Генератор вч работает на частоте. Схемы генераторов высокой частоты. Функциональные генераторы тока

Радиолюбителям необходимо получать различные радиосигналы. Для этого необходимо наличие нч и вч генератора. Зачастую такой тип приборов называют генератор на транзисторе за его конструктивную особенность.

Дополнительная информация. Генератор тока – это автоколебательное устройство, созданное и используемое для появления электрической энергии в сети или преобразования одного вида энергии в другой с заданной эффективностью.

Автоколебательные транзисторные приборы

Генератор на транзисторе разделяют на несколько видов:

Частотный диапазон принято подразделять на следующие группы:

  • 30 Гц-300 кГц – низкий диапазон, обозначается нч;
  • 300 кГц-3 МГц – средний диапазон, обозначается сч;
  • 3-300 МГц – высокий диапазон, обозначается вч;
  • более 300 МГц – сверхвысокий диапазон, обозначается свч.

Так подразделяют диапазоны радиолюбители. Для звуковых частот используют промежуток 16 Гц-22 кГц и тоже делят его на низкие, средние и высокие группы. Эти частоты присутствуют в любом бытовом приёмнике звука.

Следующее разделение – по виду выдаваемого сигнала:

  • синусоидальный – происходит выдача сигнала по синусоиде;
  • функциональный – на выходе у сигналов появляется специально заданная форма, например, прямоугольная или треугольная;
  • генератор шума – на выходе наблюдается равномерный диапазон частот; диапазоны могут быть различны, в зависимости от нужд потребителя.

Транзисторные усилители различаются по алгоритму действия:

  • RC – основная область применения – низкий диапазон и звуковые частоты;
  • LC – основная область применения – высокие частоты;
  • Блокинг-генератор – используется для производства сигналов-импульсов с большой скважностью.

Изображение на электрических схемах

Для начала рассмотрим получение синусоидального типа сигнала. Самый известный генератор на транзисторе такого типа – генератор колебаний Колпитца. Это задающий генератор с одной индуктивностью и двумя последовательно соединёнными ёмкостями. С помощью него производится генерация требуемых частот. Оставшиеся элементы обеспечивают требуемый режим работы транзистора на постоянном токе.

Дополнительная информация. Эдвин Генри Колпитц – руководитель отдела инноваций «Вестерн Электрик» в начале прошлого века. Был пионером в разработке усилителей сигнала. Впервые произвёл радиотелефон, позволяющий разговаривать через Атлантику.

Также широко известен задающий генератор колебаний Хартли. Он, как и схема Колпитца, достаточно прост в сборке, однако требуется индуктивность с отводом. В схеме Хартли один конденсатор и две последовательно соединённые катушки индуктивности производят генерацию. Также в схеме присутствует дополнительная ёмкость для получения плюсовой обратной связи.

Основная область применения вышеописанных приборов – средние и высокие частоты. Используют для получения несущих частот, а также для генерации электрических колебаний малой мощности. Принимающие устройства бытовых радиостанций также используют генераторы колебаний.

Все перечисленные области применения не терпят нестабильного приёма. Для этого в схему вводят ещё один элемент – кварцевый резонатор автоколебаний. В этом случае точность высокочастотного генератора становится практически эталонной. Она достигает миллионных долей процента. В принимающих устройствах радиоприёмников для стабилизации приёма применяют исключительно кварц.

Что касается низкочастотных и звуковых генераторов, то здесь есть очень серьёзная проблема. Для увеличения точности настройки требуется увеличение индуктивности. Но увеличение индуктивности ведёт к нарастанию размеров катушки, что сильно сказывается на габаритах приёмника. Поэтому была разработана альтернативная схема генератора Колпитца – генератор низких частот Пирса. В ней индуктивность отсутствует, а на её месте применён кварцевый резонатор автоколебаний. Кроме того, кварцевый резонатор позволяет отсечь верхний предел колебаний.

В такой схеме ёмкость не даёт постоянной составляющей базового смещения транзистора дойти до резонатора. Здесь могут формироваться сигналы до 20-25 МГц, в том числе звуковые.

