Электронные лампы типы электронных ламп. Радиолампы - история, обозначение, цоколевка типовых ламп

Это вакуумный электронный прибор, функционирующий благодаря изменению потока электронов. Электроны двигаются в вакууме среди электродов.

Осветительная лампа с угольной нитью накаливания в связи с потускнением баллона постепенно уменьшала отдаваемый свет. С 1883 г. Т. Эдисон своими научными изысканиями пытался усовершенствовать лампу накаливания. Откачав из баллона лампы воздух, он ввел в него металлический электрод. К впаянному электроду и раскаленной с помощью электрического тока нити Эдисон прикрепил и соединил гальванометр и батарею. Как только полярность распределялась, минус батареи перемещался к нити, плюс - к электроду, стрелка гальванометра отклонялась. При противоположной полярности подача тока в цепь прекращалась. Этот опыт, в результате которого получилась термоэлектронная эмиссия, послужил основой для электронных ламп и всей полупроводниковой электроники.
В состав электронных ламп входят по меньшей мере два электрода - анод и катод. Если в лампе находится катод не прямого накала, то рядом с катодом располагается нить накаливания, которая его подогревает. Делает она это для того, чтобы при нагревании увеличивалась эмиссия с катода. Сетки, располагающиеся между анодом и катодом, изменяют поток электронов и устраняют вредные явления, которые возникают при движении потока электронов от положительно заряженного электрода к отрицательному электроду. На стекле электронных ламп находится блестящее напыление, которое предохраняет устройство от излишних газов и воздуха.

Кроме диодов и триодов, к электронным лампам относятся тетроды, пентоды, гексоды и гептоды.
В 1905 г. на опыты Эдисона стал опираться английский ученый Дж. Флеминг, получивший патент на прибор, который преобразовывает переменный ток в постоянный, т. е. на первую электронную лампу. Он впервые использовал диод с практической целью, диод выступал в качестве силового элемента (детектора) в радиотелеграфных приемниках. В следующем году американский инженер Л. Форест создал триод, прибавив к двум электродам управляющую сетку. Лампа, созданная Ли де Форестом, могла усиливать колебания самостоятельно. В 1913 г. на базе триода был создан первый автогенератор . Во многом благодаря триоду Фореста и началась компьютерная эра. С помощью триода он смог усилить звук в своей домашней лаборатории, активно сотрудничал на этой почве с американскими исследователями в области электроники. Первоначально триод был газонаполненной лампой, имевшей плоскую сетку. Уже позднее лампа Фореста стала вакуумной (в 1912 г.), он запатентовал ее в 1907 г. и назвал «Audion». Ученый применял триод в качестве устройства, обрабатывающего данные. Немецкие инженеры под руководством А. Мейс-нера, последователя Фореста, создали цилиндрическую сетку триода из перфорированного алюминиевого листа.

В радиотехнике изобретателем автогенератора считается Армстронг. Кроме всего прочего, Форест применял свой триод в усилителях, приемниках и передатчиках, став пионером радиосвязи. Закончив Йельский университет и защитив диссертацию, Форест начал активно воплощать свои теории на практике. В 1902 г. он создал компанию «Forest Wireless Telegraphy Company», которая уже через два года была основным наладчиком радиосвязи на американском военно-морском флоте. В 1920 г. он предложил записывать звуковую дорожку на кинопленку оптическим способом, чем немало способствовал развитию киноиндустрии.

В России первые радиолампы были созданы петербургским инженером Н. Д. Папалекси в 1914 г. Совершенной откачки не было, поэтому лампы изготавливались газонаполненными со ртутью. Благодаря работе М. А. Бонч-Бруевича в 1913-1919 гг. внедрение электронных ламп в радиотехнику стимулировалось военными интересами радиосвязи. В 1914 г., после начала Первой мировой войны, в Царском Селе и на подмосковном Ходынском поле построили мощные передающие искровые станции для связи с военными союзниками и слежения за вражескими радиостанциями . Военное положение вынудило Бонч-Бруевича изготавливать электронные лампы в России. В Твери находилась радиостанция с ламповыми усилителями. Лампы французского производства стоили около 200 руб. золотом каждая, а время их работы не превышало десяти часов. Собрав необходимое оборудование в аптеках и на заводах, Бонч-Бруевич в небольшой лаборатории стал мастерить радиоприемники и лампы, стоимость которых равнялась 32 руб.

До 1930-х гг. электронные лампы применялись исключительно в радиотехнике. В 1931 г. английский физик
В. Вильямс сконструировал тиратрон-ный счетчик электрических импульсов. В состав электронного счетчика входили несколько триггеров. Сами триггеры были изобретены параллельно М. А. Бонч-Бруевичем в 1918 г. и американскими учеными Ф. Джорданом и У. Икклзом в 1919 г. Триггеры выполнялись в виде электронного реле , состояли из двух ламп и находились в одном из двух своих устойчивых состояний. Электронное реле, как и электромеханическое, могло хранить в себе одну двоичную цифру.

В 1940-х гг. появились компьютеры, разработанные на основе электронных ламп. Электронная лампа стала применяться как основной элемент ЭВМ. Несмотря на многие.положительные характеристики, использование ламп приносило множество проблем. Высота стеклянной лампы равнялась 7 см, за счет чего ЭВМ имели огромные размеры.

В одном компьютере находилось 15-20 тыс. электронных ламп, каждая из которых через 7-8 мин работы выходила из строя. Возникала проблемная ситуация поиска и замены старой лампы, это занимало очень много времени. Такое большое количество ламп выделяло тепло, поэтому для каждого компьютера необходимо было устанавливать охладительные системы. В компьютерах не было устройств ввода, поэтому данные заносились в память благодаря соединению определенного штекера с определенным гнездом. Но все же электронные лампы, несмотря на многие недостатки, внесли неоценимый вклад в развитие мировой радиотехники и электроники.

Ознакомление с историей изобретения радиолампы возвращает нас к 1881 г., когда известный изобретатель Томас Эдисон обнаружил явление, положенное впоследствии в основу действия почти каждой радиолампы. Занимаясь опытами, целью которых было улучшение первых электрических ламп, Эдисон ввел внутрь стеклянной колбы лампы металлическую пластинку, расположив ее поблизости от накаливаемой угольной нити. Эта пластинка совершенно не соединялась с нитью внутри колбы (фиг. 1). Металлический стержень, на котором держалась пластинка, проходил сквозь стекло наружу. Чтобы нить не перегорела, воздух из колбы лампы был выкачан. Изобретатель был весьма удивлен, заметив отклонение стрелки электроизмерительного прибора, включенного в проводник, соединяющий между собой металлическую пластинку с положительным полюсом (плюсом) батареи накала нити. Исходя из обычных по тому времени представлений, нельзя было ожидать появления тока в цепи «пластинка - соединительный провод - плюс батареи», так как эта цепь незамкнута. Тем не менее ток по цепи проходил. Когда же соединительный провод приключили не к плюсу, а к минусу батареи, ток в цепи пластинки прекращался. Эдисон не смог дать объяснения открытому им явлению, которое вошло в историю радиолампы под названием эффекта Эдисона .

Объяснение эффекту Эдисона было дано гораздо позже, уже после того, как в 1891 г. Стонеем и Томсоном были открыты электроны - мельчайшие отрицательные заряды электричества. В 1900 - 1903 гг. Ричардсон предпринял научные исследования, результатом которых явилось опытное и теоретическое подтверждение вывода Томсона о том, что раскаленная поверхность проводников испускает, эмиттирует электроны. Оказалось, что способ нагревания проводника безразличен: раскаленный на горящих углях гвоздь эмиттирует электроны (фиг. 2) так же, как и накаливаемая электрическим током нить электрической лампы. Чем выше температура, тем более интенсивна электронная эмиссия . Ричардсон глубоко исследовал электронную эмиссию и предложил формулы для расчета количества эмиттируемых электронов Им же было установлено, что будучи нагретыми до одинаковой температуры, разные проводники эмиттируют электроны в различной степени, что было приписано структурным свойствам этих проводников, т. е. особенностям их внутреннего строения. Повышенными эмиссионными свойствами отличаются цезий, натрий, торий и некоторые другие металлы. Этим впоследствии воспользовались при конструировании интенсивных эмиттеров электронов.

Однако, установление одного лишь факта существования электронной эмиссии с поверхности раскаленных проводников (такая эмиссия называется термоионной или термоэлектронной) не объясняет еще появления тока в цепи пластинки лампы Эдисона. Но все становится совершенно понятным, если вспомнить два обстоятельства: 1) разноименные электрические заряды стремятся притянуться, а одноименные - оттолкнуться; 2) поток электронов образует собой электрический ток тем большей силы, чем большее количество электронов перемещается (фиг. 3). Пластинка, соединяемая с плюсом батареи накала лампы, заряжается положительно и потому притягивает к себе электроны, заряд которых отрицателен. Таким образом, кажущийся разрыв цепи внутри лампы оказывается замкнутым и в цепи устанавливается электрический ток, который проходит через электроизмерительный прибор. Стрелка прибора отклоняется.

Если пластинку зарядить по отношению к нити отрицательно (это именно и получается, когда она присоединена к минусу батареи накала), то она будет отталкивать от себя электроны. Хотя раскаленная нить и будет попрежнему эмит-тировать электроны, но на пластинку они не попадут. Никакого тока в цепи пластинки не возникнет, и стрелка прибора покажет нуль (фиг. 4). Раскаленная нить окажется окруженной со всех сторон большим количеством беспрерывно эмиттируемых нитью и вновь к ней возвращающихся электронов. Это «электронное облако» вокруг нити создает отрицательный пространственный заряд , который препятствует вылету из нити электронов. Устранить пространственный заряд («рассосать электронное облако») можно действием положительно заряженной пластинки. По мере увеличения положительного заряда притягивающая электроны сила пластинки возрастает, все большее и большее количество электронов покидает «облако», направляясь к пластинке. Пространственный отрицательный заряд вокруг нити уменьшается. Ток в цепи пластинки возрастает. Стрелка прибора отклоняется по шкале в сторону больших показаний. Таким образом ток в цепи пластинки можно менять изменением положительного заряда пластинки . Это - вторая возможность увеличения тока. О первой возможности мы уже знаем: чем выше температура раскаленной нити, тем сильнее эмиссия. Однако, повышать температуру нити можно лишь до известных пределов, после которых возникает опасность перегорания нити. Но и повышение положительного заряда на пластинке также имеет пределы. Чем сильнее этот заряд, тем больше скорости летящих к пластинке электронов. Получается электронная бомбардировка пластинки. Хотя энергия удара каждого электрона и мала, но электронов много, и от ударов пластинка может сильно накалиться и даже расплавиться.

Увеличение положительного заряда пластинки достигается включением в ее цепь батареи с большим напряжением, причем плюс батареи присоединяется к пластинке, а минус - к нити (к положительному полюсу накальной батареи, фиг. 5). Оставляя температуру нити неизменной, т. е. поддерживая неизменным напряжение накала, можно определить характер изменения тока в цепи пластинки в зависимости от изменения напряжения «пластиночной» батареи. Эту зависимость принято выражать графически построением линии, плавно соединяющей точки, соответствующие показаниям прибора.

По горизонтальной оси слева направо обычно откладываются возрастающие значения положительного напряжения на пластинке, а по вертикальной оси снизу вверх - возрастающие значения тока в цепи пластинки. Полученный график (характеристика ) говорит о том, что зависимость тока от напряжения получается пропорциональной только в ограниченных пределах. По мере увеличения напряжения на пластинке ток в ее цепи возрастает сначала медленно, потом быстрее и затем равномерно (линейный участок графика). Наконец, наступает такой момент, когда возрастание тока прекращается. Это - насыщение : ток не может стать больше: все электроны, эмиттируемые нитью, полностью использованы . «Электронное облако» исчезло.

