Минимизация логических функций. Анализ и синтез логических устройств. Методы минимизации логических функций и схем

Продолжительность: 2 часа (90 мин.)

14.1 Ключевые вопросы

14 Лекция №13. Минимизация логических функций 1

14.1 Ключевые вопросы 1

14.2 Текст лекции 1

14.2.1 Минимизация логических функций 1

14.2.1.1 Расчетный метод 1

14.2.1.2 Карты Карно 4

14.2.2 Минимизация систем логических уравнений 7

14.2.3 Минимизация частично определенных логических функций 8

14.2.4 Вопросы для контроля 10

14.2 Текст лекции

14.2.1 Минимизация логических функций

Существует достаточно много методов минимизации логических функций, приведем только два метода, которые чаще всего применяются в инженерной практике:

    расчетный;

    карт Карно.

14.2.1.1 Расчетный метод

Здесь применяют:

– склеивание,

– поглощение,

– развертывание.

Склеивание

а) Если в выражении встречается сумма двух конъюнкций, в одной из которых одна из переменных стоит в прямом значении, а в другой в инверсном значении, а остальные переменные одинаковые, то эту сумму конъюнкций, можно заменить одной конъюнкцией, не содержащей переменную, имеющую разные значения:

Конъюнкции, отличающиеся только значениями одной переменной (в одну из них переменная входит без отрицания, а в другую с отрицанием), называются соседними.

Замечание:
и дистрибутивном законе конъюнкции относительно дизъюнкции (см. Лекцию № 10)

.

б) Если в выражении встречается произведение двух дизъюнкций, в одной из которых одна из переменных стоит в прямом значении, а в другой в инверсном значении, а остальные переменные одинаковые, то это произведение дизъюнкций, можно заменить одной дизъюнкцией, не содержащей переменную, имеющую разные значения:

Дизъюнкции, отличающиеся только значениями одной переменной (в одну из них переменная входит без отрицания, а в другую с отрицанием), называются соседними.

Замечание: Это правило основано на законе дополнительности

и дистрибутивном законе дизъюнкции относительно конъюнкции (см. Лекцию № 10)

в) Правила обобщенного склеивания.


В первом случае исчезло произведение bc , во втором исчезает суммаbc , в третьем снова произведениеbc (третий случай после раскрытия скобок сводится к первому). Доказываются эти правила, как обычно, составлением и сравнением таблиц истинности для левой и правой части или с помощью развертывания (см. ниже).

Поглощение

а) Если в выражении встречается сумма двух произведений, одно из которых является частью другого, то эту сумму можно заменить меньшим произведением:

б) Если в выражении встречается произведение двух сумм, одна из которых является частью другой, то это произведение сумм можно заменить меньшей суммой:

a (ab ) = a ; a (ab )(ac )…= a ; (ab )(abc )= ab .

Развертывание

Развертывание позволяет восстановить в формулах «потерянные» (например, в результате минимизации) переменные или перейти от ДНФ и КНФ к совершенным формам – СДНФ и СКНФ. Восстановление переменных для ДНФ и КНФ производится по–разному. Рассмотрим примеры.

Пусть имеем ДНФ

в которой, очевидно, потеряна переменная y . Для восстановления переменнойy произведение переменныхxz умножается на 1, затем 1 заменяется суммой прямого и инверсного обозначений недостающей переменной, и на основе дистрибутивного закона проводится преобразование

Пусть имеем КНФ
, где также потеряна переменнаяy . Для ее восстановления к сумме
добавляется 0, затем 0 заменяется произведением недостающей переменной на ее инверсию и применяется дистрибутивный закон

Используя развертывание, можно раскрыть смысл понятий «конституента единицы» и «конституента нуля».

Пусть n = 2 (переменныеa иb ).

Развернем единицу 1.

1= 1=
=.

Получили СДНФ функции двух переменных f = 1, где каждая конъюнкция является составляющей (конституентой) единицы.

Развернем 0.

Получили СКНФ функции двух переменных f = 0, где каждая дизъюнкция является составляющей (конституентой) нуля.

Полезность развертывания показывает пример доказательства правил обобщенного склеивания (см. п. 4.1.1):

Рассмотрим первое правило

Развернем левую часть тождества, в первом произведении которой недостает переменной c , во втором произведении недостаетb , а в третьем нетa .

После приведения подобных членов, применив простое склеивание

получаем правую часть, следовательно, тождество доказано.

Рассмотрим второе правило

Развернем левую часть тождества.

Используя дистрибутивный закон дизъюнкции относительно конъюнкции, получаем

После приведения подобных членов, применив простое склеивание, будем иметь

Получили правую часть, следовательно, правило доказано.

Общий порядок проведения минимизации функции, заданной СДНФ, здесь следующий.

    Сначала к членам СДНФ применяется операция склеивания (каждая конъюнкция может использоваться многократно , объединяясь с разными членами). При этом из них исключается по одной переменной. Затем приводятся подобные члены, и снова проводится склеивание. Этот процесс продолжается, пока в получаемом выражении не останется конъюнкций, отличающихся друг от друга значениями одной переменной. Полученное выражение называетсясокращенной нормальной формой . Каждой логической функции соответствует лишь одна такая форма.

    К сокращенной нормальной форме применяется операция обобщенного склеивания. В результате из нее исключаются лишние конъюнкции. Процесс продолжается, пока склеивания становятся невозможными. Получаемая форма называется тупиковой формой логической функции. Тупиковых форм у логической функции может быть несколько.

    Полученная тупиковая форма случайно может оказаться минимальной. В общем случае для поиска минимальной формы необходим перебор тупиковых форм.

С функциями, представленными в СКНФ, поступают аналогично с учетом их особенностей. Иногда оказывается удобно на промежуточном этапе перейти к дизъюнктивной нормальной форме и продолжать минимизацию так, как изложено выше.

Пример 1: Минимизировать функцию

После применения операции склеивания и приведения подобных членов получаем

Обобщенное склеивание здесь можно проводить по нескольким вариантам, которые дают следующие результаты:

.

Исключены
,
,
: (
), (
), (
).

В скобках показаны термы, участвующие в обобщенном склеивании.

Исключены
,
,
: (
), (
), (
).

Как видим, здесь имеется две минимальных нормальных формы. По сложности они одинаковы.

Пример 2: Продолжая решение задачи по созданию устройства рис. 3, проведем минимизацию мажоритарной функции (см. табл. 12), для которой выше были получены СДНФ и СКНФ.

Здесь первую сумму мы поочередно рассматривали в паре со второй, третьей и четвертой суммами и после склеивания этих пар получили результат.

Существует два направления минимизации:

  • Ш Кратчайшая форма записи (цель - минимизировать ранг каждого терма);
  • Ш Получение минимальной формы записи (цель - получение минимального числа символов для записи всей функции сразу).
  • 1. Метод эквивалентных преобразований

В основе метода минимизации булевых функций эквивалентными преобразованиями лежит последовательное использование законов булевой алгебры. Метод эквивалентных преобразований целесообразно использовать лишь для простых функций и для количества логических переменных не более 4-х. При большем числе переменных и сложной функции вероятность ошибок при преобразовании возрастает.

2. Метод Квайна.

При минимизации по методу Квайна предполагается, что минимизируемая логическая функция задана в виде СДНФ. Здесь используется закон неполного склеивания. Минимизация проводится в два этапа: нахождение простых импликант, расстановка меток и определение существенных импликант.

Непомеченные термы называются первичными импликантами. Полученное логическое выражение не всегда оказывается минимальным, поэтому исследуется возможность дальнейшего упрощения.

Для этого:

  • Ш Составляются таблицы, в строках которых пишутся найденные первичные импликанты, а в столбцах указываются термы первичной ФАЛ.
  • Ш Клетки этой таблицы отмечаются в том случае, если первичная импликанта входит в состав какого-нибудь первичного терма.
  • Ш Задача упрощения сводится к нахождению такого минимального количества импликант, которые покрывают все столбцы.

