Экстремальный разгон ноутбука. Тестовая конфигурация: разгон памяти. Что лучше разгонять: процессор или память

Наиболее востребованными на рынке оперативной памяти были и остаются бюджетные планки. И не только потому, что для сборки большинства компьютеров используются компоненты среднего ценового уровня, в который высокочастотная память просто не вписывается ни по цене, ни по характеристикам. Из-за ограничений, накладываемых контроллером памяти в ЦП или северном мосту, для разгона DDR3 до частот выше 2000-2200 МГц подойдет далеко не каждый процессор и материнская плата. На данный момент выбор платформы для работы такой памяти ограничен всего пятью вариантами:

  • Socket AM3+ (AMD Bulldozer);
  • Socket FM1 (AMD Llano);
  • Socket 1156 (Core i7-8xx Lynnfield);
  • Socket 2011 (Sandy Bridge-E);
  • Socket 1366 (Core i7-9xx Gulftown).

Возможно, очень скоро к этому списку добавятся Ivy Bridge, при условии, что для них окажутся работоспособными множители для частоты памяти выше 1:8.

Но главная причина выбора в пользу бюджетной памяти в том, что даже при сборке более-менее мощной конфигурации предпочтительнее выделить больше средств на видеокарту, процессор или даже SSD-накопитель.

Значительное снижение цен на оперативную память привело к смещению спроса в сторону модулей по 4 гигабайта. На данный момент разница в цене между топовой и бюджетной памятью такого объема может отличаться в несколько раз – от $40 за пару модулей по 4 Гбайта с номиналом 1333 МГц до $499 за комплект Corsair Dominator GTX8 , работающий на частоте 2400 МГц.

Сократить и без того несущественную разницу между дорогой и дешевой памятью (что сказывается на производительности компьютера в целом) можно при помощи разгона и выбора модулей, построенных с использованием «правильных» микросхем. Вероятность того, что среди дешевой памяти вам попадется та, что сможет работать на 2400 МГц с таймингами 9-11-11-28 (особенно в конфигурации из четырех модулей общим объемом 16 гигабайт), очень невысока. Но, тем не менее, в большинстве случаев смело можно рассчитывать на разгон до стандартной (для массовой ныне платформы Sandy Bridge) частоты 2133 МГц.

Недавно в лаборатории уже было протестировано несколько комплектов недорогой памяти разных производителей. Но, к сожалению, среди доступных на тот момент модулей не удалось найти Hynix и Samsung, хорошо известных участникам нашего форума благодаря своему отличному разгонному потенциалу. Поэтому было решено провести еще одно тестирование, включив в него планки этих производителей. Из него вы узнаете о разгоне оригинальных планок памяти Samsung на микросхемах K4B2G0846C-HCH9, K4B2G0846D-BCK0, K4B2G0846D-HCK0 и Hynix на микросхемах H5TQ2G83CFR-H9C, а также о том, как они реагируют на различные сочетания таймингов и повышение напряжения.

Характеристики

Характеристики модулей памяти перечислены в таблице:

Производитель модуля Hynix Samsung Samsung Samsung
Маркировка модуля HMT351U6CFR-H9 M378B5273CH0-CH9 M378B5273DH0-CK0 M378B5273DH0-CK0
Маркировка микросхем H5TQ2G83CFR-H9C K4B2G0846C-HCH9 K4B2G0846D-BCK0 K4B2G0846D-HCK0
Объём, Мбайт 4096 4096 4096 4096
Тип памяти DDR3-1333 DDR3-1333 DDR3-1600 DDR3-1600
Поддержка ECC Нет Нет Нет Нет
Рейтинг PC3-10600 PC3-10600 PC3-12800 PC3-12800
Частота, МГц 1333 1333 1600 1600
Тайминги 9-9-9-24 9-9-9-24 11-11-11-28 11-11-11-28
Напряжение, В 1.50 1.50 1.50 1.50
Профили EPP/XMP/BEMP Нет Нет Нет Нет
Цена, руб.* 630 700 860 860
* В таблице указана цена на модули памяти актуальная на момент проведения тестирования

Упаковка и внешний вид

Все протестированные модули поставлялись в антистатическом пакетике без какой-либо дополнительной комплектации. Экономия на упаковке – один из способов уменьшить конечную розничную цену для покупателя. Даже если изначально производителем памяти и были предусмотрены какие-то пластиковые коробочки, то от них вполне могли избавиться, чтобы сократить затраты на логистику. Ничего страшного в этом нет, но стоит знать, что при таком способе транспортировки часть модулей приезжает «битыми». Поэтому при получении их в магазине необходим внимательный осмотр на отсутствие повреждений. Также не лишним будет взять с собой в магазин упаковку от какой-либо другой памяти, чтобы не повредить только что купленную по дороге домой.