Производительность всех рассмотренных устройств зависит от резонансных свойств системы, состоящей из емкостей и индуктивностей. Отсюда следует, что частота будет определена заводскими характеристиками конденсаторов и катушек.

Важно! Транзистор – это элемент, произведённый из полупроводника. Имеет три вывода и способен от поданного входного сигнала небольшой величины управлять большим током на выходе. Мощность элементов бывает разная. Используется для усиления и коммутации электрических сигналов.

Дополнительная информация. Презентация первого транзистора была проведена в 1947 г. Его производная – полевой транзистор, появился в 1953г. В 1956г. за изобретение биполярного транзистора была вручена Нобелевская премия в области физики. К 80-м годам прошлого века электронные лампы были полностью вытеснены из радиоэлектроники.

Функциональный транзисторный генератор

Функциональные генераторы на транзисторах автоколебания изобретены для производства методично повторяющихся сигналов-импульсов заданной формы. Форма их задаётся функцией (название всей группы подобных генераторов появилось вследствие этого).

Различают три основных вида импульсов:

  • прямоугольные;
  • треугольные;
  • пилообразные.

Как пример простейшего нч производителя прямоугольных сигналов зачастую приводится мультивибратор. У него самая простая схема для сборки своими руками. Часто с её реализации начинают радио электронщики. Главная особенность – отсутствие строгих требований к номиналам и форме транзисторов. Это происходит из-за того, что скважность в мультивибраторе определяется емкостями и сопротивлениями в электрической цепи транзисторов. Частота на мультивибраторе находится в диапазоне от 1 Гц до нескольких десятков кГц. Высокочастотные колебания здесь организовать невозможно.

Получение пилообразных и треугольных сигналов происходит путём добавления в типовую схему с прямоугольными импульсами на выходе дополнительной цепочки. В зависимости от характеристик этой дополнительной цепочки, прямоугольные импульсы преобразуются в треугольные или пилообразные.

Блокинг-генератор

По своей сути, является усилителем, собранным на базе транзисторов, расположенных в один каскад. Область применения узка – источник внушительных, но скоротечных по времени (продолжительность от тысячных долей до нескольких десятков мкс) сигналов-импульсов с большой индуктивной плюсовой обратной связью. Скважность – больше 10 и может доходить до нескольких десятков тысяч в относительных величинах. Наблюдается серьезная резкость фронтов, по своей форме практически не отличающихся от геометрически правильных прямоугольников. Применяются в экранах электронно-лучевых приборов (кинескоп, осциллограф).

Генераторы импульсов на полевых транзисторах

Главное отличие полевых транзисторов – сопротивление на входе соизмеримо с сопротивлением электронных ламп. Схемы Колпитца и Хартли можно собирать и на полевых транзисторах, только катушки и конденсаторы необходимо подбирать с соответствующими техническими характеристиками. В противном случае генераторы на полевых транзисторах работать не будут.

Цепи, задающие частоту, подчиняются таким же законам. Для производства высокочастотных импульсов лучше приспособлен обычный прибор, собранный с использованием полевых транзисторов. Полевой транзистор не шунтирует индуктивность в схемах, поэтому генераторы вч сигнала работают более стабильно.

Регенераторы

LC-контур у генератора можно заменить путём добавления активного и отрицательного резистора. Это регенеративный путь получения усилителя. Такая схема обладает положительной обратной связью. Благодаря этому происходит компенсация потерь в колебательном контуре. Описанный контур называется регенерированным.

Генератор шума

Главное отличие – равномерная характеристика нч и вч частот в требуемом диапазоне. Это означает, что амплитудная характеристика всех частот этого диапазона не будет отличаться. Используются преимущественно в аппаратуре для измерений и в военной отрасли (особенно самолёто,- и ракетостроении). Кроме того, применяют для восприятия звука человеческим ухом – так называемый «серый» шум.