Алгоритм метода Квайна (шаги):

  • 1. Нахождение первичных импликант (исходные термы из ДНФ записывают в столбик и склеиваю сверху вниз, непомеченные импликанты переходят в функции на этом шаге).
  • 2. Расстановка меток избыточности (составляется таблица, в которой строки - первичные импликанты, столбцы - исходные термы, если некоторый min-терм содержит первичный импликант, то на пересечении строки и столбца ставим метку).
  • 3. Нахождение существенных импликант (если в каком-либо столбце есть только одна метка, то первичный импликант соответствующей строки является существенным).
  • 4. Строка, содержащая существенный импликант и соответствующие столбцы вычеркиваются (если в результате вычеркивания столбцов появятся строки первичных импликант, которые не содержат метки или содержат одинаковые метки в строках, то такие первичные импликанты вычеркиваются, а в последнем случае оставляется одна меньшего ранга).
  • 5. Выбор минимального покрытия (из таблицы, полученной на шаге 3 выбирают такую совокупность первичных импликант, которая включает метки во всех столбцах по крайней мере по одной метке в каждом, при нескольких возможных вариантах отдается предпочтение покрытию с минимальным суммарным числом элементов в импликантах, образующих покрытие).
  • 6. Результат записывается в виде функции.

Пусть задана функция:

Для удобства изложения пометим каждую конституенту единицы из СДНФ функции F каким-либо десятичным номером (произвольно). Выполняем склеивания. Конституента 1 склеивается только с конституентой 2 (по переменной х3) и с конституентой 3 (по переменной х2) конституента 2 с конституентой 4 и т. д. В результате получаем:

Заметим, что результатом склеивания является всегда элементарное произведение, представляющее собой общую часть склеиваемых конституент.

с появлением одного и того же элементарного произведения. Дальнейшие склеивания невозможны. Произведя поглощения (из полученной ДНФ вычеркиваем все поглощаемые элементарные произведения), получим сокращенную ДНФ:

Переходим к следующему этапу. Для получения минимальной ДНФ необходимо убрать из сокращенной ДНФ все лишние простые импликанты. Это делается с помощью специальной импликантной матрицы Квайна. Строки такой матрицы отмечаются простыми импликантами булевой функции, т. е. членами сокращенной ДНФ, а столбцы -- конституентами единицы, т. е. членами СДНФ булевой функции.

Импликантная матрица имеет вид см. табл. 1.1

Таблица 1.1 Импликантная матрица

Как уже отмечалось, простая импликанта поглощает некоторую конституенту единицы, если является ее собственной частью. Соответствующая клетка импликантной матрицы на пересечении строки (с рассматриваемой простой импликантой) и столбца (с конституентой единицы) отмечается крестиком (табл. 1.). Минимальные ДНФ строятся по импликантной матрице следующим образом:

  • 1. ищутся столбцы импликантной матрицы, имеющие только один крестик. Соответствующие этим крестикам простые импликанты называются базисными и составляют так называемое ядро булевой функции. Ядро обязательно входит в минимальную ДНФ.
  • 2. рассматриваются различные варианты выбора совокупности простых импликант, которые накроют крестиками остальные столбцы импликантной матрицы, и выбираются варианты с минимальным суммарным числом букв в такой совокупности импликант.

Следовательно функция имеет вид:

3. Метод Квайна-Мак-Класки.

Метод представляет собой формализованный на этапе нахождения простых импликант метод Квайна. Формализация производится следующим образом:

  • 1. Все конституенты единицы из СДНФ булевой функции F записываются их двоичными номерами.
  • 2. Все номера разбиваются на непересекающиеся группы. Признак образования і-й группы: і единиц в каждом двоичном номере конституенты единицы.
  • 3. Склеивание производят только между номерами соседних групп. Склеиваемые номера отмечаются каким-либо знаком (зачеркиванием, звездочкой и т.д.).
  • 4. Склеивания производят всевозможные, как и в методе Квайна. Неотмеченные после склеивания номера являются простыми импликантами.

Образуем группы двоичных номеров. Признаком образования і-й группы является і единиц в двоичном номере конституенты единицы (табл.1.2).

Таблица 1.2 Группы двоичных номеров

Склеим номера из соседних групп табл. 1.3 Склеиваться могут только номера, имеющие прочерки в одинаковых позициях. Склеиваемые номера отметим. Результаты склеивания занесем в табл. 1.4.

Таблица 1.4 Результаты склеивания 2

По табл. 5. определяем совокупность простых импликант - 0--1 и 111-, соответствующую минимальной ДНФ. Для восстановления буквенного вида простой импликанты достаточно выписать произведения тех переменных, которые соответствуют сохранившимся двоичным цифрам:

Разбиение конституент на группы позволяет уменьшить число попарных сравнений при склеивании.

4. Метод диаграмм Вейча.

Метод позволяет быстро получать минимальные ДНФ булевой функции f небольшого числа переменных. В основе метода лежит задание булевых функций диаграммами некоторого специального вида, получившими название диаграмм Вейча. Для булевой функции двух переменных диаграмма Вейча имеет вид (Рис 1).

Рис.1.

Каждая клетка диаграммы соответствует набору переменных булевой функции в ее таблице истинности. На (Рис 1) это соответствие показано, в клетке диаграммы Вейча ставится единица, если булева функция принимает единичное значение на соответствующем наборе. Нулевые значения булевой функции в диаграмме Вейча не ставятся. Для булевой функции трех переменных диаграмма Вейча имеет следующий вид (Рис 2).

Рис.2.

Добавление к ней еще такой же таблицы дает диаграмму для функции 4-х переменных (Рис 3).

Рис.3.

Таким же образом, т. е. приписыванием еще одной диаграммы 3-х переменных к только что рассмотренной, можно получить диаграмму для функции 5-ти переменных и т. д., однако диаграммы для функций с числом переменных больше 4-х используются редко.

5. Карты Карно.

Метод карт Карно - это один из графических методов минимизации функции. Эти методы основаны на использовании особенности зрительного восприятия, так как с его помощью можно практически мгновенно распознать те или иные простые конфигурации.

Построим таблицу метода карт Карно (табл. 1.6).

Таблица 1.6 Карты Карно

Теперь подсчитаем совокупность всех крестиков с метками минимальным количеством крестиков. Таких крестиков в нашем случае будет 5: три четырехклеточных и два двухклеточных. Этим крестикам соответствуют следующие простые импликанты:

для первого - X 3 X 4 ;

для второго - X 1 X 3 ;

для третьего - X 2 X 3 ;

для четвертого - X 1 X 2 X 4 ;

для пятого - X 1 X 2 X 4 ;

Минимальная ДНФ будет выглядеть так:

6. Метод неопределенных коэффициентов.

Этот метод может быть использован для любого числа аргументов. Но так как этот метод достаточно громоздок, то применяется только в тех случаях, когда число аргументов не более 5-6.

В методе неопределенных коэффициентов используются законы универсального и нулевого множеств и законы повторения. В начале все коэффициенты неопределенны (отсюда и название метода).

Построим матрицу неопределенных коэффициентов для четырех аргументов. В этом случае мы будем иметь систему из 16-ти уравнений.

Приравняем все коэффициенты 0 в тех строках, которым соответствует 0 в векторе столбце. Затем приравняем 0 соответствующие коэффициенты в других строках. После этих преобразований система примет следующий вид (Рис 4):


Рис.4.

Теперь в каждой строке необходимо выбрать коэффициент минимального ранга и приравнять его единице, а остальные коэффициенты - 0. После этого вычеркиваем одинаковые строки, оставляя при этом одну из них (те строки, у которых все коэффициенты равны 0, также вычеркиваются).

Запишем теперь конъюнкции, соответствующие коэффициентам, равным единицам. Мы получим минимальную ДНФ.