Кстати, одна из взятых на тестирование планок оказалась со сколотыми элементами, и было потрачено дополнительное время на её замену.

Начнем обзор с модулей Hynix, интересных, прежде всего тем, что на данный момент микросхемы именно этого производителя используются в большинстве дорогих высокочастотных комплектов памяти, состоящих из планок объемом 4 Гбайта.

Hynix Original HMT351U6CFR-H9 (Hynix H5TQ2G83CFR-H9C)

Модуль памяти производства Hynix выполнен на печатной плате синего цвета. Объем - 4096 Мбайт, он набран шестнадцатью микросхемами с плотностью два гигабита, которые установлены по восемь с каждой стороны.

На наклейке приведена маркировка планки (part number) HMT351U6CFR-H9, её объем, номинальная частота и неделя производства (38 неделя 2011 года):

Компания Hynix является одним из крупнейших производителей полупроводниковых компонентов, поэтому для модулей памяти использует микросхемы собственного производства.

В данном случае это микросхемы DDR3 памяти Hynix H5TQ2G83CFR-H9C, выпущенные на 35 неделе 2011 года. Они рассчитаны на работу с частотой 1333 МГц, таймингами 9-9-9 и напряжением 1.50 В. Документацию к ним в формате PDF можно скачать с сайта производителя (218 Кбайт).

Микросхема SPD:

Дамп её содержимого, полученный при помощи SPDTool v0.6.3: hynix_hmt351u6cfr-h9.spd .

Модуль основан на PCB ST-104B:

По надписи «Hynix Korea» на печатной плате можно было бы предположить, что она сделана на заводе Hynix в Корее, но это не так. Как вы увидите чуть ниже, некоторые разновидности модулей памяти Samsung тоже используют плату ST-104B со схожим дизайном, но с надписью «Samsung». Вероятно, и Samsung, и Hynix заказывают изготовление PCB для своих модулей памяти у одного и того же стороннего производителя, а далее уже получают их с отличающимися маркировками. А затем на собственных заводах в Корее собирают модуль, устанавливая на него свои микросхемы.

Переходим к обзору памяти Samsung и начнем с самой дешевой модели:

Samsung Original M378B5273CH0-CH9 (SEC K4B2G0846C-HCH9)

Компания Samsung использует зеленый цвет для своих модулей. Плотность микросхем стандартная (2 Гбит), поэтому их количество и размещение не отличается от других планок объемом 4 Гбайта.

Наклейка на модуле по форме и набору информации на ней такая же, как и у Hynix. Приводится маркировка M378B5273CH0-CH9, объем модуля, номинальная частота и неделя производства (51 неделя 2011 года):

Компания Samsung (аналогично Hynix) является производителем микросхем памяти и использует их для изготовления собственной продукции.

Используется PCB с маркировкой ST-104B, как и у модулей Hynix, но с отличающимся дизайном:

Следующие две разновидности модулей памяти Samsung незначительно дороже уже рассмотренных выше, но зато они и рассчитаны на чуть более высокую частоту 1600 МГц.

Пользуясь компьютером, многие из нас даже не догадываются, что производительность устройства можно значительно увеличить, не прибегая к «апгрейду» - обновлению аппаратных компонентов. Делается это при помощи так называемого «разгона» различных видов микросхем. В частности, данного рода процедура очень популярна в отношении модулей оперативной памяти ПК (ОЗУ), наряду с аналогичными экспериментами с процессорами, видеокартами и прочими аппаратными компонентами компьютера.

Какова практическая значимость разгона ОЗУ, не считая повышения производительности ПК? Эта процедура, в частности, может использоваться при сравнительном тестировании от разных производителей в сервисных центрах.

Разгон аппаратных компонентов ПК - это популярное в мире и в России хобби. Люди, которые им увлекаются, именуют себя интересным термином "оверклоккеры" (от англ. overclock, означающего в одной из трактовок "разгон").

Есть ряд нюансов, знание которых может оказаться полезным для энтузиастов "оверклоккинга" и IT-специалистов, занимающихся тестированием «железа». Как разогнать оперативную память и обеспечить при этом наибольший прирост производительности ПК? Как обеспечить стабильную работу компьютера в «разогнанном» режиме? Как выбрать оптимальный метод "оверклоккинга" и при этом не навредить другим аппаратным компонентам компьютера?