Цепь пластинки лампы обладает свойством одностороннего пропускания электрического тока. Эта односторонность определяется тем, что электроны («переносчики тока») могут проходить в такой лампе только в одном направлении: от раскаленной нити к пластинке. Джону Флемингу, когда он в 1904 г. занимался опытами по приему сигналов беспроволочного телеграфа, необходим был детектор - прибор с односторонним пропусканием тока. Флеминг применил в качестве детектора электронную лампу.

Так эффект Эдисона был впервые практически применен в радиотехнике. Техника обогатилась новым достижением - «электрическим клапаном». Интересно сопоставить две схемы: схему приемного устройства Флеминга, опубликованную в 1905 г., и современную схему простейшего приемника с кристаллическим детектором. Эти схемы по существу мало чем отличаются одна от другой. Роль детектора в схеме Флеминга выполнял «электрический клапан» (вентиль). Именно этот «клапан» и явился первой и простейшей радиолампой (фиг. 6). Так как «клапан» пропускает ток лишь при положительном напряжении на пластинке, а электроды, соединяемые с плюсом источников тока, называются анодами , то именно такое название и дано пластинке, какую бы форму (цилиндрическую, призматическую, плоскую) ей ни придали. Нить, присоединяемая к минусу анодной батареи («пластиночной батареи», как мы ее именовали ранее), называется катодом .

«Клапаны» Флеминга широко применяются и поныне, но носят другие названия. В каждом современном радиоприемнике с питанием от сети переменного тока имеется устройство, преобразовывающее переменный ток в необходимый для приемника постоянный ток. Это преобразование осуществляется посредством «клапанов», называемых кенотронами . Устройство кенотрона в принципе совершенно такое же, как и прибора, в котором Эдисон наблюдал впервые явление термоэлектронной эмиссии: колба, из которой выкачан воздух, анод и накаливаемый электрическим током катод. Кенотрон, пропуская ток лишь одного направления, преобразовывает переменный ток (т. е. ток, попеременно меняющий направление своею прохождения) в ток постоянный, проходящий все время в одном направлении. Процесс преобразования кенотронами переменного тока в постоянный получил название выпрямления , что следует, видимо, объяснить формальным признаком: график переменного тока обычно имеет форму волны (синусоиды), тогда как график постоянного тока - прямая линия. Получается как бы «выпрямление» волнистого графика в прямолинейный (фиг. 7). Полное устройство, служащее для выпрямления, называется выпрямителем .

Общее название для всех радиоламп с двумя электродами - анодом и катодом (нить хотя и имеет два вывода из колбы, но представляет собой один электрод) - двухэлектродная лампа или - сокращенно - диод . Диоды применяются не только в выпрямителях, но и в самих радиоприемниках, где они выполняют функции, относящиеся непосредственно к приему радиосигналов. Таким диодом, в частности, является лампа типа 6X6, у которой в общей колбе помещено два независимых друг от друга диода (такие лампы называются двойными диодами или дубль-диодами). Кенотроны часто имеют не один, а два анода, что объясняется особенностями схемы выпрямителя. Аноды либо располагаются около общего катода вдоль нити, либо каждый анод окружает отдельный катод. Примером одноанодного кенотрона является лампа типа ВО-230, а двуханодных - лампы 2-В-400, 5Ц4С, ВО-188 и др. График, выражающий зависимость анодного тока диода от напряжения на аноде, называется характеристикой диода .

В 1906 г. Ли де-Форест поместил в пространство между катодом и анодом третий электрод в виде проволочной сетки . Так была создана трехэлектродная лампа (триод) - прототип почти всех современных радиоламп. Название «сетка» сохранилось за третьим электродом и поныне, хотя в настоящее время он далеко не всегда имеет вид сетки. Внутри лампы сетка не соединяется ни с каким другим электродом. Проводник от сетки выведен из колбы наружу. Включая между выводным проводником сетки и выводом катода (нити) сеточную батарею, можно заряжать сетку положительно или отрицательно относительно катода в зависимости от полярности включения батареи.

Когда положительный полюс (плюс) сеточной батареи присоединен к сетке, а отрицательный полюс (минус) - к катоду, сетка приобретает положительный заряд и тем больший, чем больше напряжение батареи. При обратном включении батареи сетка заряжается отрицательно. Если проводник сетки непосредственно соединить с катодом (с каким-либо выводом нити), то сетка приобретает такой же потенциал, какой имеет катод (более точно - какой имеет та точка цепи накала, к которой присоединяется сетка). Можно считать, что при этом сетка получает нулевой потенциал относительно катода, т. е. заряд сетки равен нулю. Находясь под нулевым напряжением, сетка почти не влияет на поток устремляющихся к аноду электронов (фиг. 8). Основная их масса проходит сквозь отверстия сетки (соотношение между размерами электронов и отверстиями сетки приблизительно таково, как между размерами человека и расстояниями между небесными телами), но некоторая часть электронов все же может попасть на сетку. Отсюда эти электроны по проводнику направятся к катоду, образуя сеточный ток .

Получив заряд того или иного знака (плюс или минус), сетка начинает активно вмешиваться в электронные процессы внутри лампы. Когда заряд отрицателен, то сетка стремится оттолкнуть от себя электроны , имеющие заряд такого же знака. А так как сетка расположена на пути прохождения электронов от катода к аноду, то отталкиванием сетка будет возвращать электроны обратно к катоду (фиг. 9). Если постепенно увеличивать отрицательный заряд сетки, то отталкивающее действие будет возрастать, вследствие чего при неизменном положительном

напряжении на аноде и неизменном напряжении накала нити анод будет получать все меньшее количество электронов. Иначе говоря, анодный ток будет уменьшаться. При некотором значении отрицательного заряда на сетке анодный ток может даже совершенно прекратиться - все электроны будут возвращены обратно к катоду, несмотря на то, что анод имеет положительный заряд. Сетка своим зарядом будет преодолевать действие заряда анода. А так как сетка находится ближе к катоду, чем анод, то ее влияние на поток электронов значительно сильнее. Достаточно изменить лишь немного напряжение на сетке, чтобы анодный ток изменился очень сильно. Такое же изменение анодного тока можно, конечно, получить и за счет изменения анодного напряжения, оставив напряжение на сетке неизменным. Однако, для получения точно такого же изменения тока в цепи анода потребуется значительное изменение анодного напряжения. В современных триодах изменение сеточного напряжения на один-два вольта вызывает такое же изменение анодного тока, как и изменение анодного напряжения на десятки и даже сотни вольт.

Положительно заряженная сетка не отталкивает, а притягивает к себе электроны , тем самым ускоряя их пробег (фиг. 10). Если постепенно увеличивать положительное напряжение на сетке, начиная от нуля, то можно наблюдать следующее. Сначала сетка будет как бы помогать аноду: вылетая из раскаленного катода, электроны испытают более сильное ускоряющее воздействие. Основная масса электронов, направляясь к аноду, по инерции пролетит сквозь отверстия в сетке и попадет в «засеточном пространстве» в поле усиленного напряжения анода. Эти электроны попадут на анод. Но некоторая часть электронов попадает непосредственно на сетку и образует сеточный ток. Затем при возрастании положительного заряда сетки сеточный ток будет увеличиваться, т. е. все большее количество электронов от общего электронного потока будет задерживаться сеткой. Но и анодный ток будет увеличиваться, так как скорости электронов возрастают. Наконец, вся эмиссия будет полностью использована, пространственный заряд вокруг катода уничтожится, и анодный ток перестанет возрастать. Наступит насыщение, эмиттированные электроны разделятся между анодом и сеткой, причем большая их часть придется на долю анода. Если еще больше увеличивать положительное напряжение на сетке, то это приведет к возрастанию сеточного тока, но исключительно за счет уменьшения Тока анода: сетка будет перехватывать все большее количество электронов из направляющегося к аноду потока их.

При очень больших положительных напряжениях на сетке (больших, чем напряжение на аноде) сеточный ток может даже превысить анодный ток, сетка может «перехватить» у анода все электроны. Анодный ток уменьшится до нуля, а сеточный возрастет до максимума, равного току насыщения лампы. Все эммитируемые нитью электроны попадают на сетку.

Характерные свойства трехэлектродных ламп наглядно отображаются графиком зависимости анодного тока от напряжения на сетке при неизменном положительном напряжении на аноде. Этот график называется характеристикой лампы (фиг. 11). При некотором отрицательном напряжении на сетке анодный ток совершенно прекращается; этот момент отмечен на графике слиянием нижнего конца характеристики с горизонтальной осью, вдоль которой отложены величины напряжений на сетке. В этот момент лампа «заперта»: все электроны возвращаются сеткой обратно на катод. Сетка преодолевает действие анода. Анодный ток равен нулю.

При уменьшении отрицательного заряда сетки (движение по горизонтальной оси вправо) лампа «отпирается»: появляется анодный ток, сначала слабый, а потом все более быстро возрастающий. График устремляется кверху, отдаляясь от горизонтальной оси. Момент, когда заряд сетки доведен до нуля, на графике отмечен пересечением характеристики с вертикальной осью, вдоль которой от нуля кверху отложены величины анодного тока. Начинаем постепенно увеличивать положительный заряд на сетке, вследствие чего анодный ток продолжает возрастать и, наконец, достигает максимального значения (ток насыщения), при котором характеристика загибается и далее становится почти горизонтальной. Вся эмиссия электронов полностью использована. Дальнейшее увеличение положительного заряда сетки приведет лишь к перераспределению электронного потока: все большее количество электронов будет задерживаться сеткой и, соответственно, меньшее их количество придется на долю анода.

Обычно радиолампы не работают при столь больших положительных напряжениях на сетке, и поэтому пунктирный участок характеристики анодного тока можно не рассматривать. Обратите внимание на характеристику, начинающуюся в точке пересечения осей. Это - характеристика сеточного тока. Отрицательно заряженная сетка не притягивает к себе электроны, и ток сетки равен нулю. При возрастании положительного напряжения на сетке ток в ее цепи, как показывает график, увеличивается.

До сих пор мы предусматривали постоянство напряжения на аноде. Но при увеличении этого напряжения анодный ток возрастает, а при понижении - уменьшается. Это приводит к необходимости снимать и, следовательно, вычерчивать не одну характеристику, а несколько - по одной для каждого выбранного значения анодного напряжения. Так получается семейство характеристик (фиг. 12), в котором характеристики, соответствующие более высоким анодным напряжениям, располагаются выше, левее. На большей части своей длины характеристики оказываются параллельными. Итак, есть две возможности влиять на величину анодного тока: изменением напряжения на сетке и изменением напряжения на аноде. Первая возможность требует меньших изменений, так как сетка находится ближе к катоду, чем анод, и поэтому изменения ее потенциала значительно сильнее влияют на электронный ток. Числовой коэффициент, указывающий, во сколько раз влияние сетки при совершенно одинаковых условиях больше влияния анода, называется коэффициентом усиления лампы . Предположим, что увеличение анодного напряжения на 20 вольт оказывает на анодный ток такое же влияние, как изменение сеточного напряжения всего лишь на 1 вольт. Это значит, что конструкция данной лампы такова, что в ней влияние сетки на анодный ток в 20 раз сильнее влияния анода, т. е. коэффициент усиления лампы равен 20. Зная величину коэффициента усиления, можно оценить усилительные свойства лампы, определить, во сколько раз более сильные колебания электрического тока возникнут в анодной цепи, если к сетке подвести относительно слабые электрические колебания. Только введение сетки в лампу позволило создать прибор, усиливающий электрические колебательные токи: диоды, рассмотренные нами ранее, усилительными свойствами не обладают. Существенное значение при оценке свойства лампы имеет крутизна (наклон) характеристики. Лампа с большой крутизной весьма чувствительна к изменениям напряжения на сетке: достаточно изменить сеточное напряжение в очень малой степени, чтобы анодный ток изменился в значительных пределах: Количественно крутизна оценивается величиной изменения анодного тока в миллиамперах при изменении сеточного напряжения на 1 вольт.