Алгебры логики

3.3.1. Минимизация ФАЛ с помощью матрицы Карно

Матрица Карно представляет собой своеобразную таблицу истинности ФАЛ, которая разбита на клетки. Количество клеток матрицы равно 2 n , где n – число аргументов ФАЛ. Столбцы и строки матрицы обозначаются наборами аргументов. Каждая клетка матрицы соответствует конституэнте единицы ФАЛ (двоичному числу). Двоичное число клетки состоит из набора аргументов строки и столбца. Матрица Карно для ФАЛ, зависящей от двух аргументов, представлена в виде таблицы 3.3., от трех аргументов таблицей 3.4. и от четырех аргументов таблицей 3.5.

Таблица 3.3.


Таблица 3.5.

х 3 х 4 х 1 х 2
0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0
0 1 0 0 0 1 0 1 0 1 1 1 0 1 1 0
1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0
1 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0

Клетки матриц (таблицы 3.3., 3.4. и 3.5.) пронумерованы десятичными эквивалентами двоичных чисел клеток. Рядом расположенные клетки матриц, как по горизонтали, так и по вертикали, содержат соседние двоичные числа. Кроме этого соседние двоичные числа находятся во всех столбцах верхней и нижней строк, так же как во всех строках крайних столбцов.

Процесс минимизации ФАЛ с помощью матрицы Карно основан на законе склеивания соседних двоичных чисел. Можно склеивать двоичные числа рядом расположенных клеток, но рекомендуется склеивать наборы аргументов, которыми обозначены строки и столбцы матриц. Рассмотрим склеивание двоичных чисел клеток первого столбца матрицы (табл. 3.5.).

Клетки 0 и 4, соответственно двоичные числа 0000 и 0100, результат склеивания 0-00.

Клетки 8 и 12, двоичные числа 1000 и 1100, результат 1-00. Полученные импликанты склеиваются между собой, т.к. тире стоит в одном и том же разряде и двоичные числа импликант являются соседними, окончательный результат - - 00.

Клетки 8 и 12

Таким образом, если склеиваются все двоичные числа одного столбца, то пропадают те разряды, которыми обозначены строки. Аналогично, если будут склеиваться все двоичные числа одной строки, например 4, 5, 7, 6, то пропадают все разряды, которыми обозначены столбцы, т.е. результат будет следующий 01- -.

Если будут склеиваться двоичные числа только двух любых клеток, то прочерк ставиться вместо того разряда двоичных чисел строки или столбца, который изменится при переходе клеток из одной строчки в другую (или из одного столбца в другой). Например, склеиваются числа клеток 5 и 13, получим результат -101, или клеток 7 и 6 результат 011-.

При склеивании двоичных чисел восьми рядом расположенных клеток пропадает три переменные, например для клеток 3, 7, 15, 11, 2, 6, 14, 10 пропадают переменные х 1 , х 2 , х 3 . Переменные х 1 , х 2 пропадают потому, что склеиваются все клетки столбцов, а х 3 потому, что последние два столбца склеиваются между собой.

Прежде, чем рассмотреть примеры минимизации ФАЛ с помощь матрицы Карно, необходимо дать классификацию наборов аргументов, с помощью которых определяются функции алгебры логики.

Известно, что для каждой ФАЛ имеет место количество наборов аргументов 2 n , где n – число аргументов от которых зависит функция или логическое выражение.

Наборы аргументов делятся на три вида

1. Наборы аргументов, на которых функция равна единице, называются рабочими.

2. Наборы аргументов, на которых функция равна нулю, называются запрещенными.

3. Наборы аргументов, на которых функция может быть равна или единице, или нулю, называются безразличными.

Если заданная ФАЛ не имеет безразличных наборов, то она может быть представлена в буквенном выражении в виде СДНФ. При наличии в заданной ФАЛ безразличных наборов, ее представление может иметь следующую форму.

где – десятичные эквиваленты рабочих наборов,

– десятичные эквиваленты запрещенных наборов.

Наборы аргументов, которых нет среди рабочих и запрещенных, будут безразличными.

Пример 3.3. Минимизировать заданную ФАЛ в виде СДНФ с помощью матрицы Карно .

Следовательно, функция задана только рабочими наборами. Остальные будут запрещенными. Функция зависит только от трех аргументов. Строим матрицу Карно и в ее клетках, которые соответствуют рабочим наборам ставим единицы, а в остальных клетках ставим нули.

Таблица 3.5.

х 2 х 3 х 1
0

Для минимизации клетки матрицы, в которых стоят единицы, объединяются в контуры. В контур могут включаться две клетки, четыре или все восемь. В данном примере в контур включены четыре рядом расположенные клетки одной строки. Импликантой заданного контура будет 1 - -. Результат минимизации следующий , т.е. произошло сокращение заданной функции в СДНФ на 11 букв.

Пример 3.4. Минимизировать логическое выражение, заданное рабочими и запрещенными наборами с помощью матрицы Карно.

Строим матрицу Карно на четыре переменных и заполним клетки единицами и нулями соответственно для рабочих и запрещенных наборов.

Таблица 3.6.

х 3 х 4 х 1 х 2 00
(1)
(1) (1)

При объединении клеток с единицами в контуры желательно, чтобы в каждый контур включалось наибольшее число клеток из максимально возможного. Для этого клетки некоторых безразличных наборов используем как клетки рабочих наборов, подставив в них единицы в скобках. В результате получим три контура, содержащие по 4 клетки. В обобщенном коде контура, включающего в себя все клетки одной строки, пропадают переменные х 2 х 3 (10 - -). В обобщенном коде контура, включающего все клетки одного столбца пропадают переменные х 1 х 2 (- - 11) и для контура, содержащего по две клетки двух строк пропадают переменные х 2 (при переходе в контуре из одной строки в другую) и х 3 (при переходе из одного столбца в другой). В результате получим минимальную ДНФ в следующем виде

Возможные варианты объединения клеток матрицы Карно в контуры показаны на рисунке 3.4.


х 3 х 4 х 1 х 2

А = 0 - 0 - З = - 0 - 0
Н Б = 1 - 1 - К = - - - 1
В = - - 0 0 Л = - 1 - -
Г = 1 0 - - М = - - - 0
Д = - 0 0 1 Н = - 0 - -
Е = - 0 1 -
Ж = - 1 - 1

Рис. 3.1. Возможные варианты объединения клеток матрицы Карно в контуры


3.3.2. Минимизация функций алгебры логики с помощью матрицы на пять переменных

Матрица минимизации на пять переменных строится аналогично матрице Карно, т.е. в этой матрице рядом расположенные столбцы и строки должны быть обозначены соседними двоичными числами наборов переменных

В матрице на пять переменных (таблица 3.7.) строкам соответствуют наборы переменных х 1 х 2 х 3 , а столбцам наборы переменных х 4 х 5 . Каждой клетке матрицы соответствует пятиразрядное двоичное число. В клетках матрицы (табл. 3.7.) проставлены десятичные эквиваленты соответствующих двоичных чисел.

Таблица 3.7.

х 4 х 5 х 1 х 2 х 3

Минимизация ФАЛ с помощью матрицы на пять переменных заключается в объединении клеток с рабочими наборами (включая при необходимости и клетки с безразличными наборами) в контуры и получении для этих контуров соответствующих им обобщенных кодов.

Особенность здесь заключается в том, что в столбцах матрицы на пять переменных объединять по четыре клетки в контуры можно только или четыре клетки сверху, или четыре клетки внизу, или четыре клетки посередине. Например, для последнего столбца матрицы контуры могут состоять из клеток 2, 6, 14, 10, или 26, 30, 22, 18 или 14, 10, 26, 30.

Пример 3.6. Минимизировать с помощью матрицы на пять переменных следующее логическое выражение

Строим матрицу на пять переменных и заполняем клетки рабочих наборов единицами, запрещенных – нулями.

Объединяем в контуры клетки с рабочими наборами, включая в них необходимые клетки безразличных наборов. Для каждого контура определяем обобщенных код.

Таблица 3.8.

х 4 х 5
х 1 х 2 х 3
(1) (1) (1)
(1)
(1) (1)
(1) (1)
(1) (1)
(1)
(1) (1)

Получаем минимальную ДНФ

Контрольные вопросы

1. Дать определение сокращенной ДНФ.

