Технологии изготовления и производства процессоров. Что такое технологический процесс процессора и на что он влияет

Центральный процессор в компьютере играет самую главную роль. Его можно считать "мозгом" всей системы, так как от него зависит количество обработанных данных, возможность запуска системы, совместимость оборудования. В серверах используются особые виды процессоров, которые предназначены именно для таких задач, то есть для вычислений. Вот компьютера.

Существует и такое понятие, как графический процессор, — он находится не на материнской плате, как центральный, а в графическом адаптере. Его задача — обрабатывать графические данные, передавать их на компьютер и выводить изображение на экран монитора.

У каждого из них свое строение и техпроцесс процессора, о котором дальше пойдет речь.

Последние полвека в изготовлении процессоров и прочей подобной техники используется кристалл кремния. Литографический метод обработки позволяет создавать отдельные транзисторы, которые очень важны, ведь из них и состоят процессоры.

Ориентируясь на актуальное состояние электрического поля, транзисторы могут блокировать или пропускать электрический ток. Это, кстати, основополагающая часть работы двоичной системы, которая заключена в этих двух положениях — включенном и выключенном.

Так что такое техпроцесс? Этот термин используется в показателях для того, чтобы указать на размер используемых транзисторов, из которых состоит любой процессор.

Возвращаясь к производству процессоров, можно выделить такой процесс, как фотолитография. Эта функция нужна для того, чтобы покрыть кристалл диэлектрическим материалом, из которого с помощью света выделяются транзисторы. В зависимости от возможности аппарата — тонкости и чувствительности, определяется техпроцесс процессора, то есть его толщина в нанометрах.

Как известно, чем тоньше техпроцесс процессора, тем большее количество транзисторов будет расположено на чипе.

Если размер будет небольшим, то его энергопотребление и количество выделяемого тепла будут в разы меньше. Именно по этой причине небольшой техпроцесс процессора позволяет размещать чип на портативных устройствах, а за счет этого мобильное устройство сможет дольше держать заряд.

Размер имеет значение еще и в экономических целях, так как при небольших затратах материала увеличивается численность изготавливаемых чипов. Однако это палка о двух концах, потому что для более тонкого техпроцесса процессора необходимо топовое дорогое оборудование.

Малые детали строения позволяют разместить на чипе большее количество элементов, за счет чего растет производительность процессора. При всем при этом параметры размера самого чипа остаются неизменными.

Если у процессора есть техническая возможность для того, чтобы разогнаться, то чем меньше предел техпроцесса процессора, тем выше будут частоты.

Примерно с 70-х по 80-е годы были созданы процессоры с техпроцессом в три микрометра. Такого прорыва в компьютерных технологиях достигли компании "Зилог" и "Интел" в 75-79-х годах. С тех пор было принято решение улучшать качество литографического оборудования.

С 1990 года в архитектуре процессора появились значимые изменения, тогда же и были выпущены чипы с 0,35-микрометровым техпроцессом, или 350-нанометровым. Однако в начале двадцать первого века размеры транзисторов были уменьшены в три раза, что равнялось 130 нанометрам.

Самый значимый технологический прорыв пришелся на 2004 год — именно в то время производители освоили технологию 65-нанометрового технологического процесса. Тогда же поступили в продажу Core 2 Duo и его конкурент — AMD Phenom X4. Что касается консолей, то для Xbox 360 были произведены процессоры Falcon и Jasper.

Значимые изменения

Две ведущие компании по достигли размера в 32 нанометра, демонстрируя это в процессорах поколения Sandy Bridge и AMD Bulldozer.

Компания "Интел" создала кристалл, способный работать с частотой 3500 мегагерц, а количество ядер стало равно четырем. Также появился более усовершенствованный графический чип, встроенный в процессор, частота которого доходит до полутора гигагерц. В то же время чип обладал поддержкой новой оперативной памяти, контроллером интерфейса PCI-E второго поколения и протоколами x86. Увеличилась скорость потока данных, благодаря наличию кэша третьего уровня, размер которого - восемь мегабайт.

Что касается ее прямого конкурента, AMD, то ему удалось оснастить процессор шестнадцатью ядрами с частотой до 4000 мегагерц. В остальном отличия от "Интела" практически нет.

Однако только "синей" команде удалось достичь ощутимого прорыва и выпустить чипы с 22-нанометровым техпроцессом, что позволило процессорам семейства Ivy Bridge, Haswell и Xeon, серий Core i5 и i7 обеспечить высокую производительность, понижая при этом потребляемую энергию.

Производительность процессоров увеличивается только за счет количества транзисторов, при этом значение тепловыделения не подвергается изменению.

