощью утилиты AMD OverDrive и создать соответствующий профиль в утилите Fusion for gaming для активации разгона, когда это необходимо.

Несколько слов нужно сказать и по поводу разгона Core 2 Quad Q8200, который обеспечил нам результаты для сравнения с интеловской платформой. Этот процессор уже, конечно, изучен оверклокерским сообществом, и ничего нового мы сказать не сможем. Вкратце, надо отметить, что из-за достаточно низкого (x7) множителя, разгон практически во всех случаях ограничивается не столько потенциалом процессора, сколько возможностями платы по поддержке стабильной работы шины FSB на высоких частотах. Из-за необходимости обмена по шине между «половинками» этого процессора (как известно, Core 2 Quad состоят из двух двухъядерных кристаллов, лишь физически совмещенных в одном корпусе, но обменивающихся данными через чипсет) нагрузка на шину и чипсет очень высока. Поэтому считается удачей разогнать этот процессор до 3,4 ГГц, в нашем случае стабильной оказалась частота FSB=473 МГц и, соответственно, частота ядер чуть выше 3,3 ГГц (напряжение поднято до 1,40 В).

Пора посмотреть, что наши усилия дадут в виде прироста кадров в секунду в наиболее актуальных, с точки зрения идеологии, разгона приложениях - современных играх.

Конфигурация тестового стенда

  • системные платы: Gigabyte MA790GP-DS4H , MSI P45 Neo3 V2;
  • память: 2х2 ГБ Corsair CM2X2048-8500C5D;
  • видеокарта: HIS HD4870X2 (ATI Radeon HD 4870 X2, 1x2 ГБ GDDR5, установлены штатные частоты: 750 МГц для ядра и 900 (3600) МГц память GDDR5);
  • жёсткий диск: Seagate ES2 SATA II 750 ГБ;
  • кулер: Zalman CNPS9700 AM2/NT;
  • блок питания: SeaSonic M12D 750 Вт.

Используемое ПО и настройки

  • Windows Vista SP1 64 bit, Catalyst 9.2, AMD OverDrive 2.1.5, AMD Fusion for Gaming Ultility 1.0;
  • GTA IV: встроенный бенчмарк, разрешение: 1680х1050, настройки: Texture Quality: high, Render Quality: high, View Distance: 52, Detail Distance: 100, Vehicle Density: 100, Shadow Density: 16;
  • FarCry 2: прилагаемый к игре бенчмарк, разрешение: 1680х1050, две сцены Ranch (карта среднего размера) и Action Scene, в первом случае имитируется «облет» карты, во втором - активные боевые действия, настройки см. скриншот:
  • Crysis Warhead: два timedemo Flythrough и Autotest («облет» и «обход» уровня Cargo), разрешение: 1280х1024, все настройки за исключением Physics на уровне High, Physics - Very High;
  • Lost Planet Extreme Condition: встроенный бенчмарк, разрешение: 1440х900, все настройки на максимум, DX10, AFx16, взят результаты сцены Cave, поскольку в сцене Snow с обновлением видеодрайвера результат во всех конфигурациях уперся в производительность видеокарты и стал равен 120 fps;
  • World in Conflict: встроенный бенчмарк, разрешение: 1680х1050, DX10, тест запускался в двух режимах с настройками Very High и High;
  • PT Boards Knights of the Sea: демо-бенчмарк, разрешение: 1680х1050, DX10, все настройки на максимум.

Мы придерживались принципа выставления настроек во всех тестах на максимальный уровень (за исключением тех случаев, когда, как в Crysis Warhead, максимальный просто сажает любую современную видеокарту и на практике не может использоваться для нормальной игры), антиалиазинг отключался, но анизотропная фильтрация выбиралась в соответствии с заданным уровнем качества самой игрой (то есть не форсировалась принудительно, но и не отключалась в настройках драйвера). В качестве тестового режима в разгоне для процессоров AMD мы не стали выжимать все до мегагерца и зафиксировали частоту ядер на 3,7 ГГц. Но для интеловского процессора, поскольку максимум оказался не так велик, лишь сбавили частоту FSB на 2 МГц от максимальной, что оказалось достаточно для проведения тестов (однако в утилитах типа OCCT тест стабильности в таком режиме закончить не удавалось, также слетел третий прогон бенчмарка в GTA IV, кстати, тест из этой игры, судя по всему, можно рекомендовать в качестве весьма чувствительного теста стабильности, на втором месте по привередливости из нашей подборки оказался Crysis Warhead).