2. Что представляет собой тупиковая ДНФ?

3. Как выбирается минимальная ДНФ из тупиковых ДНФ?

4. Для чего используется импликантная таблица и как она строится?

5. Пояснить аналитический способ минимизации ФАЛ Квайна-Мак-Класски.

6. Как строится матрица Карно на три и четыре переменных?

7. Минимизировать аналитическим способом следующие логические выражения, заданные только рабочими наборами

8. Минимизировать с помощью матрицы Карно логические выражения, заданные рабочими и запрещенными наборами


Похожая информация.


Студент должен:

Знать:

· Методы минимизации логических функций.

Уметь:

· Выполнять минимизацию функций методом непосредственных преобразований; Выполнять минимизацию функций методом непосредственных преобразований;

· Выполнять минимизацию функций с помощью карт Карно.

Метод непосредственных преобразований

Логическая функция, задающая принцип построения схемы цифрового устройства, может быть, как было показано выше, представлена в виде таблицы истинности или в виде СДНФ или СКНФ и может быть использована для получения логической схемы устройства. Однако полученная логическая схема, как правило, не будет оптимальна. Поэтому важным этапом синтеза логических схем является минимизация логических функций.

Минимизация (упрощение формы записи) функции является важной операцией при синтезе логической схемы, так как благодаря предварительно проведенной минимизацией схема реализуется с наименьшим числом элементов.

Для минимизации разработан ряд методов. Одним из простых методов минимизации является метод непосредственных преобразований, который осуществляется с использованием основных теорем алгебры логики.

Например, логическую функцию

в виде СДНФ, можно минимизировать следующим образом:

1. Добавим к данной функции слагаемое , которое уже есть в данной функции, используя правило х+х=х

2. Применим метод склеивания одинаково подчеркнутых элементарных конъюнкций

3. Применим метод склеивания для двух последних элементарных конъюнкций

Полученная в результате минимизации логическая функция называется тупиковой. Логическая функция может иметь несколько тупиковых форм.

Выявление и устранить избыточности в записи функции путем её преобразований с использованием аксиом, законов, тождеств и теорем алгебры логики требуют громоздких выкладок и связаны с большой затратой времени.

Карты Карно

Метод непосредственных преобразований наиболее пригоден для простых формул, когда последовательность преобразований очевидна для исполнителя. Наиболее часто этот метод применяется для окончательной минимизации выражений, полученных после минимизации их другими методами.



Стремление к алгоритмизации поиска соседних элементарных произведений привело к разработке табличных методов минимизации логических функций. Одним из них является метод, основанный на использовании карт Карно.

Карты Карно были изобретены в 1952 Эдвардом В. Вейчем и усовершенствованы в 1953 Морисом Карно, физиком из «Bell Labs», и были призваны помочь упростить цифровые электронные схемы.

Карта Карно - это графическое представление таблицы истинности логических функций. Она представляет собой таблицу, содержащую по 2 n прямоугольных ячеек, где n - число логических переменных.

Например, карта Карно для функции четырех переменных имеет 2 4 = 16 ячеек.


Структура карты Карно для функций двух переменных показана на рисунке 2.2. 2

Рисунок 2.2


На рисунке 2.3 представлена структура карты Карно для функции трёх переменных.

а) таблица истинности; б) структура карты Карно

Рисунок 2.3

Карта размечается системой координат, соответствующих значениям входных переменных. Например, верхняя строка карты для функции трех переменных (рисунок 2.3) соответствует нулевому значению переменной x1, а нижняя - ее единичному значению.

Каждый столбец этой карты характеризуется значениями двух переменных: х2 и х3. Комбинация цифр, которыми отмечается каждый столбец, показывает, для каких значений переменных х2 и х3 вычисляется функция, размещаемая в клетках этого столбца.

Если на указанном наборе переменных функция равна единице, то ее СДНФ обязательно содержит элементарное произведение, принимающее на этом наборе единичное значение. Таким образом, ячейки карты Карно, представляющие функцию, содержат столько единиц, сколько элементарных произведений содержится в ее СДНФ, причем каждой единице соответствует одно из элементарных произведений.

Обратим внимание на то, что координаты строк и столбцов в карте Карно следуют не в естественном порядке возрастания двоичных кодов, а в порядке 00, 01, 11, 10. Изменение порядка следования наборов сделано для того, чтобы соседние наборы были соседними, т.е. отличались значением только одной переменной.

Ячейки, в которых функция принимает значения, равные единице, заполняются единицами. В остальные ячейки записываются нули.

Процесс минимизации рассмотрим на примере, представленном на рисунке 2.4.

а) таблица истинности; б) карта Карно

Рисунок 2.4

Сначала формируем прямоугольники, содержащие по 2k ячеек, где k - целое число.

В прямоугольники объединяются соседние ячейки, которые соответствуют соседним элементарным произведениям.

Например, на рисунке 2.4,б объединены ячейки с координатами 001 и 101. При объединении этих ячеек образовался прямоугольник, в котором переменная x1 изменяет свое значение. Следовательно, она исчезнет при склеивании соответствующих элементарных произведений и останутся только х2 и х3, причем переменную х2 берем в инверсном виде, т.к. она равна 0.

Ячейки, расположенные в первой строке (рисунок 2.4 б), содержат единицы и являются соседними. Поэтому все они объединяются в прямоугольник, содержащий 2 2 = 4 ячейки.

Переменные х2 и х3 в пределах прямоугольника меняют свое значение; следовательно, они исчезнут из результирующего элементарного произведения. Переменная х1 остается неизменной и равной нулю. Таким образом, элементарное произведение, полученное в результате объединения ячеек первой строки рисунка 2.4 б, содержит лишь один х1, который берем в инверсном виде, т.к. он равен 0.

Это, в частности, следует из того, что четырем ячейкам первой строки соответствует сумма четырех элементарных произведений:

Двум ячейкам сторого столбца соответствует сумма двух произведений

Функция, соответствующая рисунку 2.4 имеет вид:

Совокупность прямоугольников, покрывающих все единицы, называют покрытием. Заметим, что одна и та же ячейка (например, ячейка с координатами 001) может покрываться два или несколько раз.

Итак, можно сделать следующие выводы:

1. Формула, получающаяся в результате минимизации логической функции с помощью карт Карно, содержит сумму стольких элементарных произведений, сколько прямоугольников имеется в покрытии.

2. Чем больше ячеек в прямоугольнике, тем меньше переменных содержится в соответствующем ему элементарном произведении.

Например, для карты Карно, изображенной на рисунке 2.5 а, прямоугольнику, содержащему четыре ячейки, соответствует элементарное произведение двух переменных, а квадрату, состоящему всего лишь из одной ячейки,- элементарное произведение включающее все четыре переменные.


а) б) в)

Рисунок 2.5

Функция, соответствующая покрытию, показанному на рисунке 2.5 а, имеет вид:

Несмотря на то, что карты Карно изображаются на плоскости, соседство квадратов устанавливается на поверхности тора. Верхняя и нижняя границы карты Карно как бы «склеиваются», образуя поверхность цилиндра. При склеивании боковых границ получается тороидальная поверхность. Следуя изложенным рассуждениям, устанавливаем, что ячейки с координатами 1011 и 0011, изображенные на рисунке 2.5 б, являются соседними и объединяются в прямоугольник. Действительно, указанным ячейкам соответствует сумма элементарных произведений

Аналогично объединяются и остальные четыре единичные ячейки. В результате их объединения получаем элементарное произведение .

Окончательно функция, соответствующая покрытию, изображенному на рисунке 2.5 б, имеет вид

Карта Карно, показанная на рисунке 2.5 в, содержит единичные ячейки, расположенные по углам. Все четыре ячейки являются соседними, и после объединения дадут элементарное произведение

Рассмотренные выше примеры позволяют сформулировать последовательность проведения минимизации логических функций с помощью карт Карно:

1. Изображается таблица для n переменных и производится разметка ее сторон.