Когда уменьшается технологический процесс, производители имеют возможность разместить на территории чипа большее количество остальных составляющих вроде ядер и дополнительных компонентов.

Технологический процесс , он же , а еще точнее технологический процесс полупроводникового производства.
Раньше технологические нормы изготовления волновала только производителей. Но как видно из хронологии событий производители уменьшают нормы производства практически каждый годов. А все от того, что производитель должен уменьшать нормы производства для снижения тепловыделения, а также для повышается производительности.
Поэтому технологический процесс производства становится довольно важным параметром при выборе процессора. Ведь чем меньше техпроцесс, тем меньше энергопотребление процессора (и как следствие не нужен мощный и шумный кулер), повышается быстродействие , увеличивается количество транзисторов на одинаковой площади.

  1. 90 нм — технологический процесс, соответствующий уровню технологии, достигнутому к 2002-2003 году
  2. 65 нм – технологический процесс, соответствующий уровню технологии, достигнутому к 2004 году
  3. 50 нм – технологический процесс, соответствующий уровню технологии, достигнутому к 2005 году
  4. 45 нм – технологический процесс, соответствующий уровню технологии, достигнутому к 2006-2007 году
  5. 32 нм — технологический процесс, соответствующий уровню технологии, достигнутому к 2009-2010 году
  6. 22 нм – производство должно начаться в конце 2012 году. Процессоры с архитектурой Intel скорее всего выпустит с интегрированным графическим ядром с архитектурой Larrabee.
  7. 8 нм — как планирует компания , что бы перейти на изготовление процессоров с применением техпроцесса 8 нм, необходимо перейти на технологию «полупроводников III-V» (III-Vs), материал для выпуска транзисторов нового поколения. А название – это состав химических элементов с валентностями III и V.
  8. 5 нм – если будет нормальное развитие методик массового производства, то перейти на 5-нм проектные нормы возможно будет в 2019 году, основой будут полевые транзисторы с применением углеродных нанотрубок (Carbon nanotube FET).


Компания придерживается стратегии развития технологий под названием «tick-tock», под ней подразумевается переход, при улучшении технологии, от старой архитектуры («tick») к новой «tock», один раз в два года.
Если сравнивать нормы 65 нм и 45 нм, то на одинаковых площадях размещается вдвое большее транзисторов. При этом уменьшается на 30% рассеивание мощности при переключении, а также на 20% увеличение скорости переключения транзистора. Также, в 5 раз сокращается ток утечки от истока к стоку и в 10 - ток утечки сквозь затвор транзистора. В два раза увеличилось количество транзисторов, тем самым повысилась производительность. Увеличился объем кэш-памяти второго уровня (L2) на 50%.

— есть ли предел уменьшения?

Самый первый транзистор, изготовленный учеными Bell Labs в 1947 году, по размеру был как человеческая ладонь, а 45-нм транзистор от Intel в 400 раз меньше красной кровяной клетки человека.
Но в производстве постоянно уменьшение техпроцесса приводит к некоторым затруднениям. Толщина компонента транзистора отвечающая за прохождение электронов, иначе говоря толщина диэлектрика затвора, у процессора изготовленного по техпроцессу в 65 нм, составляет всего 1.2 нм. Более 30 лет материалом диэлектрика затвора был диоксид кремния, молекула его состоит 1 атома кремния и 2 атомов кислорода. Толщина в 1.2 нм равна пяти атомарным слоям. И такой тонкий изолятор физически не в состоянии удержать токи утечки. Если диэлектрик затвора меньше 1 нм, ток утечки повышается экспоненциально.

Эту проблему решила компания , как не сложно понять решением проблемы стала замена диоксида кремния, на более качественный материал используемый для изготовления диэлектрика затвора. Так называемый изолятор high-k, изготовленный на основе гафния и обладающий высокой степенью диэлектрической проницаемости. При использовании диэлектрика high-k получилось достичь увеличения полевого эффекта транзистора и уменьшить слой диэлектрика, вместе с уменьшением тока утечки через затвор.

В преддверии выхода новых поколений процессов и видеокарт от AMD и NVIDIA стоит разобрать такую важную характеристику чипа, как технологический процесс его производства. Intel уже с 2015 года клепает процессоры на 14 нм техпроцессе, в то время, как AMD и NVIDA используют уже устаревший 28 нм техпроцесс. Из нашей статьи вы узнаете о том, что такое техпроцесс производства чипа и его влияние на основные характеристики CPU/GPU , а также узнаете ответ на вопрос: «Что лучше: купить сейчас или подождать нового поколения?»