Phenom II X4 810 Phenom II X3 720 Core 2 Quad Q8200
Штатные частоты Разгон (CPU NB x7) Разгон (CPU NB x9) Штатные частоты Разгон (CPU NB x11) Разгон (CPU NB x13) Штатные частоты Разгон
Частота ядер, ГГц 2,6 3,7 3,7 2,8 3,7 3,7 2,33 3,3
Частота CPU NB, ГГц (множитель) 2,0 2,0 2,5 2,0 2,2 2,6 - -
Частота памяти DDR2-1066 DDR2-759 DDR2-759 DDR2-1066 DDR2-1066 DDR2-1066 DDR2-1066 DDR2-942
GTA IV, fps 43,8 52,0 55,0 42,7 44,5 52,9 36,8 49,0
Crysis Warhead, Cargo Flythrough (Video), fps 26,1 30,7 32,5 28,4 31,2 32,6 24,5 32,0
Crysis Warhead, Cargo Autotest (CPU), fps 23,0 27,2 28,4 25,0 28,0 30,0 21,9 26,0
Lost Planet Extreme Condition, Cave , fps 79 97 100 72 89 93 64 90
FarCry 2, Ranch,
61/35 73/41 76/43 67/38 76/40 81/45 53/30 73/42
FarCry 2, Action Scene,
среднее/минимальное значение fps
31/26 36 /30 43/35 33/28 37/30 40/33 29/25 39/33
World in Conflict, Very High,
среднее/минимальное значение fps
39/15 45/22 48/23 43/19 48/21 53/26 37/12 49/21
World in Conflict, High,
среднее/минимальное значение fps
50/28 56/31 57/31 55/28 61/33 67/35 46/25 61/34
PT Boards: Knights of the Sea,
среднее/минимальное значение fps
39/21 49/27 52/28 43/22 51/27 54/28 33/17 47/23

В первую очередь, надо отметить, что не рационально разгонять Phenom II без разгона встроенного северного моста. Выполняется это нетрудно, а польза, судя по результатам тестов, как минимум, есть везде, и местами очень значительная. Кстати, на тех платах, где нет возможности корректировать множитель, это повышение окажется просто положительным побочным эффектом, а при разгоне процессоров с разблокированным множителем для ядер соответствующий множитель для CPU NB стоит повысить самому. Любопытно, что этот множитель открыт на повышение и у тех процессоров, которые имеют заблокированный множитель для ядер, так что, возможно, кто-то этим захочет воспользоваться и с сохранением остальных частот на штатном уровне (если, конечно, BIOS допускает повышение этого множителя).

Что касается сравнительных результатов, то, в среднем, оба Phenom II пришли к финишу одновременно, в играх, довольствующихся тремя и менее ядрами, трехъядерник оказывается впереди, благодаря большему объему кэш-памяти в расчете на ядро. Вместе с тем, в наиболее современных играх, где уже активно используются и четыре ядра, 810-модель выбирается в лидеры, то есть, с точки зрения перспективы, выглядит предпочтительнее. Core 2 Quad отстает от обоих соперников, причем и в упомянутых играх, способных нагрузить 4 ядра, трехъядерному Phenom II, тем не менее, хватает и трех ядер, чтобы оказаться впереди такого конкурента. И это полностью соответствует теории, монолитный дизайн, с которым, возможно, в AMD несколько поспешили в свое время при разработке Phenom, имеет очевидные преимущества перед «склейкой», но лишь когда возникает реальная необходимость в интенсивном обмене данными между ядрами. Но кодеки, рендеринг изображения и ряд других многопоточных задач, оптимизированные «наскоро» под многопоточность, хорошо, если загружали каждое из ядер своим потоком данных, о каких-то более сложных вариантах просто не шло речи. И как всегда бывает, теперь, когда сам по себе Phenom II выглядит более состоятельным даже в задачах, плохо оптимизированных под многоядерность, появляются и приложения, где свой положительный эффект оказывает и монолитный многоядерный дизайн.