2. Ячейки таблицы, соответствующие наборам переменных, обращающих функцию в единицу, заполняются единицами, остальные ячейки - нулями.

3. Выбирается наилучшее покрытие таблицы правильными прямоугольниками, которые обводим контурами. В каждом прямоугольнике должно быть 2 n ячеек.

4. Одни и те же ячейки с единицами могут входить в разные контуры.

5. Количество прямоугольников должно быть минимальным, а площадь прямоугольников максимальная.

6. Для каждого прямоугольника записываем произведение только тех переменных, которые не изменяют своего значения. Если эта переменная равна нулю, то ее записывают в инверсном виде.

7. Полученные произведения соединяем знаком логического сложения.

Контрольные вопросы:

1. Что называют минтермами и минтермами?

2.Записать функции, заданные таблицами 2.9 и 2.10 в СДНФ и СКНФ.

Таблица 2.9

3. Упростите логические функции, используя аксиомы тождества и законы алгебры логики:

a)

c)

Логические элементы

Студент должен

Знать:

· Таблицы логических состояний для основных функциональных логических схем;

· Основные базисы построения логических схем.

Уметь:

· Определять логические состояния на выходах цифровых схем по известным состояниям на входах;

· Выполнять логическое проектирование в базисах микросхем;

· Выбирать микросхему по справочнику, исходя из заданных параметров и условий использования.

Принцип логического устройства базируется в ИМС на работе биполярных транзисторов в режиме ключа (либо замкнут, либо разомкнут).


Логическое действие осуществляется как с одной (одновходовый логический элемент) так и с множеством (многовходовый логический элемент) входных переменных.

При работе логических устройств используются три основных действия согласно алгебры Буля – «И», «ИЛИ», «НЕ».

Логическая функция может быть выражена словесно, в алгебраической форме, таблицей истинности, называемой переключательной таблицей, с помощью временных диаграмм. Рассмотрим все варианты представления логических функций.

Работа по теме

МЕТОДЫ МИНИМИЗАЦИИ
ЛОГИЧЕСКИХ ФУНКЦИЙ

Ключевые понятия: логические выражения, логические функции, методы минимизации, инверсия, конъюнкция, дизъюнкция, импликация, эквиваленция.

Содержание

Введение

Люди, далекие от техники, часто смотрят на ЭВМ и другие цифровые электронные устройства как на нечто таинственное и непостижимое. Тем не менее, все эти устройства работают в строгом соответствии с четкими логическими законами. Знание и понимание этих законов помогает в общении с компьютером и другими цифровыми устройствами.

Принципы построения схемы цифрового устройства задается логическими функциями. Сложность логической функции, а отсюда сложность и стоимость реализующей ее схемы (цепи), пропорциональны числу логических операций и числу вхождений переменных или их отрицаний. В принципе любая логическая функция может быть упрощена непосредственно с помощью аксиом и теорем логики, но, как правило, такие преобразования требуют громоздких выкладок .

К тому же процесс упрощения булевых выражений не является алгоритмическим. Поэтому более целесообразно использовать специальные алгоритмические методы минимизации, позволяющие проводить упрощение функции более просто, быстро и безошибочно.

Упрощенная функция будет содержать меньше операций и комбинаций аргументов, а значит и схема, реализующая функцию, будет содержать меньше элементов, т.е. будет дешевле и надежнее .

В связи с этим минимизация логических функций особенно актуальна.

Целью работы является изучение методов минимизации функций алгебры логики.

Объектом работы стал процесс минимизации логических функций.

Предмет исследования – методы минимизации логических функций и методика преподавания этой темы в профильных классах.

Задачи исследования:

    изучить основные элементы математической логики;

    исследовать методы минимизации логических функций;

    подобрать задачи для самостоятельной работы;

    решить описанными методами подобранные задачи.

Работа состоит из введения, двух разделов, заключения и списка использованной литературы.

Во введении обосновывается актуальность темы, определяется цель и задачи исследования.

В первом разделе рассматриваются логические основы функционирования ЭВМ.

Во втором разделе раскрываются методы минимизации логических функций, приводятся примеры решения задач описанными методами.

В заключении подводятся общие итоги исследования.

Логические основы функционирования ЭВМ

Элементы математической логики

Компьютеры – это автоматические устройства, принципы работы которых базируются на элементарных законах двоичной логики.

Вычислительные машины всех поколений состояли и состоят из логических элементов и элементов памяти, принимающих два значения (бита) 0 и 1. Вся обработка информации в ЭВМ всех ее логических блоков, логических схем и устройств опиралась и будет опираться на законы и принципы математической логики .

Логика (от древнегреческого logos, означающего «слово, мысль, понятие, рассуждение, закон») – это древнейшая наука, изучающая правильность суждений, рассуждений и доказательств.

Математическая логика – это математическая дисциплина, изучающая технику доказательств .

Основоположником математической логики является великий немецкий математик Готфрид Вильгельм Лейбниц (1646 – 1716 гг.). Он выдвинул идею о применении в логике математической символики и построении логических исчислений, поставил задачу логического обоснования математики, сыграл важную роль в истории создания электронно-вычислительных машин: предложил использовать для целей вычислительной математики бинарную систему счисления. На заложенном Лейбницем фундаменте ирландский математик Джордж Буль построил здание новой науки – математической логики, – которая в отличие от обычной алгебры оперирует не числами, а высказываниями. В честь Д.Буля логические переменные в языке программирования «Паскаль» впоследствии назвали булевскими.

Математическая логика изучает вопросы применения математических методов для решения логических задач и построения логических схем, которые лежат в основе работы любого компьютера. Суждения в математической логике называют высказываниями или логическими выражениями.

Высказывание – это любое утверждение, относительно которого можно сказать истинно оно или ложно, т.е. соответствует оно действительности или нет; это символическая запись, состоящая из логических величин (констант или переменных), объединенных логическими операциями (связками) .

Различные логические выражения (высказывания) могут принимать только два значения: «истинно» или «ложно». Каждая логическая переменная может принимать только одно значение. Существуют разные варианты обозначения истинности и ложности:

Истина

И

True

T

1

Ложь

Л

False

F

0

Высказывания могут быть простыми и сложными. Простые соответствуют алгебраическим переменным, а сложные являются аналогом алгебраических функций. Функции могут получаться путем объединения переменных с помощью логических действий (операций) .

Рассмотрим логические операции, с помощью которых можно записать любое логическое выражение.

Самой простой логической операцией является операция НЕ (по-другому ее часто называют отрицанием, дополнением или инверсией и обозначают ). Результат отрицания всегда противоположен значению аргумента. Другими простыми слова, данная операция означает, что к исходному логическому выражению добавляется частица «не» или слова «неверно, что».

Таким образом, отрицанием некоторого высказывания называется такое высказывание, которое истинно, когда ложно, и ложно, когда истинно .

Логическая операция НЕ является унарной, т.е. имеет всего один операнд. Определение отрицания может быть записано с помощью так называемой таблицы истинности, в которой указано, указано, какие значения истинности (1, 0) принимает отрицание в зависимости от значений истинности исходного высказывания :

1

0

0

1

Логическое И (логическое умножение или конъюнкция) – это сложное логическое выражение, которое считается истинным в том и только том случае, когда оба простых выражения являются истинными, во всех остальных случаях данное сложное выражение ложно. Конъюнкцию высказываний и обозначают: , а иногда пишут просто . Высказывания в составе конъюнкции соединены союзом «и». Определение конъюнкции может быть записано в виде таблицы истинности, в которой для каждого из четырех возможных наборов значений исходных высказываний и задается соответствующее значение конъюнкции :

1

1

1

1

0

0

0

1

0

0

0

0

Определение конъюнкции двух высказываний естественным образом распространяется на любое конечное число составляющих: конъюнкция А 1 & A 2 & A 3 &...& A N истинна тогда и только тогда, когда истинны все высказывания А 1 , A 2 , A 3 , ...A N (а, следовательно, ложна, когда ложно хотя бы одно из этих высказываний) .