Введение

AMD для своих GPU Polaris и CPU Zen выбрали 14 Нм производства GlobalFoundries и Samsung, что меньше, чем 16 нм от NVIDIA производства TSMC. А про технологии этих компаний можете прочесть по соответствующим ссылкам: , .

Надо заранее отметить, что здесь не будут затронуты всякие тонкости производства транзисторов, здесь вы просто узнаете о значении более тонкого техпроцесса.

Что такое техпроцесс?

Вообще техпроцесс производства полупроводниковых схем подразумевает последовательность различных технологических и контрольных операций. Но почему тогда в графе техпроцесс пишется цифра с обозначением в нанометрах? Просто у фотолитографического оборудования, при помощи которого получают транзисторы, есть разрешающая способность. Чтобы лучше понять это советуем вам посмотреть это видео:

Со временем происходит эволюционное совершенствование этого процесса, что позволяет до сих пор соблюдать Закон Мура.

Интересный факт: Intel Pentium имел техпроцесс в 800 нм, что по современным меркам кажется безумно большой цифрой! И всего лишь 3,1 млн. транзисторов. (У Intel Core i7-5960X 14 нм и 2.6 млрд. транзисторов)

На что влияет техпроцесс?

Недаром же производители гордятся новым достигнутым уровнем этого технологического процесса. Ведь он дает ощутимые преимущества:

  • уменьшение самих транзисторов ведет к увеличению их количества на единице площади, а это увеличение позволяет или поместить на подложку большее число транзисторов, что увеличивает производительность за счет расширения количества вычислительных блоков или уменьшить площадь самой подложки при сохранении прежнего числа транзисторов.
  • меньший размер транзисторов позволяет уменьшить их тепловыделение и энергопотребление. Это позволяет или увеличить частоту и количество вычислительных ядер без ущерба тепловыделению или просто уменьшить энергопотребление, что особо удобно для лэптопов.
  • вместе с 14 нм техпроцессом часто применяют FinFET транзисторы. Это такие транзисторы, которые имеют трехмерный затвор в форме плавника, что позволяет уменьшить размер транзистора и уменьшить потери тока и задержки. Их бывает несколько видов, но здесь про них рассказано не будет, так что если интересно, то сходите сюда .
  • переход на новый техпроцесс требует нового оборудования, что является недешевой операцией. Это сказывается в первую очередь на цене процессоров.
  • переход на новую стадию происходит не сразу. Технологию надо обкатать, поэтому первые чипы на новом технологическом процессе могут получаться далеко не с первого раза (влияет на цену). Особенно эта сложность растет с увеличением площади чипа, что не позволяет сразу после презентации нового техпроцесса сразу «лепить» быстрые многоядерные чипы с огромной площадью кристалла. Это в большей степени касается топовых видеочипов, где может применяться до 12 млрд транзисторов!

Так чего следует ждать?

Если поразмыслить, то получается, что в этом-следующем году следует ожидать значительного скачка в энергоэффективности, что позволит поднять частоту у топовых чипов и снизить требования к охлаждению у дешевых.

По видеокартам

По процессорам


Что касается процессоров, то здесь AMD обещают нам 40% прирост производительность на такт, что сулит здоровую конкуренцию с Intel, которые последнее время что-то обленились, их 5% прирост в Skylake расстроил многих фанатов. Также с таким скачком в техпроцессе Zen наконец может дать реальное подспорье Intel в энергоэффективности. Старые 28 нм не могли составить никакой конкуренции по этому параметру.

Также на данный момент уже известно, что процессоры Zen не заменят собой FX и Opteron, эти чипы не будут выпускаться далее 2016 года.

На микроархитектуру Zen возлагаются достаточно большие надежды, ведь к ее разработке приложил свою руку Джим Келлер. Он известен, как разработчик, создавший DEC Alpha 64-bit RISC, что затем вылилось в AMD K7. Им была создана архитектура AMD K8 после чего он ушел из AMD в 1999 году. Теперь же после возвращения в 2012, он вновь покидает «красных».

Просим нас простить за такой небольшой экскурс в историю, может кто-нибудь заинтересуется этой темой.

Выводы

Техпроцесс производства чипа имеет очень большое влияние на такие параметры, как энергопотребление, количество транзисторов и косвенно влияет на производительность.

Кроме апгрейда техпроцесса AMD и NVIDIA демонстрируют и новые архитектуры, что в сумме позволит совершить скачок в энергоэффективности и производительности.