Методы разгона ОЗУ

IT-специалисты, комментируя возможность разгона оперативной памяти, обычно акцентируют внимание на том, что как таковая микросхема ОЗУ, как правило, имеет заложенный заводом-изготовителем «иммунитет» к искусственному увеличению производительности. Поэтому разгонять модули отдельно от других аппаратных компонентов ПК может оказаться делом бесполезным. По этой причине на практике «оперативка» разгоняется практически всегда вслед за процессором. Отдельно — в крайне редких случаях. Прежде чем думать над тем, как разогнать оперативную память, пользователю ПК будет полезно изучить особенности ускорения производительности процессора.

Под «разгоном» оперативной памяти почти всегда понимают активизацию особых режимов ее работы. Каких именно?

Во-первых, это «разгон» посредством повышения модулей ОЗУ. Как правило, осуществляется эта процедура одновременно со сменой настроек процессора, направленных, в свою очередь, на увеличение его производительности.

Во-вторых, «разгон» ОЗУ может осуществляться посредством изменения так называемых «таймингов». Если их значения уменьшить, то процесс обмена электронными сигналами в микросхеме станет более интенсивным.

Некоторые специалисты выделяют также и третий способ ускорения производительности ОЗУ, а именно эксперименты с изменением значений, касающихся электрического напряжения в микросхеме.

Как разогнать оперативную память, используя все три выше описанных инструмента наиболее эффективно? Посмотрим, что рекомендуют IT-специалисты.

Выбор оптимального метода разгона ОЗУ

В силу технологических особенностей архитектуры модулей оперативной памяти оба вышеобозначенных метода их «разгона» не могут применяться в режимах выставления максимальных значений одновременно. Придется выбирать — высокие тайминги или же частоты, либо подбирать компромиссное сочетание настроек. Как разогнать оперативную память, корректно оптимизируя сочетание этих двух параметров?

IT-специалисты не дают однозначного ответа на этот вопрос. Есть только общие рекомендации. Одна из них звучит так: если мы выставим повышенные значения для тактовой частоты, то придется замедлять тайминги, иначе работа ПК будет нестабильной. А ускорение таймингов будет эффективным, только если тактовую частоту не повышать относительно заводского уровня.

Эксперты полагают, что все зависит от специфики архитектуры конкретных микросхем, а также от того, насколько корректно будут интерпретированы результаты тестирования разогнанных модулей.

Важнейший нюанс: многие специалисты отмечают, что пользователю, задумавшему разогнать процессор и память, нужно быть готовым к тому, что компьютер не ускорится, а, наоборот, замедлится. Такие случаи — не редкость. В этом случае идеальный вариант — не трогать заводские настройки ОЗУ и процессора. Лучшая оперативная память, полагают некоторые IT-эксперты — это та, которая работает по частотам и таймингам, выставленным производителем.

«Двойственность» частот ОЗУ: что нужно знать

Есть версия, что частота — определяющая характеристика в скорости работы ОЗУ. Поэтому при разгоне в первоочередном порядке следует уделять внимание именно этому параметру. Чем выше частота, тем больше операционных тактов производят модули ОЗУ в секунду. Тем, соответственно, выше скорость оперативной памяти. Вместе с тем есть здесь один интересный нюанс.

Эксперты советуют обратить внимание на то, что модули ОЗУ типа DDR имеют две «частотные» характеристики: реальную (фактическую) и эффективную. Причем вторая вдвое больше. Производители оперативной памяти крайне редко указывают фактическую. В то время как в программах диагностики и мониторинга работы аппаратных компонентов ПК, как правило, отображается именно такого типа частота.

Главные «тайминги»

Второй важнейший параметр при разгоне ОЗУ — тайминги. Их достаточно много, но в нашем случае нам пригодятся знания о четырех — CAS, RAS-to-CAS, а также Row Precharge и Row Active. В такой последовательности обычно указываются установленные в настройках значения таймингов.

Оптимальное рабочее напряжение

Оптимизация данного параметра важна с точки зрения стабильности работы разогнанного модуля ОЗУ. Заводское значение для модулей DDR2 составляет 1,8 вольт, для ОЗУ типа DDR3 чуть меньше — 1,5. Для «разгона» можно увеличивать напряжение, но ненамного. IT-специалисты рекомендуют выставлять значение в пределах 2,2 вольт для микросхем типа DDR2. Если же пользователь думает над тем, как разогнать оперативную память DDR3, то ему нужно иметь в виду, что для этого типа ОЗУ максимальное значение в вольтаже — 1,65. Если выше — то система может начать работать со сбоями. Специалисты отмечают: даже самая лучшая оперативная память от ведущих мировых брендов не гарантирует стабильности работы при манипуляциях с уровнем напряжения.