Логическое ИЛИ (логическое сложение или дизъюнкция) – это сложное логическое выражение, которое истинно, если хотя бы одно из простых логических выражений истинно и ложно тогда и только тогда, когда оба простых логических выражения ложны. Дизъюнкцию высказываний и мы обозначим символом и будем читать: или . Определение дизъюнкции может быть записано в виде таблицы истинности:

1

1

1

1

0

1

0

1

1

0

0

0

Определение дизъюнкции двух высказываний естественным образом распространяется на любое конечное число составляющих: дизъюнкция А 1 А 2 А 3 ... А N истинна тогда и только тогда, когда истинно хотя бы одно из высказываний А 1 , А 2 , А 3 , ..., А N (а следовательно, ложна, когда ложны все эти высказывания).

Операции И, ИЛИ, НЕ образуют полную систему логических операций, из которой можно построить сколь угодно сложное логическое выражение. Но помимо них существуют и другие логические операции.

Логическое следование (импликация) – это сложное логическое выражение, которое истинно во всех случаях, кроме как из истины следует ложь. То есть данная логическая операция связывает два простых логических выражения, из которых первое является условием ( ), а второе ( ) является следствием. Обозначим импликацию символом и запись « » будем читать: «Из следует ».

Запишем это определение в виде таблицы истинности:

1

1

1

1

0

0

0

1

1

0

0

1

Высказывание «Если , то » с логической точки зрения имеет тот же смысл, что и высказывание «неверно, что истинно и ложно». Это означает, что функцию импликации можно заменить комбинацией двух функций (отрицания и конъюнкции).

Логическое тождество (эквиваленция) – это сложное логическое выражение, которое является истинным тогда и только тогда, когда оба простых логических выражения имеют одинаковую истинность. Обозначают эквиваленцию символом и запись « » читают « эквивалентно », или « равносильно », или « , если и только если », « тогда и только тогда, если ». Определение эквиваленции может быть записано в виде таблицы истинности:

1

1

1

1

0

0

0

1

0

0

0

1

Логические функции и их преобразование

Логическая функция – это функция логических переменных, которая может принимать только два значения: 0 или 1. В свою очередь, сама логическая переменная (аргумент логической функции) тоже может принимать только два значения: 0 или 1 .

Каждая логическая функция может быть задана большим количеством различных по виду функций. Но даже любую достаточно сложную логическую функцию можно реализовать, имея относительно простой набор базовых логических операций. Наиболее известный базис – это набор функций «и», «или», «не».

Для операций конъюнкции, дизъюнкции и инверсии определены законы, позволяющие производить тождественные (равносильные) преобразования логических выражений :

;

.

Основываясь на законах, можно выполнять упрощение сложных логических выражений.

Исходными, из соображений удобства последующих преобразований, приняты следующие две канонические формы представления функций: совершенная дизъюнктивная нормальная форма (СДНФ) и совершенная конъюнктивная нормальная форма (СКНФ).

Прежде чем перейти к СДНФ и СКНФ введем некоторые понятия.

Элементарной конъюнкцией называется конъюнкция нескольких переменных, взятых с отрицанием или без отрицания, причём среди переменных могут быть одинаковые .

Элементарной дизъюнкцией называется дизъюнкция нескольких переменных, взятых с отрицанием или без отрицания, причём среди переменных могут быть одинаковые .

Всякую дизъюнкцию элементарных конъюнкций называют дизъюнктивной нормальной формой, то есть ДНФ .

Например, выражение является ДНФ.

Всякую конъюнкцию элементарных дизъюнкций называют конъюнктивной нормальной формой, то есть КНФ .

Например, выражение является КНФ.

Совершенной ДНФ (СДНФ) называется ДНФ, в которой нет равных элементарных конъюнкций, и все они содержат одни и те же переменные, причём каждую переменную только один раз (возможно с отрицанием) .

Например, выражение является ДНФ, но не является СДНФ; выражение является СДНФ.

Совершенной КНФ (СКНФ) называется КНФ, в которой нет равных элементарных дизъюнкций, и все они содержат одни и те же переменные, причём каждую переменную только один раз (возможно с отрицанием) .

Например, выражение .

Приведу алгоритмы переходов от одной формы к другой. Естественно, что в конкретных случаях (при определенном творческом подходе) применение алгоритмов бывает более трудоемким, чем простые преобразования, использующие конкретный вид данной формы :

    переход от произвольного задания функции к ДНФ

Этот переход сводится к опусканию общих для нескольких переменных инверсий, раскрытию скобок и объединению, если они возникают, одинаковых членов с использованием законов:

Например:

    переход от ДНФ к КНФ

Алгоритм этого перехода следующий: ставим над ДНФ два отрицания и с помощью правил де Моргана (не трогая верхнее отрицание) приводим отрицание ДНФ снова к ДНФ. При этом приходится раскрывать скобки с использованием правила поглощения. Отрицание (верхнее) полученной ДНФ (снова по правилу де Моргана) сразу дает нам КНФ:

Второй способ перехода от ДНФ к КНФ – использование дистрибутивного закона:

    переход от КНФ к ДНФ

Этот переход осуществляется простым раскрытием скобок (при этом опять-таки используется правило поглощения):

    переход от КНФ к СКНФ

Этот переход осуществляется способом, аналогичным предыдущему: если в простой дизъюнкции не хватает какой-то переменной, например, z , то добавляем в нее выражение (это не меняет самой дизъюнкции), после чего раскрываем скобки с использованием распределительного закона:

    переход от ДНФ к СДНФ

Если в какой-то простой конъюнкции недостает переменной, например, z , то умножаем неполную конъюнкцию на выражение вида , после чего раскрываем скобки (при этом повторяющиеся дизъюнктные слагаемые не пишем). Например:

Для получения СДНФ и СКНФ из таблиц истинности необходимо выполнить следующие 4 пункта алгоритма :

СДНФ

СКНФ

    Конструирование СДНФ и СКНФ начинается с таблицы истинности.

    Отметим те строки таблицы, выходы которых равны

1

0

    Выписываем для каждой отмеченной строки комбинацию переменных через знак

конъюнкция (&)

дизъюнкция (V)

Знаки операции отрицания расставляем следующим образом:

если переменная равна 1, то запишем саму эту переменную, если же она равна 0, то запишем ее отрицание.

если переменная равна 0, то запишем саму эту переменную, если же она равна 1, то запишем ее отрицание.

    Все полученные выражения связываем операцией

дизъюнкции

конъюнкции

Получив СДНФ или СКНФ, можно составить электронную схему, реализующую данную логическую функцию. Для ее постороения требуется 3 логических элемента :

инвертор

конъюнктор

дизъюнктор

Но чаще всего СДНФ содержит много слагаемых и задача заключается в том, чтобы уменьшить их число и упростить логическое выражение. Для упрощения логических функций можно использовать законы логики, приведенные выше. С этой же целью были разработаны и специальные методы, речь о которых пойдет в следующем разделе.

Минимизация логических функций

Как отмечалось в предыдущей главе, логическая функция может быть представлена в виде таблицы истинности или в виде СДНФ (совершенной дизъюнктивной нормальной формы) или СКНФ (совершенной конъюнктивной нормальной формы) и может быть использована для получения логической схемы устройства. Однако полученная логическая схема, как правило, не будет оптимальна. Поэтому важным этапом синтеза логических схем является минимизация логических функций.

Минимизацией называется преобразование логических функций с целью упрощения их аналитического представления.

Существуют два направления минимизации:

    Кратчайшая форма записи (при этом получаются кратчайшие формы КДНФ, ККНФ, КПНФ);

    Получение минимальной формы записи (получение минимального числа символов для записи всей функции сразу).

Но следует учесть, что ни один из способов минимизации не универсален.

Для минимизации функций алгебры логики был разработан ряд методов:

    метод непосредственных преобразований логических функций;

    метод минимизации логических функций при помощи карт Карно;

    метод Квайна-Мак-Класки;

    метод Блейка-Порецкого;

    метод Петрика и другие.