Так что если вас мучает вопрос, о том, стоит ли подождать до новых выхода новых видеокарт и процессоров или покупать здесь и сейчас, мы склоняемся ко второму варианту. Исключение, наверное будет составлять случай с самыми мощными видеокартами, так как из-за большой площади чипа их выпуск может задержаться.

Процессор это сердце любого современного компьютера. Любой микропроцессор по сути является большой интегральной схемой, на которой расположены транзисторы. Пропуская электрический ток транзисторы позволяют создавать двоичную логику (вкл. – выкл.) вычислений. Современные процессоры выполняются на базе 45 нм технологии. 45нм (нанометра) это размер одного транзистора, расположенного на процессорной пластине. Еще недавно в основном использовали 90 нм технологию.

Пластины делаются из кремния, который занимает 2 место по размеру залежей в земной коре.

Кремний получают химической обработкой, очищая его от примесей. После этого его начинают выплавлять, формируя кремниевый цилиндр диаметром 300 миллиметров. Этот цилиндр, в дальнейшем разрезают на пластины алмазной нитью. Толщина каждой пластины около 1 мм. Чтобы пластина имела идеальную поверхность, после реза нитью, ее шлифуют специальной шлифовальной машиной.

После этого поверхность кремниевой пластины получается идеально ровной. Кстати многие производственные компании уже заявили о возможности работы с 450 мм пластинами. Чем больше поверхность – тем большее количество транзисторов для размещения, и тем более высокая производительность процессора.

Процессор состоит из кремниевой пластины, на поверхности которой располагается до девяти уровней транзисторов, разделенные слоями оксида, для изоляции.

Развитие технологии производства процессоров

Гордон Мур, один из основателей компании Intel, одного из лидеров производства процессоров в мире, в 1965 году на основе своих наблюдений открыл закон, по которому новые модели процессоров и микросхем появлялись через равные отрезки времени. Рост количества транзисторов в процессорах растет примерно в 2 раза за 2 года. Вот уже в течение 40 лет закон Гордона Мура работает без искажений. Освоение будущих технологий не за горами – уже есть рабочие прототипы на основе 32 нм и 22нм технологии производства процессоров. До середины 2004 года мощность процессора зависела в первую очередь от частоты процессора, но, начиная с 2005 года, частота процессоров практически перестала расти. Появилась новая технология многоядерности процессора. То есть создается несколько ядер процессора с равной тактовой частотой, и при работе мощность ядер суммируется. За счет этого повышается общая мощность процессора.

Ниже вы можете посмотреть видео о производстве процессоров.

Современные микропроцессоры - одни из сложнейших устройств, изготавливаемых человеком. Производство полупроводникового кристалла намного более ресурсоемко, чем, скажем, возведение многоэтажного дома или организация крупнейшего выставочного мероприятия. Однако благодаря массовому выпуску CPU в денежном эквиваленте мы этого не замечаем, да и редко кто задумывается обо всей грандиозности элементов, занимающих столь видное место внутри системного блока. Мы решили изучить детали производства процессоров и поведать о них в данном материале. Благо в Сети сегодня достаточно информации на эту тему, а специализированная подборка презентаций и слайдов корпорации Intel позволяет выполнить поставленную задачу максимально наглядно. Предприятия других гигантов полупроводниковой индустрии работают по тому же принципу, поэтому с уверенностью можно сказать, что все современные микросхемы проходят идентичный путь создания.

Первое, о чем стоит упомянуть, - строительный материал для процессоров. Кремний (англ. silicon) - второй после кислорода наиболее распространенный элемент на планете. Он является природным полупроводником и используется как основной материал для производства чипов всевозможных микросхем. Больше всего кремния содержится в обычном песке (особенно кварце) в виде диоксида кремния (SiO2).

Впрочем, кремний - не единственный материал. Самый близкий его родственник и заменитель - германий, однако в процессе совершенствования производства ученые выявляют хорошие полупроводниковые свойства у соединений других элементов и готовятся опробовать их на практике или уже это делают.

1 Кремний проходит многоступенчатый процесс очистки: сырье для микросхем не может содержать больше примесей, чем один чужеродный атом на миллиард.

2 Кремний расплавляют в специальной емкости и, опустив внутрь постоянно охлаждаемый вращающийся стержень, «наматывают» на него благодаря силам поверхностного натяжения вещество.

3 В итоге получаются продольные заготовки (монокристаллы) круглого сечения, каждая массой около 100 кг.

4 Заготовку нарезают на отдельные кремниевые диски - пластины, на которых будут расположены сотни микропроцессоров. Для этих целей используются станки с алмазными режущими дисками или проволочно-абразивные установки.