Катод в радиолампе представляет собой накаливаемую током тонкую металлическую проволоку (нить). Если накал такой нити осуществлять постоянным током, то и эмиссия электронов будет строго постоянна. Но почти все современные радиовещательные приемники рассчитаны на питание от переменного тока, а таким током накаливать нить нельзя, так как эмиссия электронов будет изменяться, «пульсировать». Из громкоговорителя будет слышен фон переменного тока - неприятное гудение, мешающее слушать программу.

Конечно, можно было бы переменный ток сначала с помощью диода выпрямить, превратить в постоянный, как это и делается для питания анодных цепей - об этом мы уже говорили. Но найден гораздо более простой и более эффективный способ, позволяющий для нагрева катода применять непосредственно переменный ток. В каналах тонкого и длинного фарфорового цилиндрика помещена вольфрамовая нить - нагреватель . Нить накаливается переменным током и ее тепло передается фарфоровому цилиндрику и надетому поверх него никелевому «чехлу» (фиг. 13), на внешней поверхности которого нанесен тонкий слой окислов щелочного металла (стронция, бария, цезия или др.). Эти окислы отличаются большой эмиссионной способностью даже при сравнительно низких температурах (порядка 600 градусов). Именно этот слой окислов и является источником электронов, т. е. собственно катодом. Вывод ка-

тода из колбы присоединен к никелевому «чехлу», причем никакого электрического соединения между катодом и накаливаемой нитью нет. Все нагреваемое устройство обладает сравнительно большой массой, которая не успевает терять тепло при быстрых изменениях переменного тока. Благодаря этому эмиссия строго постоянна и никакого фона в приемнике не прослушивается. Но тепловая инерция катода ламп в приемнике является причиной того, что включенный приемник начинает работать не сразу, а лишь, когда катоды нагреются.

Сетки в современных лампах чаще всего имеют вид проволочных спиралей: «густая сетка» - витки спиралей расположены ближе друг к другу, «редкая сетка» - расстояния между витками увеличены. Чем гуще сетка, тем при прочих равных условиях больше ее влияние на поток электронов, тем больше коэффициент усиления лампы.

В 1913 г. Лэнгмюйр увеличил количество электродов в лампе до четырех, предложив ввести в пространство между катодом и сеткой еще одну сетку (фиг. 14). Так был создан первый тетрод - четырехэлектродная лампа, имеющая две сетки, анод и катод. Ту сетку, которую Лэнгмюйр поместил ближе к катоду, называют катодной , а «старую» сетку назвали управляющей , поскольку катодная сетка выполняет лишь вспомогательную роль. Своим небольшим положительным напряжением, получаемым от части анодной батареи, катодная сетка ускоряет поток электронов к аноду (отсюда и другое название сетке - ускоряющая ), «рассасывая» электронное облачко вокруг катода. Это позволило применить лампу даже при сравнительно малых напряжениях на аноде. Одно время нашей промышленностью выпускалась двухсеточная лампа типа МДС (или СТ-6), в паспорте которой значилось: рабочее анодное напряжение 8-20 в. Наиболее распространенные в то время лампы типа Микро (ПТ-2) обычно работали при гораздо более высоких напряжениях - порядка 100 в . Однако, лампы с катодной сеткой не получили распространения, так как вместо них вскоре были предложены еще более совершенные лампы. Кроме того, «двухсетки» имели существенный недостаток: положительно заряженная катодная сетка отнимала очень большое количество электронов от общего потока, что равносильно бесполезной их затрате. Хотя и прельщала возможность работать с малыми анодными напряжениями, но этому противопоставлялась большая трата тока, - ощутительной выгоды не получалось. Но введение второй сетки послужило сигналом для конструкторов радиоламп: началась «эпоха» многоэлектродных ламп.

В 1916 г. Шоттки, занимаясь опытами с триодами и преследуя задачу повышения их коэффициента усиления, нашел необходимым ввести вторую сетку в пространство между анодом и имеющейся (управляющей) сеткой (фиг. 15). Подавая на эту - анодную - сетку положительное напряжение, по величине примерно равное половине анодного, Шоттки в известной мере достигал требуемого. Но прошло десятилетие, прежде чем эти работы получили широкое признание и применение. В 1926 г. Хэлл конструктивно видоизменил анодную сетку, придав ей вид электростатического экрана , которым он отделил анод от всех других электродов. Для чего же это понадобилось? В триоде анод и сетка образуют как бы небольшой конденсатор, емкости которого, однако, достаточно для того, чтобы цепь анода оказалась электростатически связанной с цепью сетки.

Обычно экранирующая сетка имеет такую конструкцию, что только лишь та ее часть, которая обращена к аноду, выполнена в виде проволочной, спиралью навитой сетки. Остальная же часть этого электрода в целях лучшего экранирования сделана сплошной, без отверстий. Чтобы заметно не ослаблять анодного тока, на экранирующую сетку подается (от анодной батареи) положительное напряжение, по величине равное приблизительно половине анодного. Лампы с экранирующими сетками выгодно отличаются от триодов большим коэффициентом усиления: у триодов он обычно не превышает 20 - 100, а у экранированных ламп измеряется сотнями, поэтому вместо 2 триодов можно применять 1 экранированную лампу.

В экранированных лампах пришлось столкнуться с одним неприятным явлением. Дело в том, что электроны, ударяясь о поверхность анода, могут выбивать из него так называемые вторичные электроны. Это по своей природе такие же электроны, только освобожденные из металлической поверхности не нагреванием (как из катода), а электронной бомбардировкой. Один бомбардирующий электрон может выбить несколько вторичных электронов. Получается так, что сам анод превращается в источник электронов (фиг. 16). Вблизи

от анода находится положительно заряженная экранирующая сетка, и вторичные электроны, вылетая с малыми скоростями, могут притянуться к этой сетке, если в какой-либо момент напряжение на сетке окажется больше напряжения на аноде. Именно это имеет место в том случае, когда экранированная лампа используется в оконечном каскаде усиления низкой частоты. Устремляясь к экранирующей сетке, вторичные электроны устанавливают в лампе ток обратного направления, и работа лампы совершенно нарушается. Это неприятное явление именуется динатроныым эффектом . Но есть средство борьбы с этим явлением. В 1929 г. появились первые лампы с пятью электродами, из которых два - анод и катод, а остальные три - сетки. По числу электродов эти лампы получили название пентодов . Третья сетка помещена в пространстве между экранирующей сеткой и анодом, т. е. находится ближе всего к аноду. Она соединяется непосредственно с катодом и, следовательно, имеет такой же потенциал, как и катод, т. е. отрицательный по отношению к аноду. Благодаря этому сетка возвращает вторичные электроны обратно на анод и тем предотвращает динатронный эффект. Отсюда и название этой сетки - защитная или противодинатронная. По многим своим качествам пентоды выше триодов. Они применяются для усиления напряжения высокой и низкой частот и прекрасно работают в оконечных каскадах.

Увеличение числа сеток в лампе не приостановилось на пентоде. Ряд «диод» - «триод» - «тетрод» - «пентод» пополнился еще одним представителем ламповой семьи - гексодом . Это - лампа с шестью электродами, из которых четыре - сетки (фиг. 17). Она применяется в каскадах высокочастотного усиления и частотного преобразования в супергетеродинных приемниках. Обычно сила приходящих к антенне радиосигналов, особенно на коротких волнах, изменяется в весьма значительных пределах. Сигналы то возрастают, то быстро замирают (явление фединга - замирания). Гексод же устроен так, что автоматически быстро меняет коэффициент усиления: слабые сигналы он усиливает в большей степени, а сильные - в меньшей. В результате слышимость выравнивается и поддерживается приблизительно на одном уровне. Автоматизм действия достигается изменением потенциалов на сетках в такт с изменением силы принимаемых сигналов. Такой гексод получил название фединг-гексода . В обычных приемниках такая регулировка усиления также имеет место, но осуществляется посредством пентодов с вытянутой нижней частью характеристики, где крутизна имеет плавно меняющееся значение.

Такие пентоды называются «варимю ».

Вторая категория гексодов - смесительные гексоды . В супергетеродинных приемниках принимаемый сигнал сначала понижается по частоте,а затем уже усиливается. Это понижение или преобразование частоты может быть осуществлено и посредством триодов, как это и делалось ранее. Но смесительные гексоды выполняют эту функцию более рационально. В нашей практике радиовещательного приема для выполнения этой функции применяются и другие лампы, с еще большим количеством сеток. Это -пентагриды (пятисеточные лампы) или, как их иначе называют, гептоды (семиэлектродные лампы). Лампы типа 6А8 и 6Л7 относятся к этой категории ламп. Для преобразования частоты в супергетеродинных приемниках применяется

также и шестисеточная лампа (восемь электродов) - октод . В отличие от пентагрида октод представляет собой как бы комбинацию триода с пентодом (тогда как пентагрид - триода с тетродом). Появившись позже пентагрида, октод по своим качествам выше своего предшественника.

Но не только в «сеточном направлении» развивались лампы за последние годы. О помещении двух «электрических вентилей» в общую колбу мы уже говорили ранее, касаясь устройства двойного диода типа 6Х6. Теперь широко применяются и такие комбинации, как диод-триод, двойные триоды, двойные диод-триоды (ДДТ), двойные диод-пентоды (ДДП), триод-гексоды и т. п. По большей части такие комбинированные лампы имеют общий катод. Работа одной лампы уподобляется работе нескольких более простых. Например, лампа 6Н7 является двойным триодом - два обособленных триода в общей колбе, своеобразные близнецы. Эта лампа с успехом заменяет собой две триодные лампы и может быть использована либо в двухкаскадном усилителе на сопротивлениях, либо в пушпульной схеме, для чего она собственно и предназначена. После детектирования, производимого в супергетеродинных приемниках, обычно посредством диодов, необходимо осуществлять усиление. Для этой цели теперь в общей колбе с детектирующим диодом помещают усилительный триод; так появились диод-триоды. В супергетеродинных приемниках для автоматической регулировки громкости (АРГ) необходимо получать постоянный ток, величина которого менялась бы в такт с силой принимаемых сигналов. Для этих целей можно было бы применить отдельный диод, но и его оказалось возможным поместить в колбу диод-триода. Так в одной лампе разместились сразу три лампы: два диода и триод, и лампа получила название двойной диод-триод. Таким же путем возникли диод-пентод, триод-гексод и т. д.

Несколько особняком от других ламп стоит лампа типа 6Л6. Это очень интересная лампа : одного электрода в ней нет, но он как бы подразумевается. С одной стороны, эта лампа - очевидный тетрод, так как в ней всего лишь четыре электрода: катод, анод и две сетки, из которых одна - управляющая, а другая - экранирующая. Но, с другой стороны, 6Л6 - пентод, ибо обладает всеми его свойствами и весьма положительными особенностями. Роль защитной сетки, обязательной для пентода, в лампе 6Л6 выполняет... пустое пространство, искусственно созданная зона, находящаяся между анодом и экранирующей сеткой (фиг. 18).