Простой звуковой генератор своими руками

Рассмотрим простейший пример – ревун. Понадобятся всего четыре элемента: плёночный конденсатор, 2 биполярных транзистора и резистор для подстройки. Нагрузкой будет электромагнитный излучатель. Для питания устройства достаточно простой батарейки на 9В. Работа схемы проста: резистор задаёт смещение на базу транзистора. Через конденсатор происходит обратная связь. Резистор для подстройки изменяет частоту. Нагрузка должна быть с высоким сопротивлением.

При всём многообразии типов, размеров и форм исполнения рассмотренных элементов мощных транзисторов для сверхвысоких частот до сих пор не придумано. Поэтому генераторы на транзисторах автоколебания применяют в основном для нч и вч диапазонов.

Видео

Доброго дня уважаемые радиолюбители! Приветствую вас на сайте “ “

Собираем генератор сигналов – функциональный генератор. Часть 1.

На этом занятии Школы начинающего радиолюбителя мы с вами продолжим наполнять нашу радиолабораторию необходимым измерительным инструментом. Сегодня мы начнем собирать функциональный генератор . Данный прибор необходим в практике радиолюбителя для настройки различных радиолюбительских схем – усилителей, цифровых устройств, различных фильтров и множества других устройств. К примеру, после того как мы соберем этот генератор, мы сделаем маленький перерыв в ходе которого изготовим простое светомузыкальное устройство. Так вот, что бы правильно настроить частотные фильтры схемы, нам как раз очень пригодится этот прибор.

Почему данный прибор называется функциональный генератор, а не просто генератор (генератор низкой частоты, генератор высокой частоты). Прибор, который мы изготовим, генерирует на своих выходах сразу три различных сигнала: синусоидальный, прямоугольный и пилообразный. За основу конструкции мы возьмем схему С. Андреева, которая опубликована на сайте в разделе: Схемы – Генераторы .

Для начала нам необходимо внимательно изучить схему, понять принцип ее работы и собрать необходимые детали. Благодаря применению в схеме специализированной микросхемы ICL8038 которая как раз предназначена для построения функционального генератора, конструкция получается довольно-таки простой.

Конечно, цена изделия зависит и от производителя, и от возможностей магазина, и от многих других факторов, но в данном случае мы преследуем одну цель: найти необходимую радиодеталь, которая была бы приемлемого качества и главное – по карману. Вы наверное заметили, что цена микросхемы сильно зависит от ее маркировки (АС, ВС и СС). Чем дешевле микросхема, тем хуже ее характеристики. Я бы порекомендовал остановить свой выбор на микросхеме “ВС”. У нее характеристики не очень сильно отличаются от “АС”, но намного лучше чем у “СС”. Но в принципе, конечно, пойдет и эта микросхема.

Собираем простой функциональный генератор для лаборатории начинающего радиолюбителя

Доброго вам дня уважаемые радиолюбители! Сегодня мы продолжим собирать наш функциональный генератор . Чтобы вам не скакать по страницам сайта, еще раз выкладываю принципиальную схему функционального генератора , сборкой которого мы и занимаемся:

А так же выкладываю даташит (техническое описание) микросхем ICL8038 и КР140УД806:

(151.5 KiB, 5,859 hits)

(130.7 KiB, 3,396 hits)

Я уже собрал необходимые детали для сборки генератора (часть у меня была – постоянные сопротивления и полярные конденсаторы, остальные куплены в магазине радиодеталей):

Самыми дорогими деталями оказались микросхема ICL8038 – 145 рублей и переключатели на 5 и 3 положения – 150 рублей. В общей сложности на эту схему придется потратить около 500 рублей. Как видно на фотографии, переключатель на пять положений – двухсекционный (односекционного не было), но это не страшно, лучше больше, чем меньше, тем более, что вторая секция нам возможно пригодится. Кстати, эти переключатели абсолютно одинаковые, а количество положений определяется специальным стопором, который можно установить на нужное число положений самому. На фотографии у меня два выходных разъема, хотя по идее их должно быть три: общий, 1:1 и 1:10 . Но можно поставить небольшой переключатель (один выход, два входа) и коммутировать нужный выход на один разъем. Кроме того хочу обратить внимание на постоянный резистор R6. Номинала в 7,72 МОм в линейке мегаомных сопротивлений нет, ближайший номинал – 7,5 МОм. Для того, чтобы получить нужный номинал придется использовать второй резистор на 220 кОм, соединив их последовательно.