Тестируем производительность при разгоне

Как мы уже отметили выше, заранее сложно предугадать, какой метод разгона окажется эффективнее — манипуляции с тактовой частотой или таймингом. Поэтому если вы решили ускорить работу ПК, вам предстоит вооружиться специализированными программами, позволяющими вести мониторинг производительности разогнанных модулей ОЗУ.

На какие программы стоит обратить внимание? Эксперты советуют обзавестись таким ПО, как PC Mark и Everest. Какая именно программа для оперативной памяти подходит больше всего? Специалисты считают, что каждое из этих решений имеет свои плюсы и минусы. Многое зависит от субъективного уровня комфорта пользования этими программами, который определяет сам пользователь.

Данные виды ПО хороши, помимо качественного мониторинга в отношении производительности, наличием функций по отслеживанию стабильности работы модулей ОЗУ.

Измерять скорость оперативной памяти исключительно важно с точки зрения выбора оптимального сочетания инструментов для разгона микросхем.

Инструментарий разгона ОЗУ

Выставить необходимые значения частоты или поменять настройки в таймингах можно двумя способами: через интерфейс БИОС либо воспользовавшись специальным ПО. Многие IT-специалисты рекомендуют первый вариант, так как в этом случае осуществляется низкоуровневое взаимодействие с аппаратными компонентами ПК.

Таким образом, мы имеем дело с удивительной рекомендацией от IT-экспертов: не пользоваться ПО, запускамым из операционной системы. Лучшая, таким образом, программа для разгона оперативной памяти — это BIOS, система ввода-вывода.

Манипуляции с частотой: ключевые нюансы

Эксперты в области разгона аппаратных компонентов ПК считают, что подходить к изменению частоты ОЗУ нужно с особой осторожностью. Дело в том, что данный параметр нельзя выставить посредством корректировки какой-то одной цифры. Общая частота памяти — результат произведения двух разных параметров: FSB и BCLK (при этом к ним добавляется дополнительный коэффициент-множитель, который также можно менять). Произведение FSB и BCLK — это так называемая «опорная частота». Именно ее предстоит корректировать в процессе «разгона» ОЗУ. Эксперименты с коэффициентом-множителем без изменения опорной частоты, как правило, не приводят к видимым результатам.

Процессор как фактор эффективности разгона ОЗУ

Многие IT-эксперты считают, что подходы к разгону модулей ОЗУ следует выбирать, исходя из конкретной модели процессора. Вполне возможно, что выставление одних и тех же значений частоты, напряжения и таймингов при использовании модулей на разных процессорах будет сопровождаться совершенно противоположными результатами.

Разгоняем память с процессором Intel

Тесты, проводимые IT-специалистами, показывают, что при разгоне памяти, используемой в сочетании с современными процессорами Intel (особенно с теми, что построены на архитектуре Sandy Bridge), существуют следующие закономерности.

Во-первых, многие из микросхем Intel плохо поддаются корректировке в отношении параметра BCLK. Если его значения изменить, то ПК может начать работать нестабильно. Поэтому экспериментировать, скорее всего, будет возможно только с множителем.

Есть вместе с тем в линейке Intel процессоры, которые, как отмечают эксперты, прекрасно адаптированы к работе при разгоне памяти. Например, это микросхемы таких типов, как Core i7-8 (они собраны на базе архитектуры Lynnfield). Наименьшей совместимостью с разгоном памяти, как считают некоторые специалисты, обладают процессоры Intel, собранные на базе технологии Clarkdale (особенно новейших серий).

Специалисты отмечают, что на результативность ускорения ОЗУ при разгоне на процессорах Intel влияют параметры материнской платы ПК, а именно то, какие на ней использованы чипсеты. Быстрая работа одних микросхем в должна сопровождаться не меньшей динамикой производительности других. ПК — это комплекс электронных компонентов. Чем слаженнее их работа — тем быстрее и стабильнее функционирует компьютер. Если в распоряжении пользователя — низкопроизводительная материнская плата, оперативной памяти, скорее всего, никакой разгон не поможет.

Наилучшей совместимостью с разгоном памяти обладают микросхемы с чипсетом типа P67 Express.

Разгон памяти и процессоры AMD

IT-специалисты отмечают, что компания AMD характеризуется несравненно большей консервативностью в подходах к изменению архитектуры выпускаемых процессоров. Поэтому разогнанные модули ОЗУ в тандеме с микросхемами от AMD, полагают эксперты, ведут себя более предсказуемо, чем в случае использования в сочетании с процессорами Intel. Однако достигаемый уровень производительности, как отмечают IT-специалисты, при разогнанных модулях ОЗУ в тандеме с процессорами AMD обычно ниже.