В этой зоне создан нулевой потенциал, именно такой же, какой имела бы защитная сетка, если бы только она существовала в этой лампе. Чтобы создать такую зону, пришлось произвести конструктивные изменения. В частности, анод отнесен дальше от защитной сетки. «Мнимый электрод» действует на вторичные электроны так же, как и защитная сетка, так же предотвращает возникновение динатронного эффекта. Электроны в этой лампе идут от катода к аноду как бы отдельными лучами, проходя в пространствах между витками сеток; отсюда и название лампы - лучевая . Витки сеток так расположены, что экранирующая сетка находится в «электронной тени», создаваемой витками управляющей сетки, ближайшей к катоду. Благодаря этому экранирующая сетка притягивает к себе сравнительно мало электронов, и ток эмиссии почти полностью расходуется на анодную цепь. С боковых узких сторон катода в лампе установлены металлические щитки, соединенные с катодом, благодаря чему электроны попадают на анод только с определенных сторон, где создано равномерное электрическое поле. Никаких «электронных завихрений» не получается, что сказывается в отсутствии искажений в работе лампы. Лучевые лампы обладают высоким коэффициентом полезного действия и способны отдать весьма большую мощность на выходе. Достаточно сказать, что две такие лампы в пушпульной схеме при некоторых условиях могут отдать до 60 вт полезной мощности.

Лампы совершенствуются не только электрически, но также и чисто конструктивно. Первые радиолампы по виду мало чем отличались от электрических ламп и светили почти так же. Многим еще памятны первые радиолампы, разработанные нашими соотечественниками проф. А. А. Чернышевым и проф. М. А. Бонч-Бруевичем. За последние годы внешний облик радиолампы сильно изменился. Большой вклад в дело создания новых типов ламп и усовершенствования ранее выпущенных внесла наша отечественная научная мысль. Достаточно указать на работы коллектива сотрудников лауреата Сталинской премии орденоносца проф. С. А. Векшинского. Сначала радиолампа, к великому удивлению начинающих радиолюбителей, перестала светить и была обращена только к выполнению своих прямых обязанностей. Затем неоднократно изменялась конфигурация баллона. Появились малогабаритные лампы размером немногим более половины мизинца. Для радиотехнической аппаратуры лабораторного типа были вылущены лампы, величиной и формой похожие на желуди. В настоящее время широко распространены металлические лампы, которые даже как-то и неудобно называть лампами, так как они совсем не светятся. Замена стеклянного баллона металлическим (стальным) - не простая замена: металлические лампы выгодно отличаются от стеклянных малыми габаритами (лампа 6X6, например, величиной всего лишь в грецкий орех), прочностью, хорошей электрической экранировкой (не надо надевать громоздких экранов, как на стеклянные лампы), меньшими междуэлектродными емкостями и пр. Правда, есть и недостатки у металлических ламп, из которых весьма существенный - сильный нагрев металлической колбы, особенно у кенотронов.

Сейчас многие типы ламп выпускаются в двух вариантах: в металлическом и стеклянном оформлении. Применение «ключа» на ножке ламп облегчает процедуру вставления лампы в панельку. Если раньше возможно было неосторожное прикосновение к гнездам панельки не теми штырьками, в результате чего лампа, на мгновение эффектно вспыхнув, навсегда выбывала из строя из-за перегорания нити, то теперь нельзя вставить лампу, пока штырьки не заняли правильного положения. Ошибки, влекущие к гибели лампы, исключены.

Ламповая техника непрерывно совершенствуется. Ее уровень определяет прогресс радиотехники.

Существенным преимуществом ламповых усилителей является: отличные звуковые эффекты, детальный, красивый, и очень естественный звук. Ламповый усилитель звучит нежно, сладко, и раскрывается перед вами как очаровательная роза, такой усилитель подходит для воспроизведения идиллической простоты блюза, импровизаций джаза и элегантности классической музыки. Такой усилитель является отличным выбором для людей, которые хотят услышать оригинальный настоящий звук.

Ламповый усилитель унесет тебя в совершенно другой музыкальный мир, приводя ваши чувства в истинное удовольствие, вернет вас в истинный звук.

Хотите наслаждаться более естественным звуком? Вас достал звук транзисторного, или на микросхемах усилителя? Вы хотите купить ламповый усилитель, тогда не упустите этот шанс, читайте статью!

История радиолампы

Еще в 1904 году, британский ученый Джон Амброз Флеминг впервые показал свое устройство для преобразования переменного сигнала тока в постоянный ток. Этот диод по существу состоял из ламп накаливания с дополнительным электродом внутри. Когда нить нагревается до белого накала, электроны отталкиваются от его поверхности в вакууме внутри лампы. А поскольку дополнительный электрод холодный и нить горячая, этот ток может течь только из нити к электроду, а не в другую сторону. Таким образом, сигналы переменного тока могут быть преобразованы в DC. Диод Флеминга был впервые использован в качестве чувствительного детектора слабых сигналов, нового телеграфа. Позже (и по сей день), диод вакуумная радиолампа была использована для преобразовывания тока переменного в постоянный ток в источниках питания для электронного оборудования, например, ламповый усилитель.

Многие другие изобретатели пытались улучшить диод Флеминга, но безуспешно. Единственный, кто преуспел был изобретатель Ли де Форест. В 1907 году он запатентовал радиолампу с тем же содержанием, диода Флеминга, но для дополнительного электрода. Это «сетка» был согнута проводом между пластиной и нитью. Форест обнаружил, что, если он применяет сигнал от беспроводной телеграфной антенны к сетке вместо нити, он мог бы получить гораздо более чувствительный детектор сигнала. В самом деле, сетка меняется («модулирует») ток, протекающий от нити к пластине. Это устройство, названо «ламповый усилитель» было первым успешным электронным усилителем.

Между 1907 и 1960, было разработано много различных семейств радиоламп и ламповых усилителей. За некоторыми исключениями, большинство типов ламп, используемых сегодня, были разработаны в 1950-х или 1960-х годов. Одним из очевидных исключений является триод 300B, который был впервые введен Western Electric в 1935 году. SV300B у версии «Светлана», а также многие другие бренды, по-прежнему очень популярны среди меломанов и аудиофилов по всему миру. Различные лампы были разработаны для радио, телевидения, усилителей мощности, радаров, компьютеров и специализированных компьютеров. Подавляющее большинство этих ламп были заменены на полупроводники, оставив лишь несколько типов радиоламп в основное производство и использование. Прежде чем мы обсудим эти устройства, давайте поговорим о структуре современных ламп.

Внутри радиолампы

Каждая радиолампа представляет в основном стеклянный сосуд, (хотя бывают стальные и даже керамические)внутри нее закреплены электроды . Причем, воздух в таком сосуде очень сильно разряжен. Между прочим, сильное разряжение атмосферы внутри данного сосуда, непременное условие для работы лампы. В
любой радиолампе есть также катод — некий отрицательный электрод, который выступает в качестве источника электронов в радиолампе, и положительный анод электрод. Кстати, катодом может быть также вольфрамовая(тонкая) проволока аналогично нити накала электрической лампочки, или цилиндр из металла, разогреваемый нитью накала, а анодом пластина из металла или коробка, которая имеет цилиндрическую форму. Вольфрамовая нитка, которая выполняет роль катода ее называют просто — нитью накала.

Полезно знать . На всех схемах баллон радиолампы обозначаются в виде некой окружности, катод - дугой, вписанной в данную окружность, а вот анод - небольшой жирной чертой, размещенной над катодом, а их выводы - мелкие линия, которые выходят за пределы этой окружности. Лампы, содержащие эти 2 электрода — анод и катод, называются диодами. Кстати, у большинства ламп между катодом и анодом есть некая спираль из очень тонкой проволоки, которая называется сеткой. Она окружает катод и не соприкасается, расположены сетки на различных расстояниях от него. Подобные лампы называются триоды. Число сеток в лампе может быть от 1 до 5.

По числу таких электродов различают радиолампы трёхэлектродные, 4-х электродные, пятиэлектродные и т. п. Подобные радиолампы называют триоды (с 1ой сеткой), тетроды (с 2мя сетками), пентоды (с 3мя сетками). На всех схемах данные сетки обозначают жирной пунктирной линией, расположенной между анодом и катодом.

Тетродами, триодами, и пентодами называют универсальными радиолампами. Их используют для увеличения постоянного и переменного и тока и напряжения, в качестве детектора и в то же время с усилителем, и многих иных целей.

Принцип действия радиолампы

Работа радиолампы создана на потоках электронов между анодом и катодом (движения электронов). «Поставщик» данных электронов внутри радиолампы будет являться катод, причем уже нагретый до мощной температуры от 800 до 2 000° С. Между прочим, электроны оставляют катод, делая вокруг него некое электронное «облако». Данное явление излучения или испускания катодом этих электронов именуют термоэлектронной эмиссией. Чем больше раскален данный катод, тем все больше электронов он излучает, тем «плотнее» это электронное «облако».

Тем не менее, для того чтобы электроны смогли вырываться из подобного катода, необходимо не только сильно нагреть его, но и высвободить охватывающее пространство от данного воздуха. Если подобного не произвести, электроны, которые вылетают, будут увязать в этих молекулах воздуха. Аудиофилы говорят, «лампа утратила эмиссию», это означает, что с поверхности данного катода все незанятые электроны по какой-нибудь причине больше не могут вылетать. Радиолампа с утраченной эмиссией работать больше не будет. Впрочем, если катод соединить с минусом на источнике питания, а на анод подать +, внутри диода появится ток (анод примется притягивать к себе из облака электроны). Хотя если на анод подавать минус, а плюс на катод, то ток в цепи прервется. Это означает, в 2х электродной лампе диода ток сможет идти лишь в одну сторону, то есть диоды обладают только односторонней проводимостью данного тока.
Впрочем, работа триода, как и любой радиолампы, создана на существовании подобного потока электронов между анодом и катодом. Сетка - 3-й электрод - имеет вид спирали проволочной. Она находится возле катода, чем к аноду. Если же на сетку подавать незначительное отрицательное напряжение, тогда она будет сразу отталкивать часть электронов, которые несутся от катода к аноду, причем, сила анодного тока сразу уменьшится. При высоком отрицательном напряжении сетка станет барьером для электронов. Они будут задерживаться в пространстве между сеткой и катодом. При положительных напряжениях на сетке она будет увеличивать анодный ток. Следовательно, если подавать разнообразное напряжение на сетку, можно распоряжаться силой анодного тока радиолампы.

Срок службы радиолампы

Срок службы лампы определяется временем жизни ее эмиссии катода. Жизнь катода зависит от температуры катода, степень вакуума в радиолампе, и чистоты материалов в катоде.

Срок службы радиолампы также зависит от температуры, это означает, что она зависит от нити или рабочего напряжения нагревателя. Управляйте нагревателем/нити, чтобы снизить слишком большой нагрев, и лампа проживет дольше. Срок службы радиолампы может быть сокращен (особенно в торированных нитях, которые зависят от пополнения тория путем диффузии изнутри проволоки накаливания). Несколько исследователей наблюдали, что время жизни оксида-катода может быть значительно увеличен если нагревать радиолампу на 20% ниже номинального напряжения . Как правило, это имеет очень слабое влияние на электронную эмиссии катода, а может быть, хотя стоит экспериментировать, конечно если пользователь желает увеличить время жизни слабой лампы.

Но низкое напряжение не всегда рекомендуется для радиоламп, потому как она не сможет дать номинальную выходную мощность. Я рекомендую использовать номинальный нагрев или напряжение накала, но эксперименты не рекомендую, если вы не являетесь опытным специалистом .

Оксидные катоды как правило, дают более короткие сроки службы радиолампы. Чистота материалов является большой проблемой в создании долгоживущих оксидов катода — некоторые примеси, такие как никелевая трубка, вызывает в катоде потерю преждевременной эмиссии и «состаривание». Дешевые радиолампы низкого качества часто изнашивается быстрее, чем более высокого качества лампы того же типа, из-за нечистых катодов.