Хочу обратить ваше внимание также на то, что сборкой и наладкой этой схемы собирать функциональный генератор мы не закончим. Для комфортной работы с генератором мы должны знать какая частота генерируется в данный момент работы, или нам бывает необходимо установить определенную частоту. Чтобы не использовать для этих целей дополнительные приборы, мы оснастим наш генератор простым частотомером.

Во второй части занятия мы с вами изучим очередной способ изготовления печатных плат – методом ЛУТ (лазерно-утюжный). Саму плату мы будем создавать в популярной радиолюбительской программе для создания печатных плат SPRINT LAYOUT .

Как работать с этой программой, я вам пока объяснять не буду. На следующем занятии, в видео файле, покажу как создать нашу печатную плату в этой программе, а также весь процесс изготовления платы методом ЛУТ.

Генератор — это устройство, которое преобразует один вид энергии в другой вид энергии. В нашем случае генератор частот — это устройство, которое преобразует энергию источника питания в периодические колебания различной формы. Или простыми словами — это электротехнический прибор, который может выдавать различные по форме периодические сигналы.

Описание генератора частот

На моем рабочем столе не так давно прямиком из Китая появился вот такой генератор частоты:

Сзади него находятся вот такие выводы:

Давайте же более подробно разберем для чего они нужны. Итак USB — это просто питание, которое подается на генератор частоты. Один конец шнура втыкаем в этот разъем


а другой в блок питания, который шел в комплекте


Также в комплекте шли высокочастотные


Втыкаем в розетку блок питания и кнопочкой POWER запускаем генератор частот


Буковкой «F» принято обозначать частоту , от англ. frequency — частота. Hz — это Герцы (Hertz) — показывает количество колебаний в секунду. Следовательно и приставки «кило, мега, гига» могут также присутствовать перед Герцами. Что это за приставки, думаю, стыдно не знать. Снизу FUNCtion — функция (гребаная алгебра…) , WAVE — волна, в данном случае, форма сигнала. Представленный в данной статье генератор может формировать три формы сигналов — это синусоида (SIN), прямоугольная (SQR) и треугольная (TRI) форма. Почему такие интересные названия форм сигналов вы поймете далее.

Панель управления генератора частоты выглядит следующим образом:


Здесь мы с вами видим кнопку включения POWER, квадратную желтую кнопку WAVE, с помощью которой мы выбираем форму сигнала: синусоида, прямоугольный или пилообразный. SEL — переключение между режимами задания частоты и формой сигнала. ОК — без комментариев. Верхняя крутилка предназначена для установки частоты, средняя для среза сигнала, и нижняя для изменения величины амплитуды сигнала. Итак, теперь обо всем по порядку.

Какие сигналы умеет выдавать генератор

Для пробы вбиваем частоту 50 Герц


Цепляем кабель генератора частоты к выходу OUT, а зажимы кабеля цепляем к щупам осциллографа.


На осциллограмме наблюдаем вот такую картину:



Чистейшая синусоида 50 Герц!

Переключаем форму волны на треугольную


Вуаля!


Знаете кто это?

Так… Причем здесь Спанчбоб? На английском языке он пишется как Spanch Bob Square Pants — что в переводе Спанч Боб Квадратные штаны. Square — (с англ. квадрат, прямоугольник). Чтобы не запутаться в генераторе частоты или в другой какой-либо технике, вспомните СпанчБоба. SQR — прямоугольная форма сигнала.


А вот собственно и она на осциллограмме


Крутилкой OFFSET можно срезать форму сигнала сверху, снизу и сверху и снизу одновременно.



Скважность и коэффициент заполнения

Есть в электронике такой параметр, как скважность . Это параметр применяется к прямоугольной форме сигналов.