Нужно сказать и о ситуации с нагревом разогнанных процессоров. Субъективно (по частоте вращения кулера, необходимого дабы обеспечить примерно одинаковый, чуть теплый нагрев его ребер), под нагрузкой все три процессора оказались примерно одинаковыми по этому параметру. Иными словами, с обеспечением малошумного и достаточного по эффективности охлаждения, проблем не возникнет ни в одном случае. Температура подошвы кулера равнялась 32-40°C во всех случаях, в зависимости от нагрузки, при температуре воздуха, на входе кулера равной 26°C. Для обеих Phenom II максимальная температура под нагрузкой не превышала 55 градусов, а для Core 2 Quad - 63, однако это данные встроенных датчиков, которые, с одной стороны, у нас нет оснований подвергать сомнению, но в то же время мы не можем и как-либо перепроверить.

Хотя, честно признаемся, была попытка сделать это, но она закончилась забавным курьезом, а вернее, достаточно поучительным сюжетом, который дополняет картину. Решив, что, возможно, Core 2 Quad завышает свою температуру, мы установили Silent Freezer Xtreme от Arctic Cooling, заведомо большей производительности по сравнению с нашим Zalman. Успели пронаблюдать повышение температуры до 60 градусов, после чего компьютер неожиданно выключился. В недоумении, снимая едва теплый кулер, нечаянно дотронулись до радиатора чипсета, который, как оказалось, нагрелся до обжигающего состояния (70 градусов зафиксировал инфракрасный термометр, хотя прошло уже не менее минуты от выключения). К счастью, плата не пострадала, и с установкой старого кулера, располагаемого продольно и способного обдувать чипсетный радиатор, возобновила работу, а измерение температуры радиатора чипсета под нагрузкой показало 50 градусов, что как-то затмило выяснение корректности процессорных термодатчиков. Даже если приравнять (с практической точки зрения, выбора кулера, это правомерно) показания термодатчиков процессоров под нагрузкой в пользу меньшей величины (или, если хотите, средней), на практике оказывается, что для интеловской платформы принципиальным при выборе процессорного кулера является возможность обдува чипсетного радиатора, и, кстати, в таком случае никаких проблем не возникает. Или придется выбирать плату с какими-то дополнительными нагромождениями тепловых трубок, или ставить собственный вентилятор на чипсет, что менее рационально и наверняка дороже. Для платформы AMD такого требования нет, нагрев чипсетных радиаторов мало зависит от разгона, а на платах с системами охлаждения на тепловых трубках нагреть радиатор до сколько-нибудь ощутимой величины обычно удается лишь, если разгонять графическое ядро в чипсете, повышая при этом напряжение питания. Но это совсем другой жанр, о котором мы поговорим как-нибудь в следующий раз, вернее, к которому уже неоднократно обращались в тестах соответствующих плат.

Выводы

Процессоры Phenom II, очевидно, представляют интерес для любителей разгона, то есть не только имеют достаточно высокий разгонный потенциал, но и неплохо реагируют на повышение частоты подъемом производительности в реальных приложениях. А главное - результат, собственно, производительность, выглядит убедительно, так что такие процессоры привлекательны для сборки игрового ПК (могут составить сбалансированную конфигурацию в сочетании с мощной видеокартой). Необходимость дополнительно переплачивать за инфраструктуру (плату, кулеры, блок питания) для успешного разгона, минимальная, хотя определенные навыки при разгоне процессоров с заблокированным множителем нужны (и описаны выше, как и специфические требования к системной плате). Конечно, очень приятно, что, несмотря на высокие рабочие частоты и еще более высокие частоты, достижимые в разгоне, новые процессоры греются умеренно. Вероятно, сказывается работа, встроенных в процессор, схем для динамического управления питанием ядер (раздельно для каждого ядра) и удачные характеристики, реализованной на фабрике AMD, версии техпроцесса 45 нм SOI, на которой производятся эти процессоры.