Остановимся более подробно на первых двух методах.

Метод непосредственных преобразований логических функций

Одним из простых методов минимизации является метод непосредственных преобразований, который осуществляется с использованием основных теорем алгебры логики .

При применении данного метода:

    Записываются СДНФ логических функций,

    Форма преобразуется и упрощается с использованием аксиом алгебры логики, при этом, в частности, выявляются в исходном СДНФ соседние термы (члены), в которых есть по одной не совпадающей переменной.

По отношению к соседним термам применяется закон склейки.

Термы, образованные при склеивании называются импликантами.

Полученные после склейки импликанты по возможности склеивают до тех пор, пока склеивание становится невозможным.

Полученная в результате минимизации функция называется тупиковой.

Пусть дана функция

Минимизируем ее описанным выше методом. Для этого добавим еще одно слагаемое и воспользуемся законами склеивания .

Получили минимальную функцию

Рассмотренный метод минимизации путем непосредственных преобразований достаточно прост, особенно при небольшом числе переменных. Недостатком метода является то, что он не указывает строго формализованный путь минимизации. При большом числе переменных минтермы могут группироваться по-разному, в результате чего можно получить различные упрощенные формы заданной функции. При этом нельзя быть уверенным в том, что какая-то из этих форм является минимальной. Возможно, что получена одна из тупиковых форм, которая больше не упрощается, не являясь при этом минимальной.

Метод минимизации логических функций при помощи карт Карно

Карта Карно или карта (диаграмма) Вейча – графический способ минимизации функций алгебры логики.

Карты Карно удобны при небольшом числе переменных.

Карты Карно представляют собой определенную таблицу истинности обычно для двух, трех и четырех переменных и отличаются друг от друга способом обозначения строк и столбцов таблиц истинности.

На рис. 1 представлены карты Вейча для двух, трех и четырех переменных соответственно .

рис. 1

Расположение групп переменных x не имеет значения, необходимо лишь, чтобы каждая клетка отличалась от любой соседней лишь на одну переменную. Согласно принятой форме построения карт соседними также считаются клетки первой и последней строк, клетки первого и последнего столбцов. Число клеток карты равно числу возможных комбинаций значений переменных (термов) и в каждую клетку записывается значение логической функции, соответствующее данному набору переменных. Если какая-то из возможных комбинаций присутствует в совершенной дизъюнктивной нормальной форме (СДНФ) записи функции, то в соответствующей клетке карты Карно ставится «1». Если какого-то терма в полученной функции нет, то в соответствующей клетке карты Карно ставится «0» .

Например, рассмотренная в предыдущем примере функция

заданная таблицей истинности (рис. 2 а), может быть минимизирована и с помощью карт Карно. Карта Карно для нее будет иметь вид, показанный на рис. 2 б.

рис. 2

В карте Карно логические 1 , записанные в соседних клетках, обозначают, что соответствующие этим 1 конъюнкции (произведения) отличаются лишь по одной переменной, которые дополняют друг друга и их можно опустить.

Так в первой строке карты Карно (см. рис. 2 б) переменная х , встречается в комбинации с х 1 и х 2 , которые дополняют друг друга:

Таким образом, группируя две соседние клетки в верхней строке (контур на рис. 2 б), можно исключить одну переменную – х 1 .

Аналогично, группируя две соседние клетки в левом столбце (контур на рис. 2 б) и исключая отличающиеся переменные, получим упрощенное выражение – х 2 .

Полученные упрощенные выражения объединяют с помощью операции ИЛИ.

Таким образом, соседние клетки карты Карно можно группировать для исключения переменной. Число группируемых клеток может быть и больше двух, но их число должно быть четным и они должны соприкасаться (являться соседними) друг с другом.

Допускается также иметь несколько групп перекрывающихся клеток, как в только что рассмотренном примере.

Группироваться могут также клетки первой и последней строк, первого и последнего столбцов, т. е. карту допускается сворачивать в цилиндр как по вертикальной, так и по горизонтальной оси.

Для исключения n переменных общее число группируемых клеток должно быть равно 2 n . Так, для исключения одной переменной требуется объединить две соседние клетки, а для исключения трех переменных уже требуется объединить восемь соседних клеток .

Таким образом, для того чтобы получить минимизированную логическую функцию, необходимо сгруппировать все соседние клетки карты Карно, содержащие 1, а затем объединить полученные группы с помощью операции ИЛИ. Клетки, содержащие 1, которые не удалось объединить с другими клетками, образуют в минимизированной логической функции самостоятельные члены, каждый из которых содержит все переменные .

Рассмотрим несколько примеров карт Вейча и способы построения контуров группировки соседних клеток для получения упрощенной логической функции.

Так, карта Вейча для логической функции

приведена на рисунке 3.

рис. 3

На этом рисунке показан правильный способ объединения соседних ячеек, т. е. карта Вейча как бы свернута в вертикально расположенный цилиндр.

Упрощенное выражение логической функции имеет вид

Таким образом, группируя соседние клетки в единый квадрат, удалось исключить две переменные (х 1 и х 2 ) и получить простое выражение для логической функции.

Рассмотрим пример минимизации логической функции

Карта Карно для этой функции представлена на рисунке 4:

рис. 4

Группируемые ячейки обведены двумя контурами. Нижний контур дает возможность исключить одну переменную х 3 и после этого в нем остается член .

В верхнем контуре можно исключить две переменные (х 2 и х 4 ) и после этого в нем остается член . Упрощенное булево выражение логической функции имеет вид

Рассмотрим минимизацию логической функции, карта Вейча которой представлена на рис. 5.

рис. 5

Булево выражение этой функции имеет вид

Четыре угловые клетки можно объединить в одну группу. Это объединение позволяет исключить две переменные (х 1 и х 2 ) и получить член .

Две единицы из первой строки можно объединить с двумя единицами из нижней строки, получить группу из четырех ячеек, которая позволяет исключить две переменные (х 1 и х 3 ) и получить член .

Наконец, единственную оставшуюся единицу (из второй строки и последнего столбца) можно объединить с клеткой, находящейся над ней, и это позволит исключить одну переменную (х 4 ) и получить член .

Таким образом, мы получим минимизированную логическую функцию

Метод карт Карно (диаграмм Вейча), по существу, упрощает нахождение склеиваемых конъюнкций в СДНФ исходной логической функции.

Минимизация функций алгебры логики описанными методами

В данной главе представлены подобранные нами функции и примеры их минимизации с помощью рассмотренных выше методов.

    Упростить, используя карты Карно для функции 2 переменных:

Карта Карно (диаграмма Вейча) для этой функции будет иметь вид:

В первой строке можно исключить переменную х 2 и получить упрощенное выражение х 1 .

Во втором столбце можно исключить переменную х 1

Таким образом, упрощенное выражение логической функции будет иметь вид

В первом столбце можно исключить переменную х 1 и получить упрощенное выражение х 2 .

Во второй строке можно исключить переменную и получить упрощенное выражение .

Полученные упрощенные выражения соединим операцией ИЛИ.

Таким образом, упрощенное выражение логической функции будет иметь вид

    Упростить, используя карты Карно для функции 3 переменных:

Диаграмма Вейча для этой функции будет иметь вид:

х 3 и получить упрощенное выражение .

х 3 и получить упрощенное выражение .

В последнем столбце можно исключить переменную х 1 и получить упрощенное выражение .

Полученные упрощенные выражения соединим операцией ИЛИ.

Таким образом, упрощенное выражение логической функции будет иметь вид

Диаграмма Вейча для этой функции будет иметь вид:

В первой строке можно исключить переменную х 3 и получить упрощенное выражение и переменную х 2 и получить упрощенное выражение .

Полученные упрощенные выражения соединим операцией ИЛИ.

Таким образом, упрощенное выражение логической функции будет иметь вид

Нами был найден и второй способ минимизации данной функции.