где S — скважность

T — период импульса, с

t — длительность импульса, с


Величина D (Duty) , обратная величине S, называется коэффициентом заполнения

Иллюстрация сигналов с различным коэффициентом заполнения

Вот так выглядит сигнал с коэффициентом заполнения 50%. У этого сигнала длительность импульса ровно в два раза меньше его периода, следовательно S=2, а D=50%. Такой сигнал прямоугольной формы называют


Меняем коэффициент заполнения D на 20%



то же самое, но на 80%



Выход TTL генератора частоты

Также в этом генераторе есть такие примочки, как выход TTL . TTL по-русски звучит, как транзисторно-транзисторная логика. Короче говоря — этот выход предназначен для тактирования импульсов на логические микросхемы. Еще более понятным языком — задает рабочую частоту для различных микросхем, чтобы они работали и выполняли свои функции. Здесь выходит прямоугольная форма сигнала амплитудой более 3 Вольт


и частотой в 1 килогерц.


Режим частотомера и счетчика импульсов

Теперь о примочках, которые китайский производители затолкали в этот генератор. Есть один интересный вывод — Ext.IN. Думаю, нетрудно догадаться. что IN — это вход. В этом генераторе частоты встроен частотомер и счетчик периодов сигнала. Для этих функций как раз и используется вывод Ext IN.


Я хочу измерить частоту электрического тока в розетке. Если вы помните, там переменный ток, который имеет частоту 50 Герц. Так ли это? Сейчас узнаем. Напряжение для входа Ext.IN должно быть от 0,5 и до 20 Вольт. В розетке же 220 Вольт, чтобы его убавить, используем . На выходе я получил напряжение в 2 Вольта. Чтобы вы увидели, что есть напряжение на вторичной обмотке трансформатора, я туда поставил светодиод. Цепляемся за выводы вторичной обмотки крокодильчиками нашего генератора частоты


И начинаем производить замеры. Опа на! Ровно 50 герц;-).



Характеристики генератора

Вот характеристики генератора частоты, кому интересно:

1. Signal Output function

waveforms Sine wave, Square wave and Triangle wave

amplitude ≥10Vp-p(signal output, no load)

impedance 50Ω±10%(signal output)

DC offset ±2.5V(no load)

Display LCD160

Resolution 0.01Hz

Frequency Stability ±1×10 -6

Frequency accuracy ±5×10 -6

Sine wave distortion ≤0.8% (reference frequency is 1kHz)

Trinagle linearity ≥98% (0.01Hz~10kHz)

Rise and fall time of square wave ≤100ns

Square Wave Duty range 1%~99%

2. TTL Output function

Frequency range 0.01Hz ~ 2MHz

Amplitude >3Vp-p

Fan Out >20 TTL loads

3. COUNTER function

Counter Range 0-4294967295

Frequency Meter Range 1Hz~60MHz

Input Voltage Range 0.5Vp-p~20Vp-p

Storage and transferred: 10 set of parameters with storage and recall functions.

Заключение

В заключении хотелось бы сказать пару слов. Как же правильно выбрать генератор частоты? Здесь, конечно, все зависит от функционала, а точнее от того, какую максимальную частоту может выдать генератор. Чем большую частоту может выдавать генератор, тем он дороже. Начинающему электронщику, думаю, 2 Мегагерца сигналов синуса, треугольного и прямоугольного хватит по самое не балуйся, да еще и частотомер+счетчик.

Стоит ли его брать? Думаю, нет. Лучше взять какой-нибудь один, но подороже. У меня сейчас вот такой генератор частоты


Где купить генератор частот

Я бы посоветовал Алиэкспресс. Здесь действительно можно подобрать приличный генератор.

Начиная от простых дешевых


Заканчивая полупрофессиональными


Выбирайте на ваш вкус и цвет!

Основное предназначение высокочастотного генератора заключается в том, что он создает колебания электрического поля. Диапазон этих колебаний имеет довольно широкие границы: от нескольких десятков килогерц и до сотен мегагерц.