Радиолампы со слабым сигналом почти всегда используют оксидные катоды. Высококачественные лампы этого типа, если они работают в правильном напряжении нагревателя, то срок службы может продлиться 100000 и более часов.

Мировой рекорд в жизни радиолампы

Такая радиолампа была на вооружении в передатчике радиостанции Лос-Анджелеса в течение 10 лет, и проработала в общей сложности более 80 000 часов. Когда, наконец ее не списали из эксплуатации, но радиолампа по-прежнему функционирует, причем нормально. Станция сохраняет лампу как запасную. Для сравнения, типичный оксид-катоде в стекле мощной лампы, например, EL34, будет работать около 1500-2000 часов; и радиолампа с нитью с покрытая из оксида, такого как SV 300B, будет работать около 4000-10 000 часов. Срок службы радиолампы зависит от всех перечисленных выше факторов.

Анод

Анод, является электродом, который проявляется на выходном сигнале. Причем, анод умеет принимать электронный поток, может стать горячим. Особенно в силовых радиолампах. Так что специально разработали для охлаждения такой лампы радиатор, которая излучает тепло через стеклянную колбу (если это стеклянная), жидкостное охлаждение (в больших металлокерамических лампах). Некоторые радиолампы используют пластины из графита, так как она выдерживает высокие температуры и потому излучает очень мало вторичных электронов, которые могут перегреваться на сетке лампы и вызывают сбой.

Сетка

Почти все стеклянные аудиофильские лампы, управляются сеткой, которая является частью металлической проволоки, намотанной на двух мягких металлах. В некоторых радиолампах есть покрытие, как правило, позолоченное или золотое, и есть два вывода, сделанные из мягкой меди. Сетки в больших радиолампах (электростанций) должны выдерживать много тепла, поэтому они часто делаются их из вольфрама или молибденовой проволоки в форме корзины. Некоторые крупные в питании используют корзино-образные сетки из графита.

Наиболее широко используется небольшой триод, 12AX7, который является двойным триодом, который стал стандартом в простых ламповых усилителях или в гитарных усилителях. Другие небольшие стеклянные триоды, используются в аудио оборудования такие лампы 6Н1П, 6DJ8/6922, 12AT7, 12AU7, 6CG7, 12BH7, 6SN7 и 6SL7.

Много и стеклянных электрических триодов, которых в настоящее время на рынке, большинство причем, некоторые направлены на любительскую радиосвязь или высокое качество аудио использования: например, « » ламповый усилитель. Типичными примерами являются Светлана , SV811/572 серии, и лампа 572B. Кстати, лампа имеет очень низкий уровень искажений и используется в очень дорогих ламповых усилителях, также ее используют в радиопередатчиках и больших мощных усилителях звуковой частоты.

Большие металлокерамические электрические триоды часто используются в радиопередатчиках и генерируют радио энергию для использования в промышленных целях . Специализированные триоды многих видов сделаны для особых нужд, таких как радары.

Тетрод

Добавление еще одной сетки триода, между управляющей сеткой и пластиной, превращает его в Тетрод. Это «окно» сетка помогает экрану изолировать, управляющую сетку от пластины. На экране появляется эффект электронного ускорения, увеличивая резко усиление. Экранная сетка в а радиолампе несет в себе определенный ток, который заставляет её нагреваться. По этой причине, экранные сетки обычно покрывают графитом, чтобы уменьшить вторичную эмиссию, который помогает сохранять управляющую сетку холодной.

Многие крупные радиостанции и телеканалы используют гигантские металлокерамические тетроды , которые способны с высокой эффективностью использоваться в качестве ВЧ усилителей мощности. Силовые тетроды также иногда используются в любительском радио и промышленном применении.

Большие керамические тетроды часто называют «лучевые тетроды», потому что их электронно-лучевые формы выбросов дискообразные.

Пентод

Добавив третью сетку к тетроду, мы получаем Пентод. Третья сетка называется супрессор-сетка и вставляется между пластиной и экранном сетки. Она имеет очень мало витков, так как её единственная работа заключается в сборе бродячих электроны от вторичной эмиссии, которые отражаются от пластины, и тем самым устраняют » излом Тетрода». Это обычно работает при том же напряжении в качестве катода. Тетроды и Пентоды, как правило, имеют более высокий уровень искажений, чем триоды, если специальные не используются .

EL34, EL84, SV83 и EF86 это истинные Пентоды. EL34 широко используется в гитарных и высокого класса ламповых усилителях на выходную мощность. Кстати, EL84 ставят в более дешевых гитарных усилителях. SV83 используют в высоком классе в ламповых усилителях и гитарных усилителях, в то время как EF86 используется в качестве малошумящего предусилителя в гитарных усилителях и профессиональном звуковом оборудовании. Один из немногих крупных и мощных пентодов является 5CX1500B, часто используют в радиопередатчиках.

Есть также радиолампы с более тремя сетками. Пентагрид , которая была с пятью сетками, широко используются в качестве преобразователя частоты переднего плана в радиоприемниках. Но такие радиолампы больше не находятся в производстве, будучи полностью заменены полупроводниками.

Лучевой Тетрод

Это особый вид пучка тетрода, с парой «пучков пластин», чтобы ограничить электронный пучек в узкую ленту на каждую сторону катода. В отличие от керамических тетродов, сетки находятся на критическом расстоянии от катода, производя эффект «виртуального катода». Все это приводит к повышению эффективности и меньшим искажениями, чем обычный тетрод или пентод. Первые популярные лучевые тетроды были RCA 6L6, в 1936 году SV6L6GC и SV6550C; также являются самыми популярными в гитарных усилителях, в то время как последний является наиболее распространенной радиолампой питания в современном высококачественном ламповом усилителе звуковой частоты для аудиофилов.

Нагреватель внутри катода

С покрытием из оксида, катод не может нагреть себя, но он должен быть горячим, чтобы испускать электроны. Причем, нагреватель должен быть покрыт электрической изоляцией, который не сгорает при высоких температурах, так что он покрыт порошкообразной окисью алюминия. Это иногда может причиной отказа в таких радиолампах; покрытие стирается или появляются трещины, или нагреватель может коснуться катода. Это может помешать нормальной работе лампы . Высококачественные радиолампы имеют очень прочный и надежный нагреватель из покрытия.

Геттерный

Нам нужно, чтобы был хороший, твердый вакуум внутри лампы, или он не будет работать должным образом. Мы хотим, что вакуум оставался, так долго, насколько это возможно. Иногда, очень небольшие утечки могут появляться в лампе (часто вокруг электрических соединений в нижней части).

Геттерный в большинстве стеклянных радиоламп является маленькой чашкой или держателем, содержащий немного металла, который реагирует с кислородом и поглощает его сильно. (В большинстве современных стеклянных радиоламп, газопоглотитель из металл бария, который окисляет ОЧЕНЬ легко.) Когда лампу откачивают и опечатывают, последний шаг в обработке является «огонь» газопоглотителя, который производит «геттерную вспышку «внутри лампы оболочки. Это серебристый цвет, который вы видите на внутренней стеклянной трубки. Это гарантия того, что радиолампа имеет хороший вакуум. Если такое не удается сделать, то он станет белым (потому что это превращается в оксид бария).

Существуют слухи, что темные пятна указывают на то что лампа использованная. Это не соответствует действительности. Иногда, газопоглотительная вспышка не идеально однородна, и обесцвеченные или ясные пятна могут проявится на лампе . Единственный надежный способ определить здоровая радиолампа или нет, проверить его ЭЛЕКТРИЧЕСКИ.

Также они используют металл, обычно покрытый цирконием или титаном, который был очищен, чтобы окислить. Светлана 812A и SV811 использует такие методы.

Наиболее мощные стеклянные трубки имеют графитовые пластины. Графит термостойкий (на самом деле, он может работать долго в течение длительного времени без сбоев). Графит не склонен к вторичной эмиссии, как отмечалось выше. И, горячая пластина графита будет вступать в реакцию и поглощать, любой свободный кислород в лампе. Серия Светлана SV572 и 572B использует графитовые пластины, покрытые очищены титаном, комбинации, которая дает превосходное действие газопоглощения. Графитовая пластина гораздо дороже в производстве, чем металлическая пластина того же размера , поэтому как максимальной допустимой мощности не требуется. Большие керамические используют цирконий. Поскольку вы не можете видеть «вспышку» с таких ламп, состояние вакуума лампы должна быть определена с помощью электрических устройств.

Сборка радиолампы

Обычная стеклянная аудио радиолампа выполнена на конвейере людьми владеющими пинцетом и малой электрической сваркой. Они собирают катод, анод, сетки и другие детали внутри набора слюды или керамических прокладок, в обжимной узел вместе. Электрические соединения затем приваривают точечной сваркой к базовой проводке радиолампы. Эта работа должна быть сделана в довольно чистых условиях, хотя и не столь крайних, как «стерильная комната», которая используется, чтобы сделать полупроводники. Здесь носят халаты и шапки, и каждая рабочая станция оснащена постоянным источником фильтрованной воздушного потока, чтобы не попала пыль на части радиолампы.

После того, как закончена сборка комплектующих, потом прикрепляют к основанию стекло и запаивают к базовому диску. Сборка радиоламп продолжается, в выхлопном трубопроводе, который проходит в многоступенчатом ​​высоко-мощном вакуумном насосе.

Сначала идет вакуумная откачка; когда насос работает, индукционная катушка ВЧ находится над узлом лампы и все металлические части подогреваются. Это помогает удалить все газы, а также активизировать катодное покрытие.

Через 30 минут или более (в зависимости от типа радиолампы и вакуума), труба автоматически поднимается вверх и небольшое пламя герметизирует его.

Вращается поднос, когда в лампу вводится серия оперативных напряжений, более высоких, чем номинальное напряжение нагревателя.

Наконец остальная часть радиолампы будет удалена, базовая проводка прикреплена к внешней базе (если это восьмеричный базовый тип) с помощью специального термостойкого цемента, и готовый радиолампа готова к старению и выгорания в стойке. Если радиолампа отвечает ряду оперативных спецификации в специальном тестере, то она отмечается и отправляется.

Металлокерамические

Если вы хотите контролировать много энергии, то хрупкая стеклянная радиолампа сложнее в использовании. Так, действительно большие радиолампы сегодня полностью выполнены из керамического изолятора и металлических электродов.

В этих больших радиолампах, пластина также является частью внешней оболочки радиолампы. Такая пластина проводит ток по лампе и умеет рассеивать много тепла, это сделано как радиатор, через который будет продуваться охлаждающий воздух, или она имеет отверстия, через которые вода или другая жидкость закачивается для охлаждения радиолампы.

Лампы с воздушным охлаждением часто используются в радиопередатчиках, в то время как радиолампы с жидкостным охлаждением используются для создания радио энергии для отопления в промышленност и. Такие радиолампы используются в качестве «индукционных нагревателей «, чтобы сделать другие виды продуктов — даже другие радиолампы.

Керамические лампы изготавливаются на другом оборудовании, чем стеклянные радиолампы, хотя процессы схожи. Мягкий металл, а не стекло, и его, как правило, обжимают на гидравлическом прессе. Керамические части, как правило, в форме кольца и металлические пломбы припаяны к их краям ; они присоединены и свариваются с металлическими деталями с помощью сварки или пайки.

ПОЧЕМУ радиолампы еще используются?

Многие большие радио-станции продолжают использовать большие радиолампы электростанций, особенно для уровней мощности выше 10000 Вт и для частот выше 50 МГц. Мощные UHF телеканалы и крупные FM станций исключительно на питание от радиоламп. Причина: стоимость и эффективность! Но на низких частотах транзисторы более эффективные и менее дорогие, чем радиолампы.