5 Подложки полируют до зеркального блеска, чтобы устранить все дефекты на поверхности. Следующий шаг - нанесение тончайшего фотополимерного слоя.

6 Обработанная подложка подвергается воздействию жесткого ультрафиолетового излучения. В фотополимерном слое происходит химическая реакция: свет, проходя через многочисленные трафареты, повторяет рисунки слоев CPU.

7 Реальный размер наносимого изображения в несколько раз меньше собственно трафарета.

8 Участки, «протравленные» излучением, вымываются. На кремниевой подложке получается рисунок, который затем подвергается закреплению.

9 Следующий этап изготовления одного слоя - ионизация, в процессе которой свободные от полимера участки кремния бомбардируются ионами.

10 В местах их попадания изменяются свойства электрической проводимости.

11 Оставшийся полимер удаляют, и транзистор почти готов. В изолирующих слоях делаются отверстия, которые благодаря химической реакции заполняются атомами меди, используемыми в качестве контактов.

12 Соединение транзисторов представляет собой многоуровневую разводку. Если взглянуть в микроскоп, на кристалле можно заметить множество металлических проводников и помещенных между ними атомов кремния или его современных заменителей.

13 Часть готовой подложки проходит первый тест на функциональность. На этом этапе на каждый из выбранных транзисторов подается ток, и автоматизированная система проверяет параметры работы полупроводника.

14 Подложка с помощью тончайших режущих кругов разрезается на отдельные части.

15 Годные кристаллы, полученные в результате данной операции, используются в производстве процессоров, а бракованные отправляются в отходы.

16 Отдельный кристалл, из которого будет сделан процессор, помещают между основанием (подложкой) CPU и теплорас-пределительной крышкой и «упаковывают».

17 В ходе окончательного тестирования готовые процессоры проверяются на соответствие требуемым параметрам и лишь затем сортируются. На основании полученных данных в них прошивается микрокод, позволяющий системе должным образом определить CPU.

18 Готовые устройства упаковываются и направляются на рынок.

Интересные факты о процессорах и их производстве

«Силиконовая долина» (Silicon Valley, США, Калифорния)

Получила свое название благодаря основному строительному элементу, использующемуся в производстве микрочипов.

«Почему пластины для производства процессоров круглые?» - наверняка спросите вы.

Для производства кремниевых кристаллов применяется технология, позволяющая получать только цилиндрические заготовки, которые затем режутся на части. До сих пор еще никому не удавалось изготовить квадратную пластину, лишенную дефектов.

Почему микрочипы квадратные?

Именно такая литография позволяет использовать площадь пластины с максимальной эффективностью.

Зачем процессорам столько ножек/контактов?

Помимо сигнальных линий каждый процессор для работы нуждается в стабильном питании. При энергопотреблении порядка 100-120 Вт и низком напряжении через контакты может протекать ток силой до 100 А. Значительная часть контактов CPU выделена именно под систему питания и дублируется.

Утилизация отходов производства

Раньше дефектные пластины, их остатки и бракованные микрочипы шли в отходы. На сегодняшний день ведутся разработки, позволяющие использовать их в качестве основы для производства солнечных батарей.

«Костюм кролика».

Такое название получил комбинезон белого цвета, который обязаны носить все рабочие производственных помещений. Делается это для поддержания максимальной чистоты и защиты от случайного попадания частиц пыли на производственные установки. «Костюм кролика» впервые был использован на фабриках по производству процессоров в 1973 году и с тех пор стал общепринятым стандартом.

99,9999%

Для производства процессоров пригоден только кремний высочайшей степени чистоты. Заготовки очищают спецхимией.

300 мм

Таков диаметр современных кремниевых пластин для производства процессоров.

1000 раз

Именно настолько чище воздух в помещениях фабрик для производства чипов, чем в операционной.

20 слоев

Процессорный кристалл очень тонкий (меньше миллиметра), но в нем умещаются более 20 слоев сложнейших структурных объединений транзисторов, которые выглядят как многоуровневые хайвеи.

2500

Именно столько кристаллов процессора Intel Atom (имеют наименьшую площадь среди cовременных CPU) размещаются на одной 300-миллиметровой пластине.

10 000 000 000 000 000 000

Сто квинтиллионов транзисторов в виде структурных элементов микрочипов отгружаются с фабрик каждый год. Это приблизительно в 100 раз больше, чем оценочное количество муравьев на планете.

A

Стоимость производства одного транзистора в процессоре сегодня равна цене печати одной буквы в газете.

В процессе подготовки статьи использовались материалы с официального веб-сайта корпорации Intel, www.intel.ua