Тогда диаграмма Вейча для этой функции будет иметь вид:

В первой строке можно исключить переменную х 3 и получить упрощенное выражение .

В первой строке остается выражение .

Полученные выражения соединим операцией ИЛИ.

Таким образом, упрощенное выражение логической функции будет иметь вид

Очевидно, что полученная функция не является минимальной, поэтому воспользуемся методом непосредственных преобразований логических функций. Вынесем за скобки переменную х 1 и для выражения в скобках применим правило свертки. Получили тот же результат, что и в первом случае.

Это значит, что соседние клетки можно группировать разными способами, главное, не забывать основное правило: для исключения n переменных общее число группируемых клеток должно быть равно 2 n .

Диаграмма Вейча для этой функции будет иметь вид:

первой строке можно исключить переменную х 3 и получить упрощенное выражение .

0 1 0 0

О втором столбце можно исключить переменную х 1 .

Полученные упрощенные выражения соединим операцией ИЛИ.

Таким образом, упрощенное выражение логической функции будет иметь вид

Диаграмма Вейча для этой функции будет иметь вид:

В первой строке можно исключить переменную х 3 и получить упрощенное выражение .

Во второй строке можно исключить переменную х 3 и получить упрощенное выражение .

Полученные упрощенные выражения соединим операцией ИЛИ.

Таким образом, упрощенное выражение логической функции будет иметь вид

Диаграмма Вейча для этой функции будет иметь вид:

В первом и последнем столбце можно исключить переменные х 1 и х 2 и получить упрощенное выражение .

Во второй строке можно исключить переменную х 2 и получить упрощенное выражение . О .

Полученные упрощенные выражения соединим операцией ИЛИ.

Таким образом, упрощенное выражение логической функции будет иметь вид

В данной главе были представлены функции двух, трех и четырех переменных, которые минимизировались с помощью диаграмм Вейча. Мною были наглядно продемонстированы и описаны особенности применения данного метода минимизации на различных функциях, в том числе и в совокупности с методом непосредственного преобразования функций алгебры логики.

Заключение

Представленная работа посвящена методам минимизации функций алгебры логики. В процессе работы были:

  1. изучены основные элементы математической логики;

    исследованы методы минимизации логических функций;

    подобраны задачи для самостоятельной работы;

    решены описанными методами подобранные задачи.

Мною было подробно рассмотрено 2 метода минимизации логических функций:

    метод непосредственных преобразований логических функций, осуществляемый с использованием теорем алгебры логики;

    метод минимизации с помощью диаграмм Вейча (карт Карно).

Первый метод получил широкое распространение даже в школьных учебниках информатики (например, учебники 10-11 класса Н. Угриновича , Л. Щауцуковой ), поскольку является одним из простых методов упрощения функций алгебры логики. Задания, представленные в учебниках указанных авторов, достаточно разнообразны:

    упростить логическую формулу с помощью законов алгебры логики;

    по заданной функции построить логическую схему;

    упростить переключательную схему;

    доказать с помощью таблицы истинности логическое выражение;

    построить для данной функции таблицу истинности.

Второй метод позволяет быстро и легко исключить отличающиеся переменные и получить упрощенное выражение, которое не всегда может быть минимальным. Поэтому данный метод следует рассматривать в совокупности с методом непосредственных преобразований логических функций.

Данная тема имеет практическое значение в микроэлектронике. Кроме того, ЕГЭ по информатике и ИКТ содержит некоторое количество заданий, связанных с алгеброй логики, которые мы разделили на 4 группы .

Первая группа – это задания, требующие указать логическое выражение, равносильное данному.

Вторая группа – задания на нахождение фрагментов таблиц истинности, соответствующих данному выражению.

Третья группа включает задания на нахождение инстинности высказываний при любых значениях переменных х и у .

И четвертая группа – это задания на определение структурной формулы, соответствующей данной логической схеме.

Заданий конкретно касающихся минимизации логических функций мне не встретилось, но имеющиеся в тестах задания требуют достаточно глубоких знаний в области алгебры логики.

В связи с усложнением вступительных испытаний в высшие учебные заведения можно предположить, что в скором времени в тестах, а значит и в образовательных программах, могут появиться задания на упрощение и минимизацию логических функций.

Список литературы

    Гаврюкова Г. А. Логика в информатике [Электронный ресурс]. – Режим доступа: окт. 2010).

    Ивин А. А. Логика: Учебное пособие. – 2-е изд. – М.: Знание, 1998. – 233 с.

    Игошин В. И. Математическая логика и теория алгоритмов: Учебное пособие для студ. высш. учеб. заведений. – 2-е изд., стер. – М.: Академия, 2008. – 448 с.

    Информатика и ИКТ. Подготовка к ЕГЭ-2009. Вступительные испытания. / Под ред. Ф. Ф. Лысенко. – Ростов н/Д: Легион-М, 2009. – 208 с.

    Информатика: Учебник / Б. В. Соболь [и др.]. – 3-е изд., доп. и перераб. – Ростов н/Д: Феникс, 2007. – 446 с.

    Информатика: Учебное пособие / А. В. Могилев, Н. И. Пак, Е. К. Хеннер. – 3-е изд. – М.: Академия, 2004. – 848 с.

    Калабеков Б. А. Цифровые устройства и микропроцессорные системы: Учебник для техникумов связи. – М.: Горячая линия – Телеком, 2000. – 336 с.

    Каймин В. А. Информатика: Учебник. – 2-е изд., перераб. и доп. – М.: ИНФРА-М, 2001. – 272 с.

    Коваленко А. А, Петропавловский М. Д. Основы микроэлектроники: Учебное пособие. – М.: Академия, 2006. – 240 с.

    Львовский М. Б. Методическое пособие по информатике для учащихся 9-11 классов, изучающих IBM PC [Электронный ресурс]. – Режим доступа: сент. 2010).

    Математические основы информатики. Элективный курс: Учебное пособие / Е. В. Андреева, Л. Л. Босова, И. Н. Фалина. – М.: БИНОМ. Лаборатория знаний, 2005. – 328 с.

    Минимизация логических функций [Электронный ресурс]. – Режим доступа: авг. 2010).

    Основы микроэлектроники: Учебное пособие для вузов / Н. А. Аваев, Ю. Е. Наумов, В. Т. Фролкин. – М.: Радио и связь, 1991. – 288 с.: ил.

    Практикум по информатике и информационным технологиям / Н. Д. Угринович, Л. Л. Босова, Н. И. Михайлова. – 2-е изд., испр. – М.: БИНОМ. Лаборатория знаний, 2004. – 394 с.

    Прикладная математика: Пособие / И. Н. Ревчук, В. К. Пчельник. – Гродно: ГрГУ им. Я. Купалы, 2007. – 128 с.

    Рабкин Е. Л., Фарфоровская Ю. Б. Дискретная математика: булевы функции и элементы теории графов: Методические указания и контрольные задания [Электронный ресурс]. – Режим доступа: 7 авг. 2010).

    Савельев А. Я. Основы информатики: Учебник для вузов. – М.: МГТУ им. Н. Э. Баумана, 2001. – 328 с., ил.

    Степаненко И. П. Основы микроэлектроники: Учебное пособие для вузов. – 2-е изд., перераб. и доп. – М.: Лаборатория Базовых Знаний, 2001. – 488 с.

    Теория и методика обучения информатике: Учебник / [М. П. Лапчик, И. Г. Семакин, Е. К. Хеннер, М. И. Рагулина и др.]; под ред. М. П. Лапчика. – М.: Академия, 2008. – 592 с.

    Угринович Н. В. Информатика и ИКТ. 10 класс. Профильный уровень. – 3-е изд., испр. – М.: Бином. Лаборатория знаний, 2008. – 387 с.

    Угринович Н. В. Информатика и информационные технологии: Учебник для 10-11 классов. – М.: БИНОМ. Лаборатория знаний, 2003. – 512 с.

    Шауцукова Л. З. Информатика 10 – 11. – М.: Просвещение, 2004. – 420 с.