Общее описание устройства ВЧ

Большинством обычных людей этот прибор используется для остановки счетчика. Высокочастотный генератор действительно способен останавливать работу такой техники, создавая колебания. Кроме того, этот прибор можно также использовать в качестве питания для обычных бытовых устройств. Если говорить о мощностях, то выходное напряжение достигает 220 А, а мощность - 1 кВт. Также возможна замена некоторых элементов на более мощные. Если это сделать, то выходные характеристики высокочастотного генератора повысятся, и с его помощью станет возможно питать большее количество агрегатов или же несколько, но уже более мощных. Подключение же самого ВЧ осуществляется к обычной бытовой сети. Здесь важно отметить, что схема электрических проводов довольно проста, и изменять ее как-либо нет смысла. К тому же нет необходимости в использовании системы заземления для этого прибора. При подключении таких колебательных агрегатов в сеть они не полностью останавливают работу счетчика. Агрегат продолжает работать, но при этом ведется учет лишь 25 % от реального расхода электроэнергии.

Действие прибора

Если разобраться более подробно с работой высокочастотного генератора, то остановка техники происходит из-за того, что в схеме прибора используется конденсатор. Подключение осуществляется именно к этой детали, которая имеет заряд, полностью совпадающий с синусоидой напряжения, протекающего в сети. Осуществление заряда происходит посредством импульсов с высокой частотой. Таким образом, получается, что ток, который потребитель расходует из своей домашней сети, становится высокочастотным импульсом. Обычные же электронные счетчики, установленные в домах, характеризуются отсутствием чувствительности к такого рода колебаниям. Это означает, что учитывать расход тока импульсной формы агрегат будет с отрицательной погрешностью.

Описание схемы

Схема высокочастотного генератора характеризуется наличием определенных ключевых элементов. К ним относятся: выпрямитель, емкость, транзистор. Далее, если говорить о подключении конденсатора, то он последовательно включается в схему с выпрямителем. Это необходимо для того, чтобы во время того, как выпрямитель работает на транзистор, конденсатор мог заряжаться до того размера напряжения, которое имеется в сети.

Чаще всего пределом зарядки конденсатора в высокочастотном генераторе становится 2 кГц. Если говорить о напряжении, которое в данный момент присутствует на нагрузке и емкости устройства, то оно приближается к синусу на 220 В. Для того чтобы ограничить ток, протекающий через транзистор в то время, как заряжается емкость, в схеме имеется резистор, который подключается с каскадом ключа, используя последовательное соединение.

Особенности выполнения ВЧ

Генератор выполняется полностью на логических элементах. Он производит колебания или импульсы с частотой 2 кГц, а также с амплитудой в 5 Вольт. Имеется также такая характеристика, как сигнальная частота. Значение этого параметра определяется элементами С2 и R7. В стандартных схемах обозначения используют именно такой формат подписи. Свойства, которые дают эти элементы, могут применяться для того, чтобы настроить максимальную погрешность учета расхода энергии. За создание импульсов отвечают такие элементы, как Т2 и Т3 - транзисторы. Вместе их называют создателем импульсов. Эта деталь отвечает также за правильную работу транзистора Т1.

Такие устройства, как выпрямитель, трансформатор и другие используются в качестве небольшого блока питания. Основная задача - это поставка энергии для работы микросхемы с другими элементами. Такие небольшие блоки питания обычно рассчитаны на 36 В.

Высокочастотный генератор сигналов Г4-151

Основное предназначение такого генератора заключается в настройке, проверке, регулировке и испытаниях радиотехнических устройств. При помощи данного прибора можно обеспечить измерение амплитудно-частотной характеристики, чувствительности, избирательности и т.д. Кроме этого, использовать данную аппаратуру можно и в качестве источника сигнала, который работает с разными способами модуляции колебаний. Это может быть амплитудная, частотная или импульсная модуляция. Также возможно создание немодулированных колебаний. Чаще всего такое оборудование используют в поверочных органах, в мастерских по ремонту оборудования, в цехах или лабораториях.

Вывод информации у данного высокочастотного - это обычный цифровой код. Кроме этого, для удобства управления имеются аналоговые входы, позволяющие дистанционно регулировать все параметры аппарата.