Создание большого твердотельного передатчика потребует сотни или тысячи силовых транзисторов параллельно в группы по 4 или 5. Кроме того, они требуют больших теплоотводов Радиолампа, не требует сумматора, а может быть охлаждена воздухом или водой, что делает его лучше, чем твердотельный.

Это уравнение становится еще более выраженным в диапазоне сверхвысоких частот. Почти все коммерческие спутники связи применяют лампы для своих «нисходящих» усилителей мощности. В «восходящей линии связи» наземные станции также используют радиолампы. А для высокой выходной мощности, радиолампы кажется царствовует безраздельно. Экзотические транзисторы еще используются только для усиления слабого сигнала и выходной мощностью менее 40 Вт, даже после значительных достижений в области технологии. Низкая стоимость электроэнергии, вырабатываемой радиолампы сохраняет их экономически жизнеспособным, в уровне развития науки.

Усилители ламповые гитарные

В общем, только очень дешевые гитарные усилители (и несколько специализированных профессиональных моделей) являются преимущественно твердотельными. Мы подсчитали, что не менее 80% рынка для высокого класса гитарных усилителей построены на моделях полностью ламповых или гибридных. Особой популярностью у серьезных профессиональных музыкантов современные версии классических Fender, Маршалл и модели Vox с 1950-ых и 1960-ых. Этот бизнес, как полагают, составляют не менее $ 100 миллионов по всему миру по состоянию на 1997 год.

Почему ламповые усилители? Это звук, который хотят музыканты. Усилитель и динамик становятся частью музыкального . Своеобразные искажения и затухания динамики характеристики луча тетрода или пентодного усилителя, с выходным трансформатором, чтобы соответствовать нагрузке громкоговорителя, является уникальным и трудно имитировать его твердотельными устройствами. И методы по внедрению каменных усилителей, по-видимому, не увенчались успехом; профессиональные гитаристы снова возвращаются к ламповым усилителям .

Даже самые молодые рок-музыканты, кажется, очень консервативны и фактически они используют ламповое оборудование, чтобы сделать свою музыку. И их предпочтения указали им на проверенную годами радиолампу.

Профессиональное аудио

Студии записи немного под влиянием распространенности радиолампы гитарных усилителей в руках музыкантов. Кроме того, классические конденсаторные микрофоны, микрофоны, предусилители, ограничители, эквалайзеры и другие устройства стали ценными предметами коллекционирования, так как различные инженеры записи обнаружили значение радиолампы в оборудовании и в получении специальных звуковых эффектов. Результатом стал огромный рост в продажах и рекламе радиолампового оборудования и аудио процессоров для использования записи.

Высокое качество звука для аудиофилов

На своей нижней точке в начале 1970-х, продажи радиоламп для HIGH-END ламповых усилителей были едва
уловимым против основной массы бума потребительской электроники. Но даже несмотря на закрытие американских и европейских заводов радиоламп после, и начиная с 1985 года были бумом продаж «высокого класса» аудиокомпонентов. И вместе с ними начался бум продаж лампового звукового оборудования для домашнего использования – ламповый усилитель. Использование радиоламп был очень спорным в инженерных кругах, но спрос на радиолампы High End оборудования продолжают расти.

Использование радиолампы

Когда я должен заменить лампу?

Вы должны заменить только радиолампы в ламповом усилителе, тогда когда вы начинаете замечать изменения в качестве звука. Обычно звук станет «тупой» и потом будет казаться, что притупляется еще больше. Кроме того, коэффициент усиления усилителя уменьшится заметно. Обычно этого предупреждения достаточно, для замены
ламп
. Если пользователь имеет очень жесткие требования к радиолампе, то лучший способ проверить лампу с надлежащим тестером. Они все еще доступны на рынке подержанных; хотя новые не были изготовлены в течение многих лет. Один тестер в настоящее время производит сегодня, Maxi-Matche. Тестер подходит для тестирования 6L6, EL34, 6550 и типов. Если вы не можете найти тестер для радиолампы, поговорите с сотрудниками технической службы.

Голубое свечение — чем это вызвано?

Стеклянные радиолампы имеют видимый блеск внутри них. Большинство аудио ламп используют оксидные катоды, которые светятся радостным теплым оранжевым цветом. И торированного-накаливания радиолампы, такие как SV811 и SV572 триоды, показывают бело-горячий жар от своих нитей и (в некоторых усилителях) небольшое оранжевое свечение от своих нитей. Все это нормальные последствия. Некоторые новички в аудио-мире также замечают, что некоторые из их радиоламп излучают голубоватый блеск. Есть две причины для этого свечения в ламповых усилителях; один из них является нормальным и безвредным, другой происходит только в плохом ламповом усилителе.

1) Большинство радиоламп Светлана показывают флуоресцентное свечение. Это очень глубокий синий цвет. Это обусловлено теми, незначительными примесями, такими как кобальт. Быстро движущиеся электроны ударяют в молекулу примеси, возбуждают их, и производят фотоны света характерного цвета. Это обычно наблюдается на внутренней поверхности пластины, на поверхности распорок, или на внутренней стороне стеклянной оболочки. Это свечение безвредно. Это нормально и не указывает на неисправность трубки. Наслаждайтесь этим. Многие аудиофилы считают, что такое свечение улучшает внешний вид радиолампы во время работы.

2) Иногда радиолампа будет светиться под небольшой утечкой. Когда воздух попадает в лампу, и когда высокое напряжение прикладывается к пластине, молекулы воздуха могут ионизировать. Свечение ионизированного воздуха довольно сильно отличается от свечения флуоресцентного, ионизированный воздух является сильным фиолетовым цветом, почти розовым. Этот цвет обычно появляется внутри пластины радиолампы (хотя и не всегда). Он не цепляется к поверхностям, как флуоресценция, но появляется в промежутках между элементами. Радиолампа показывает это свечение и следует заменить её сразу, так как газ может вызвать ток анода утечку и (возможно) приведет повреждению лампового усилителя .

ОБРАТИТЕ ВНИМАНИЕ : некоторые старые High End ламповые и гитарные усилители, и очень немногие современные усилители, используют специальные лампы, которые зависят от ионизированного газа для их нормальной работы.

Некоторые ламповые усилители используют выпрямители ртутные, такие как 83, 816, 866 или 872. Эти радиолампы светятся сильным сини-фиолетовым цветом при нормальной эксплуатации. Они превращаются переменного тока в постоянный ток для запуска других радиоламп.

И иногда, старинные и современные ламповые усилители используют регулятор для радиоламп газоразрядных, например типов 0A2, 0B2, 0C2, 0A3, 0B3, 0C3 или 0D3.

Эти лампы работают на ионизированном газе для контроля напряжения очень плотно, и обычно светятся либо сине-фиолетовым или розовым, когда в нормальном режиме.

Что такое класс А, В, АВ, ультралинейный ламповый усилитель, и т.д.?

1. Класс А означает, что мощность проводит такое же количество тока все время, будь то на холостом ходу или работает на полную мощность. Класс очень неэффективный для электричества, но, как правило, дает очень низкий уровень искажений и отличный звук.

Есть несимметричный класс, или SE, усилители. Они используют одну или несколько радиоламп параллельно, которые работают все в фазе друг с другом. Они обычно используются в небольших гитарных усилителях и в High End высокого класса усилителях. Многие аудиофилы предпочитают ламповый усилитель SE, даже если он имеет относительно высокий уровень искажений четного порядка. Большинство 300B высокого класса ламповые усилители SE. Отрицательная обратная связь(ООС), которая может быть использована, чтобы уменьшить искажение усилителя, не особо ощущается в звуке. Большинство ламповых усилители SE без ООС.

Также двухтактные ламповые усилители класса А — они используют две, четыре или более трубок (всегда в паре), которые приводятся в противофазе друг к другу. Это сводит на нет искажения даже четного порядка и дает очень чистый звук. Примером класса А в двухтактном ламповом усилителе является гитарный усилитель Vox AC-30. Высокие токи могут, как правило, изнашивать катоды радиоламп быстрее, чем в ламповом усилителе АВ.

Есть два вида класса А, которые можно применить к несимметричным или двухтактным

Класс А1 означает, что напряжение сетки всегда более отрицательное, чем напряжение катода. Это дает максимально возможную линейность и используется с триодах, таких как SV300B, и пентодах.

Класс A2 означает, что сетка приводится более положительно, чем для части катода или всего сигнала. Это означает, что сетка будет опираться на ток с катода и нагреваться. А2 не часто используется в пентодах или триодах как SV300B, особенно в аудио ламповых усилителях. Обычно ламповый усилитель класса-A2 будет использовать радиолампы со специальными прочными сетками, таких как SV811 и SV572 серии триодов.

2. Класса АВ относится только к . Это означает, что, когда сетка одной радиолампы управляется, пока его анодный ток не отсекает (останавливает) полностью, то другая радиолампа берет на себя и обрабатывает выходную мощность. Это дает большую эффективность, чем класса А. Он также приводит к увеличению искажений, если усилитель не тщательно спроектирован и использует некоторые негативные отклики. Есть класс-AB1 и класс-AB2 усилители; различия такие же, как было объяснено.

Бестрансформаторные ламповые усилители особая высокотехнологичная продукция. Потому что это дорого и сложно причем, некоторые инженеры решили вообще ликвидировать трансформатор. К сожалению, радиолампы имеют относительно высокие выходные импедансы по сравнению с транзисторами. Хорошо продуманный бестрансформаторный ламповый усилитель способен на качество звука и доступен сегодня. Такой ламповый усилитель, как правило, требуют больше ухода и большую заботу в использовании, чем трансформаторный.

В последние годы, бестрансформаторный ламповый усилитель получил плохую репутацию ненадежности. Это было только проблемой с некоторыми производителями недорогих, которые с тех пор вышли из бизнеса. Хорошо продуманный ламповый усилитель может быть столь же надежный, как трансформаторный.

Скачать отличные книги «Ламповый усилитель своими руками» можно БЕСПЛАТНО Размер 220.47 MB!!!

2 часть книг про Ламповый усилитель можно БЕСПЛАТНО Размер 122.41 MB!!

Я надеюсь, что это объяснение хоть немного помогло. Пожалуйста, оставляйте комментарии ниже, чтобы я мог вернуться к вам. Не бойтесь меня и добавляйтесь в

Электронная лампа

Российская экспортная радиолампа 6550C

Электро́нная ла́мпа , радиола́мпа - электровакуумный прибор (точнее, вакуумный электронный прибор), работающий за счёт управления интенсивностью потока электронов , движущихся в вакууме или разрежённом газе между электродами .

Радиолампы массово использовались в ХХ веке как активные элементы электронной аппаратуры (усилители, генераторы, детекторы, переключатели и т.п.). В настоящее время практически полностью вытеснены полупроводниковыми приборами. Иногда ещё применяются в мощных высокочастотных передатчиках, высококачественной аудиотехнике.

Электронные лампы, предназначенные для освещения (лампы-вспышки, ксеноновые лампы , и натриевые лампы), радиолампами не называются и обычно относятся к классу осветительных приборов.

Принцип действия

Электронная лампа RCA "808"

Вакуумные электронные лампы с подогреваемым катодом

  • В результате термоэлектронной эмиссии электроны покидают поверхность катода.
  • Под воздействием разности потенциалов между анодом и катодом электроны достигают анода и образуют анодный ток во внешней цепи.
  • С помощью дополнительных электродов (сеток) осуществляется управление электронным потоком путём подачи на эти электроды электрического потенциала.

В вакуумных электронных лампах наличие газа ухудшает характеристики лампы.