Собственноручная сборка

Так как собирать реальную схему высокочастотного может быть трудно, имеется несколько упрощенный вариант сборки. В таком случае вместо транзистора в схеме будет использоваться элемент с отрицательным сопротивлением. Еще такие элементы довольно часто называют усилительными. Если говорить совсем простыми словами, то ток на выходе таких приборов всегда больше, чем ток на их входе.

К входу такого прибора подключается колебательный контур. Далее очень важно с выхода этого же усилителя через обратную связь необходимо подключить его к этому же колебательному контуру. Соединив схему таким образом, получите следующий результат. На вход поступает ток определенного значения, проходя через усилительный элемент, он увеличивается, чем подпитывает контурный конденсатор. При помощи обратной связи уже усиленный ток возвращается снова на вход в схему, где опять усиливается. Такой круговой процесс происходит постоянно. Именно он и вызывает незатухающие колебания внутри генератора.

Ламповый ВЧ

Одна из разновидностей ге нераторов сигналов высокочастотных - это ламповые устройства. Такие приборы используют для того, чтобы получать плазму с нужными параметрами. Для этого нужно подвести определенный разряд к мощности устройства. У таких приборов ключевыми элементами являются эмиттеры, работа которых основывается на принципе подведения мощности.

Еще одним важным элементом для работы ламповых ВЧ стали усилители мощности. Эти детали, установленные на лампах, используются для того, чтобы преобразовать постоянный ток в переменный. Естественно, что эксплуатация лампового генератора невозможна без самой лампы. Использовать можно различные элементы. Довольно распространенным стал тетрод ГУ-92А. Данная деталь является электронной лампой, для работы которой используется четыре элемента: анод, катод, экранирующая и управляющая сетки.

Недавно мне принесли в ремонт генератор ГУК-1 . Что бы потом не думалось, сразу заменил все электролиты. О чудо! Все заработало. Генератор еще советских времен, а отношение у коммунистов к радиолюбителям было такое Х… , что вспоминать не охота.

Вот отсюда и генератор желал бы быть получше. Конечно самое главное неудобство, это установка частоты высокочастотного генератора. Хоть бы, какой ни будь простенький верньер поставили, поэтому пришлось добавить дополнительный подстроечный конденсатор с воздушным диэлектриком (Фото1). По правде сказать я очень не удачно выбрал для его место, надо было бы чуть-чуть сместить. Я думаю вы это учтете.

Что бы поставить ручку, пришлось удлинить ось триммера, кусок медной проволоки диаметром 3мм. Конденсатор подключается параллельно основному КПЕ или непосредственно, или через «растягивающий» конденсатор, что еще больше увеличивает плавность настройки генератора ВЧ. Для кучи заменил и выходные разъемы – родные уже все раздрыгались. На этом ремонт закончился. От куда схема генератора я не узнал, но похоже, что все соответствует. Возможно она пригодится и вам.
Схема генератора универсального комбинированного – ГУК-1 приведена на рисунке 1. В состав прибора входят два генератора, низкочастотный генератор и генератор ВЧ.


ТЕХНИЧЕСКИЕ ДАННЫЕ

1. Диапазон частот ВЧ генератора от 150 кГц до 28 мГц перекрывается пятью поддиапазонами со следующими частотами:
1 поддиапазон 150 - 340 кГц
II 340 - 800 кГц
III 800 - 1800 кГц
IV 4,0 - 10,2 мГц
V 10,2 - 28,0 мГц

2. Погрешность установки ВЧ не более ±5%.
3. Генератор ВЧ обеспечивает плавную регулировку выходного напряжения от 0,05 мВ до 0,1 В.
4. Генератор обеспечивает следующие виды работ:
а) непрерывная генерация;
б) внутренняя амплитудная модуляция синусоидальным напряжением с частотой 1кГц.
5. Глубина модуляции не менее 30%.
6. Выходное сопротивление ВЧ генератора не более 200 Ом.
7. НЧ генератор генерирует 5 фиксированных частот: 100 Гц, 500 Гц, 1кГц, 5кГц, 15кГц.
8. Допустимое отклонение частоты НЧ генератора не более ±10%.
9. Выходное сопротивление НЧ генератора не более 600 Ом.
10. Выходное напряжение НЧ плавно регулируется от 0 до 0.5 В.
11. Время самопрогрева прибора - 10 минут.
12. Питание прибора осуществляется от батареи «Крона» напряжением 9 В.