Газонаполненные электронные лампы

Основным для этого класса устройств является поток ионов и электронов в газе, наполняющем лампу. Поток может быть создан, как и в вакуумных устройствах, термоэлектронной эмиссией, а может создаваться образованием электрического разряда в газе за счёт напряжённости электрического поля.

История

По способу подогрева катоды подразделяются на катоды прямого и косвенного накала.

Катод прямого накала представляет собой металлическую нить. Лампы прямого накала потребляют меньшую мощность и быстрее разогреваются, однако, обычно имеют меньший срок службы, при использовании в сигнальных цепях требуют питания накала постоянным током, а в ряде схем неприменимы из-за влияния разницы потенциалов на разных участках катода на работу лампы.
Катод косвенного накала представляет собой цилиндр, внутри которого располагают нить накала (подогреватель). Такие лампы называются лампами косвенного накала.

Катоды ламп активируют металлами, имеющими малую работу выхода . В лампах прямого накала для этого обычно применяют торий , в лампах косвенного накала - барий . Несмотря на наличие тория в катоде, лампы прямого накала не представляют опасности для пользователя, поскольку его излучение не выходит за пределы баллона.

Анод

Анод электронной лампы

Положительный электрод. Выполняется в форме пластины, чаще коробочки имеющей форму цилиндра или параллелепипеда. Изготавливается обычно из никеля или молибдена, иногда из тантала и графита.

Сетка

Между катодом и анодом располагаются сетки , которые служат для управления потоком электронов и устранения побочных явлений, возникающих при движении электронов от катода к аноду.

Сетка представляет собой решетку из тонкой проволоки или чаще выполнена в виде проволочной спирали, навитой на несколько поддерживающих стоек (траверс). В стержневых лампах роль сеток выполняет система из нескольких тонких стержней, параллельных катоду и аноду, и физика их работы иная, чем в традиционной конструкции.

По назначению сетки подразделяются на следующие виды:

В зависимости от назначения лампы, она может иметь до семи сеток. В некоторых вариантах включения многосеточных ламп, отдельные сетки могут выполнять роль анода. Например, в генераторе по схеме Шембеля на тетроде или пентоде собственно генератором служит «виртуальный» триод, образованный катодом, управляющей сеткой и экранирующей сеткой в качестве анода .

Баллон

Основные типы

Малогабаритные («пальчиковые») радиолампы

Основные типы электронных вакуумных ламп:

  • Диоды (легко делаются на большие напряжения, см кенотрон)
  • лучевые тетроды и пентоды (как разновидности этих типов)
  • комбинированные лампы (фактически включают 2 или более ламп в одном баллоне)

Современные применения

Металлокерамический генераторный триод ГС-9Б с воздушным охлаждением (СССР)

Высокочастотная и высоковольтная мощная техника

  • В мощных радиовещательных передатчиках (от 100 Вт до единиц мегаватт) в выходных каскадах применяются мощные и сверхмощные лампы с воздушным или водяным охлаждением анода и высоким (более 100 А) током накала. Магнетроны , клистроны , т. н. радиолампа бегущей волны обеспечивают сочетание высоких частот, мощностей и приемлемой стоимости (а зачастую и просто принципиальной возможности существования) элементной базы.
  • Магнетрон можно встретить не только в радаре , но и в любой микроволновой печи.
  • При необходимости выпрямления или быстрой коммутации нескольких десятков кВ, которую невозможно осуществлять механическими ключами, необходимо использовать радиолампы. Так, кенотрон обеспечивает приемлемую динамику на напряжениях до миллиона вольт.

Военная промышленность

Из-за принципа действия электронные лампы являются устройствами, значительно более устойчивыми к таким поражающим факторам, как электромагнитный импульс. Для информации: в единственном устройстве может быть несколько сотен ламп. В СССР для применения в бортовой военной аппаратуре в 1950-е годы были разработаны стержневые лампы , отличавшиеся малыми размерами и большой механической прочностью.

Миниатюрная лампа типа «желудь» (пентод 6Ж1Ж, СССР, 1955 г.)

Космическая техника

Радиационная деградация полупроводниковых материалов и наличие естественного вакуума межпланетной среды делает применение некоторых типов ламп средством повышения надёжности и долговечности космических аппаратов. Применение в АМС Луна-3 транзисторов было связано с большим риском.

Повышенная температура среды и радиация

Ламповое оборудование может быть рассчитано на больший температурный и радиационный диапазон условий, нежели полупроводниковое.

Высококачественная звуковая аппаратура

По субъективному мнению большинства меломанов, «ламповый» звук принципиально отличается от «транзисторного». Существует несколько версий объяснения этих различий, как основанных на научных исследованиях, так и откровенно ненаучных рассуждениях. Одно из главных объяснений различий лампового и транзисторного звука, заключается в "естественности" звучания ламповой аппаратуры. Ламповый звук "объемный" (некоторые называют его "голографическим"), в отличие от "плоского" транзисторного. Ламповый усилитель отчетливо передает эмоции, энергетику исполнителя, "драйв" (за что их обожают гитаристы). Транзисторные усилители с трудом справляются с такими задачами. Нередко, конструкторы транзисторных усилителей используют схожую с лампами схемотехнику (режим работы в классе А, трансформаторы, отсутствие общей отрицательной обратной связи). Общим результатом этих представлений стало «возвращение» ламповой техники в сферу высококачественных усилителей . Объективная (научная) причина такого положения - высокая линейность (но не идеальная) лампы, в первую очередь триода. Транзистор, в первую очередь биполярный, элемент вообще нелинейный, и как правило не может работать без мер по линеаризации.

Достоинства ламповых усилителей:

Простота схем. Её параметры мало зависят от внешних факторов. В результате в ламповом усилителе, как правило, меньше деталей, чем в полупроводниковом.

Параметры ламп слабее зависят от температуры, чем параметры транзистора. Лампы малочувствительны к электрическим перегрузкам. Малое число деталей также весьма способствует надёжности и снижению искажений, вносимых усилителем. В транзисторном усилителе имеются проблемы с "тепловыми" искажениями.

Хорошая согласуемость входа лампового усилителя с нагрузкой. Ламповые каскады имеют очень большое входное сопротивление, что снижает потери и способствует уменьшению количества активных элементов в радиоустройстве. - Простота обслуживания. Если, например, у концертного усилителя прямо во время выступления выходит из строя лампа, то заменить её гораздо проще, чем сгоревший транзистор или микросхему. Но этим на концертах всё равно никто не занимается. Усилителей на концертах всегда в запасе, а ламповых - в двойном запасе (потому что, как ни странно, ламповые усилители значительно чаще ломаются).

Отсутствие некоторых видов искажений, присущих транзисторным каскадам, что благоприятно сказывается на звуке.

При грамотном использовании преимуществ ламп можно создавать усилители, превосходящие транзисторные по качеству звучания в пределах определённых ценовых категорий.

Субъективно винтажный внешний вид при создании имиджевых образцов аппаратуры.

Нечувствительность к радиации вплоть до очень высоких уровней.

Недостатки ламповых усилителей:

Помимо питания анодов, лампы требуют дополнительных затрат мощности на накал. Отсюда низкий КПД, и как следствие - сильный нагрев.

Ламповая аппаратура не может быть мгновенно готова к работе. Требуется предварительный прогрев ламп в течение нескольких десятков секунд. Исключение составляют лампы прямого накала, которые начинают работать сразу.

Выходные ламповые каскады требуется согласовывать с нагрузкой при помощи трансформаторов. Как следствие - сложность конструкции и плохие массо-габаритные показатели за счёт трансформаторов.

Лампы требуют применения высоких напряжений питания, составляющих сотни (а в мощных усилителях - тысячи) вольт. Это накладывает определённые ограничения в плане безопасности при эксплуатации таких усилителей. Также высокое снимаемое напряжение почти всегда требует применения понижающающего выходного трансформатора. При этом любой трансформатор является нелинейным устройством в широком диапазоне частот, что обуславливает внесение нелинейных искажений в звучание на уровне близком к 1% у лучших моделей ламповых усилителей (для сравнения: нелинейные искажения лучших транзисторных усилителей настолько малы, что их невозможно измерить). Для лампового усилителя, можно считать нормальными искажения на уровне 2-3%. Характер и спектр этих искажений отличается от искажений транзисторного усилителя. На субъективном восприятии, обычно это никак не сказывается. Трансформатор - конечно нелинейный элемент. Но его очень часто используют на выходе ЦАПа, где он осуществляет гальваническую развязку (препятствует проникновению помех из ЦАПа), играет роль фильтра ограничивающего полосу, и по видимому, обеспечивает правильный "расклад" фаз сигнала. В итоге, несмотря на все минусы (в первую очередь - высокую стоимость), звучание только выигрывает. Также трансформаторы, не редко, с успехом, используют в транзисторных усилителях.

Лампы имеют ограниченный срок службы. С течением времени параметры ламп меняются, катоды теряют эмиссию (способность испускать электроны), а нить накала может перегореть (большинство ламп работают до отказа 200-1000 часов, транзисторы на три порядка больше). У транзисторов также возможна деградация со временем.

Хрупкость классических ламп со стеклянным баллоном. Одним из решений данной проблемы была разработка в 40-х годах прошлого века ламп с металло-керамическими баллонами, имеющими большую прочность, однако такие лампы не получили широкое распространение.

Некоторые особенности ламповых усилителей:

По субъективному мнению аудиофилов, звучание электрогитар передаётся гораздо лучше, глубже и «музыкальнее» именно ламповыми усилителями. Некоторые объясняют это нелинейностью выходного узла и вносимыми искажениями, которые «ценятся» любителями электрогитар. Это на самом деле не так. Гитаристы используют эффекты связанные с увеличением искажений, но для этого в схему вносятся соответствующие изменения намеренно.

Очевидные недостатки лампового усилителя - хрупкость, большее потребление энергии, нежели у транзисторного, меньший срок службы ламп, большие искажения (об этом, как правило вспоминают, читая технические характеристики, из-за серьёзного несовершенства измерения основных параметров усилителей, многие производители такие данные не приводят, или по другому - два совершенно одинаковых, с точки зрения измеренных параметров, усилителя, могут звучать совершенно по разному), большие габариты и масса аппаратуры, а также стоимость, которая выше, чем у транзисторной и интегральной техники. Энергопотребление качественного транзисторного усилителя, также велико, впрочем его габариты и вес могут быть сопоставимы с ламповым усилителем. В общем, есть такая закономерность, чем "звучнее", "музыкальнее" и т.д., усилитель, тем его габариты и потребляемая мощность больше, а КПД ниже. Конечно, усилитель класса D может быть весьма компактным, а его КПД будет составлять 90%. Вот только что делать со звуком? Если у вас намечается борьба за экономию электроэнергии, то конечно, ламповый усилитель в этом деле не помощник.

Классификация по названию

Маркировки, принятые в СССР/России

Маркировки в других странах

В Европе в 30е годы ведущими производителями радиоламп была принята Единая европейская система буквенно-цифровой маркировки:

- Первая буква характеризует напряжение накала или его ток:

А - напряжение накала 4 В;

В - ток накала 180 мА;

С - ток накала 200 мА;

D - напряжение накала до 1.4 В;

E - напряжение накала 6.3 В;

F - напряжение накала 12.6 В;

G - напряжение накала 5 В;

H - ток накала 150 мА;

К - напряжение накала 2 В;

P - ток накала 300 мА;

U - ток накала 100 мА;

V - ток накала 50 мА;

X - ток накала 600 мА.