ГЕНЕРАТОР НИЗКОЙ ЧАСТОТЫ


Генератор НЧ собран на транзисторах VT1 и VT3. Положительная обратная связь, необходимая для возникновения генерации снимается с резистора R10 и подается в цепь базы транзистора VT1 через конденсатор С1 и соответствующую фазосдвигающую цепочку, выбранную переключателем В1 (например С2,С3,С12.). Один их резисторов в цепочке – подстроечный (R13), с помощью которого можно подстраивать частоту генерации низкочастотного сигнала. Резистором R6 устанавливается начальное смещение на базе транзистора VT1. На транзисторе VT2 собрана схема стабилизации амплитуды генерируемых колебаний. Выходное напряжение синусоидальной формы через С1 и R1 подается на переменный резистор R8, который является регуляторов выходного сигнала НЧ генератора и регулятором глубины амплитудной модуляции ВЧ генератора.

ГЕНЕРАТОР ВЫСОКОЙ ЧАСТОТЫ

ВЧ генератор реализован на транзисторах VT5 и VT6. С выхода генератора через С26 сигнал подается на усилитель собранный на транзисторах VT7 и VT8. На транзисторах VT4 и VT9 собран модулятор ВЧ сигнала. Эти же транзисторы используются в схеме стабилизации амплитуды выходного сигнала. Не плохо бы для этого генератора изготовить аттенюатор, или Т, или П типа. Рассчитать такие аттенюаторы можно с помощью соответствующих калькуляторов для расчета и . Вот вроде и все. До свидания. К.В.Ю.

Скачать схему.

Рисунок печатной платы генератора ВЧ

Рисунок в формате LAY любезно предоставил Игорь Рожков, за что я ему выражаю благодарность за себя и за тех, кому этот рисунок пригодится.

В приведенном архиве размещен файл Игоря Рожкова к промышленному радиолюбительском генератору, имеющему пять диапазонов ВЧ — ГУК-1. Плата приведена в формате *.lay и содержит доработку схемы (шестой переключатель на диапазон 1,8 — 4 МГц), ранее опубликованную в журнале Радио 1982, № 5, с.55
Скачать рисунок печатной платы.

Доработка генератора ГУК-1

FM модуляция в генераторе ГУК-1.

Еще одна идея модернизации генератора ГУК-1 , я ее не пробовал, потому, как у меня собственного генератора нет, но по идее все должно работать. Эта доработка позволяет настраивать узлы, как приемной, так и передающей аппаратуры, работающей с применением частотной модуляции, например радиостанций СВ диапазона. И, что не маловажно, с помощью резистора Rп можно подстраивать несущую частоту. Напряжение, которое используется для смещения варикапов должно быть обязательно стабилизированным. Для этих целей можно использовать однокристальные трехвыводные стабилизаторы на напряжение 5В и небольшим падением напряжения на самом стабилизаторе. В крайнем случае можно собрать параметрический стабилизатор, состоящий из резистора и стабилитрона КС156А. Прикинем величину резистора в цепи стабилитрона. Ток стабилизации КС156А лежит в пределах от 3ма до 55ма. Выберем начальный ток стабилитрона 20ма. Значит при напряжении питания 9В и напряжении стабилизации стабилитрона 5.6В, на резисторе при токе в 20ма должно упасть 9 — 5,6 = 3,4В. R = U/I = 3,4/0,02 = 170 Ом. При необходимости величину резистора можно изменить. Глубина модуляции регулируется все тем же переменным резистором R8 — регулятор выходного напряжения НЧ. При необходимости изменить пределы регулировки глубины модуляции, можно подобрать номинал резистора R*.