- Вторая и последующие буквы в обозначении определяют тип ламп:

B - двойные диоды (с общим катодом);

C - триоды (кроме выходных);

D - выходные триоды;

E - тетроды (кроме выходных);

F - пентоды (кроме выходных);

L - выходные пентоды и тетроды;

H - гексоды или гептоды (гексодного типа);

K - октоды или гептоды (октодного типа);

M - электронно-световые индикаторы настройки;

P - усилительные лампы со вторичной эмиссией;

Y - однополупериодные кенотроны;

Z - двухполупериодные кенотроны.

- Двузначное или трехзначное число обозначает внешнее оформление лампы и порядковый номер данного типа, причем первая цифра обычно характеризует тип цоколя или ножки, например:

1-9 - стеклянные лампы с ламельным цоколем («красная серия»)

1х - лампы с восьмиштырьковым цоколем («11-серия»)

3х - лампы в стеклянном баллоне с октальным цоколем;

5х - лампы с локтальным цоколем;

6х и 7х - стеклянные сверхминиатюрные лампы;

8х и от 180 до 189 - стеклянные миниатюрные с девятиштырьковой ножкой;

9х - стеклянные миниатюрные с семиштырьковой ножкой.

См. также

Газоразрядные лампы

В газоразрядных лампах обычно используется разряд в инертных газах при низких давлениях. Примеры газоразрядных электронных ламп:

  • Газоразрядники для защиты от высокого напряжения (например на воздушных линиях связи, приемниках мощных РЛС и т.п.)
  • Тиратроны (трёхэлектродные лампы - газоразрядные триоды, четырёхэлектродные - газоразрядные тетроды)
  • Ксеноновые , неоновые лампы и другие газоразрядные источники света.

См. также

  • AOpen AX4B-533 Tube - Материнская плата на чипсете Intel 845 Sk478 с ламповым усилителем звука
  • AOpen AX4GE Tube-G - Материнская плата на чипсете Intel 845GE Sk478 с ламповым усилителем звука
  • AOpen VIA VT8188A - Материнская плата на чипсете VIA K8T400M Sk754 С 6-канальным ламповым усилителем звука.
  • Hanwas X-Tube USB Dongle - USB звуковая карта для ноутбуков с поддержкой DTS, имитирующая внешним видом электронную лампу.

Примечания

Ссылки

  • Справочник по отечественным и зарубежным радиолампам. Более 14000 радиоламп
  • Справочники по радиолампам и вся необходимая информация
Пассивные твердотельные Резистор · Переменный резистор · Подстроечный резистор · Варистор · Конденсатор · Переменный конденсатор · Подстроечный конденсатор · Катушка индуктивности · Кварцевый резонатор · Предохранитель · Самовосстанавливающийся предохранитель · Трансформатор
Активные твердотельные Диод · Светодиод · Фотодиод · Полупроводниковый лазер · Диод Шоттки · Стабилитрон · Стабистор · Варикап · Вариконд · Диодный мост · Лавинно-пролётный диод · Туннельный диод · Диод Ганна
Транзистор · Биполярный транзистор · Полевой транзистор · КМОП-транзистор · Однопереходный транзистор · Фототранзистор · Составной транзистор · Баллистический транзистор
Интегральная схема · Цифровая интегральная схема ·

В электронной лампе, так же как и в полупроводниковом триоде, эффект усиления получается благодаря тому, что слабый электрический сигнал управляет протекающим через лампу током (движением зарядов), а этот ток может развивать значительную мощность за счет энергии внешней батареи.

В отличие от полупроводникового триода, основные процессы в лампе происходят не в микроскопических кристаллах германия или кремния, а в вакууме - в стеклянном (а иногда металлическом или металлокерамическом) баллоне, из которого откачан воздух.

В полупроводниковом триоде и, в частности, в его эмиттере всегда имеются свободные электрические заряды, то есть заряды, которые могут перемещаться под действием какого-либо напряжения, образуя эмиттерный или коллекторный ток. В вакууме свободных зарядов практически нет, и для их получения в лампу вводится специальная деталь - катод.

Во многих лампах катод представляет собой металлическую нить (есть и другие типы катодов), по которой пропускают электрический ток (ток накала), подключив к ней небольшую батарею (батарея накала Б н). Под действием тока катод, подобно спирали электроплитки, нагревается до высокой температуры - от 800° до 2500°, в зависимости от типа катода. Как известно, в металле всегда имеется большое количество свободных электронов (это и отличает проводники от изоляторов), которые беспорядочно двигаются в межатомном пространстве. Чем выше температура металла, тем интенсивнее это беспорядочное движение. При высокой температуре катода многие из электронов выходят за его пределы, и в вакууме вблизи катода появляются свободные электрические заряды (рис. 60).

Теперь заставим свободные электроны, вылетавшие из разогретого катода, упорядоченно двигаться в каком-нибудь определенном направлении, то есть создадим в лампе электрический ток. Для этого поместим в баллон еще один электрод - плоскую металлическую пластинку, расположенную невдалеке от катода. Такой электрод получил название «анод», а двухэлектродная лампа, так же как и полупроводниковый прибор с двумя зонами - n и р , называется диодом.

Если включить между анодом и катодом батарею (анодная батарея Б а), причем «плюс» ее соединить с анодом, то под действием положительного напряжения на аноде к нему будут двигаться вылетевшие из катода электроны, а на смену им в катод будут поступать электроны из батареи Б а (рис. 61). Таким образом, внутри баллона и во внешней цепи появится ток, получивший название анодного тока. Если сменить полярность анодной батареи, - ее минус подключить к аноду лампы, - то никакого тока в лампе не будет, так как отрицательное напряжение на аноде уже не будет притягивать электроны, обладающие, как известно, отрицательным зарядом (рис. 62).

Анодный ток в лампе играет ту же роль, что и коллекторный ток в транзисторе: используя энергию батарей, он создает «мощную копию» усиливаемого сигнала. Однако управление током в лампе осуществляется не так, как в полупроводниковом триоде.

В полупроводниковом триоде коллекторный ток изменяется потому, что под действием усиливаемого сигнала меняется количество зарядов, которые выходят из эмиттера и через базу попадают в коллекторную цепь. Если бы мы хотели таким же образом управлять анодным током в лампе, то нам пришлось бы пропустить усиливаемый ток через катод с тем, чтобы под действием этого тока изменялась температура катода, а следовательно, и количество вылетающих из него электронов. Конечно, такая система практически непригодна хотя бы потому, что усиливаемый сигнал обычно слишком слаб и не может нагреть катод. Кроме того, из-за тепловой инерции катода (на нагревание и остывание катода нужно некоторое время) изменение его температуры не будет поспевать за изменениями усиливаемого сигнала.

Для управления анодным током в лампу вводится третий электрод - металлическая сетка, которую располагают очень близко к катоду (рис. 63). Поэтому, если между сеткой и катодом действует даже небольшое напряжение, то оно очень сильно влияет на величину анодного тока. Во многих лампах достаточно подать на сетку отрицательное напряжение 5-10 в, которое отталкивает электроны обратно к катоду, чтобы анодный ток прекратился, несмотря на притягивающее действие довольно большого (обычно 50-250 в) положительного напряжения на аноде 1 . В этом случае говорят, что лампа заперта сеточным напряжением.

1 Когда говорят о напряжении на каком-либо электроде лампы, например, на сетке или аноде, то имеют ввиду, что это напряжение измерено относительно катода. Иногда для краткости говорят "минус на сетке" или "плюс на катоде", имея ввиду положительное или отрицательное напряжение на соответствующих электродах относительно катода.

Чем меньше отрицательное напряжение на сетке, тем слабее она отталкивает электроны, тем большее их количество, проскочив сетку, направляется к аноду, тем, следовательно, больше анодный ток. При положительных напряжениях на сетке она не только не мешает, но даже помогает движению электронов к аноду, увеличивая тем самым анодный ток.

Важно отметить, что при положительных напряжениях на сетке на нее будет попадать часть электронов, которые, пройдя внешнюю сеточную цепь, вернутся на катод (). Иными словами, при положительных напряжениях на сетке в лампе возникает сеточный ток. График, показывающий, как изменяется анодный и сеточный ток при изменении напряжения на сетке, называется анодно-сеточной характеристикой лампы, а график, в котором имеется несколько кривых, снятых при различных анодных напряжениях, называется семейством характеристик (рис. 65, ).

Если между сеткой и катодом будет действовать переменное напряжение усиливаемого сигнала, то оно вызовет соответствующие изменения анодного тока. Но изменяющийся анодный ток пока еще никакой пользы не приносит, так же как и не выполняет полезной работы двигающийся по шоссе пустой грузовик. Для того чтобы мощный двигатель грузовика, беспрерывно сжигающий бензин, выполнял какую-то полезную работу, нужно кузов этого автомобиля заполнить тяжелыми грузами. Для того же, чтобы использовать энергию изменяющегося анодного тока электронной лампы, то есть выделить «мощную копию» усиливаемого сигнала, в анодную цепь лампы, так же как и в коллекторную цепь транзистора, включают нагрузку (рис. 64).

Нагрузка может представлять собой обычное сопротивление, громкоговоритель, колебательный контур, телефон и т. п. (). Проходя по нагрузке, анодный ток выделит на ней часть своей энергии. Эта энергия будет либо с помощью громкоговорителя или телефона сразу же преобразована в звуковые колебания, либо будет подвергаться дальнейшему усилению с помощью последующих ламп. Как уже говорилось, когда один каскад не дает достаточного усиления, то входной сигнал, несколько усиленный первым каскадом, передается на второй, где он усиливается еще больше, со второго каскада усиливаемый сигнал поступает на третий, и т. д.

В зависимости от назначения усилительного каскада стремятся получить либо большой переменный ток в нагрузке (для этого сопротивление нагрузки делают маленьким), либо большое переменное напряжение (для этого сопротивление нагрузки делают большим). Однако при любых соотношениях напряжения и тока в нагрузке выделяемая на ней мощность, то есть мощность усиленного сигнала, во много раз больше мощности, затраченной в сеточной цепи на управление анодным током. Попутно заметим, что сеточную цепь электронной лампы обычно называют входной цепью, а анодную - выходной.

Усилительная лампа, в которой имеется анод, катод и управляющая сетка, получила название «триод» (трехэлектродная лампа). Триод широко применяется в усилителях низкой частоты, а также в аппаратуре УКВ диапазона.

Наряду со многими достоинствами у триода есть два существенных недостатка. Первый из них состоит в том, что анод и управляющая сетка образуют конденсатор С ас, емкость которого (емкость анод-сетка) обычно составляет несколько пикофарад. Емкость С ас называют проходной емкостью лампы, так как через нее переменный ток «пролезет» из анодной цепи в сеточную (рис. 66). Иными словами, из-за емкости С ас возникает обратная связь между анодом и сеткой (обратное влияние анода на сетку), которая может сильно ухудшить усилительные свойства лампы или привести к самовозбуждению каскада. В результате самовозбуждения (с этим явлением мы подробно познакомимся немного позже) усилитель превращается в генератор и дает на выходе переменное напряжение даже при отсутствии какого-либо входного сигнала.

Второй недостаток триода связан с тем, что при работе лампы в усилительном каскаде изменяется напряжение на ее аноде и иногда оно может очень сильно уменьшиться (). Это объясняется тем, что часть напряжения анодной батареи падает (теряется) на сопротивлении анодной нагрузки. Чем больше анодный ток, тем больше падение напряжения на нагрузке и тем меньшая часть напряжения анодной батареи будет подводиться к аноду ламп. Когда под действием усиливаемого сигнала анодный ток сильно возрастает, минимальное напряжение на аноде - U амин может составлять всего несколько вольт. Из-за уменьшения напряжения на аноде он плохо притягивает электроны, что приводит к нежелательному уменьшению анодного тока.