Достаточно хорошо себя проявляют при разгоне ОЗУ микросхемы Phenom II, Athlon II. Опорная частота в них составляет 200 мегагерц. Для лучшего результата рекомендуется выставлять частоту для контроллера памяти в три, а порой даже более раз выше, чем аналогичный показатель для модулей памяти.

Специалисты отмечают, что память DDR3, считающаяся одной из самых производительных, почти не разгоняется на ПК, оснащенных процессором AMD. Важно при этом убедиться, что на материнской плате стоят иного типа модули. Прежде чем приступать к разгону, нужно изучить каждый слот оперативной памяти, посмотреть, какая на микросхемах стоит маркировка.

Что лучше разгонять: процессор или память?

На этот вопрос IT-эксперты не дают однозначного ответа. Почти всегда имеет смысл делать и то и другое одновременно. Вместе с тем некоторые специалисты полагают, что отдельный разгон процессора даст гарантированное увеличение производительности системы. В то время как эффект от использования разогнанной памяти не всегда сопровождается реальным ускорением работы ПК, а иногда даже, наоборот, система начинает «тормозить».

Как разогнать оперативную память компьютера так, чтобы производительность гарантированно выросла, но при этом снизилась вероятность возникновения неисправностей? Раскрыть реальный потенциал аппаратных компонентов ПК, как считают IT-эксперты, можно, реализуя комплексный подход, который выражается в одновременной работе по разгону самых разных типов «железа».

В частности, практическая значимость увеличения производительности ПК возникает, как правило, при запуске компьютерных игр и мощных графических приложений. Поэтому одновременно с ОЗУ и процессором имеет смысл разогнать также и видеокарту. Выставляя параметры оперативной памяти, предполагающие искусственное ускорение ее работы, следует сопоставлять их со значениями, которые потребуется устанавливать для других аппаратных компонентов ПК.

Аспект охлаждения

Выставить оптимальные значения по частоте и таймингам — половина дела. Очень важно позаботиться о том, чтобы аппаратура выдержала повышенные в силу проведенного разгона нагрузки. Поэтому прежде чем искусственно увеличивать скорость работу ОЗУ, следует убедиться, что на ней установлена мощная система охлаждения.

Планки оперативной памяти должны находиться в непосредственной близости от радиаторов. Это правило касается, между тем, не только ОЗУ, но и процессора (а также иных «разгоняемых» видов «железа»). Очень важно, чтобы вентиляция качественно обдувала каждый слот оперативной памяти, обеспечивала постоянную циркуляцию воздуха. В некоторых случаях имеет смысл установить одновременно с заводскими кулерами дополнительную систему

19.02.2013

Несмотря на то, что оверклокерская оперативная память с отменными характеристиками, оригинальными системами охлаждения и большим разгонным потенциалом доминирует на страницах профильных изданий, в реальных продажах значительно большую долю имеют обычные, недорогие модули. Мы решили проверить, на что способны эти скромные планки DDR3 в разгоне.


После теста о влиянии частоты оперативной памяти на игровую производительность , мы невольно задумались о том, насколько оправданной может быть покупка дорогих и быстрых модулей памяти? После этого мысли ушли немного в другую сторону, и появился новый вопрос, а нельзя ли взять более доступную память и разогнать? Насколько вообще возможно повышение частоты для обычных, весьма скромных по внешнему виду, и доступных по цене решений? Чтобы ответить на все эти вопросы, мы взяли на тест четыре пары модулей памяти от разных производителей – Kingston, Silicon Power, Team, и Transcend. Самых простых и доступных, то есть тех, что выбирает большинство покупателей.


Кроме того, все больше и больше недорогих модулей памяти имеет частоту 1600 мегагерц, благодаря тому, что JEDEC одобрила этот стандарт как номинальный, а цены на более быстрые чипы памяти опустились до минимального уровня. Это породило некоторые сомнения в том, что есть какие-либо разумные доводы в пользу покупки более дорогой оверклокерской памяти с частотой 1866 мегагерц, ведь даже дешевые модули вполне могут “дотянуться” до этой частоты. А быть может им по силам и 2 гигагерца? Будем проверять. Но для начала давайте познакомимся с нашими “подследственными” в алфавитном порядке.

Kingston KVR16N11/4


Безусловно, самые оригинальные по внешнему виду модули данного теста. Как видно на фотографиях, их высота заметно ниже, чем у других модулей. Удивительно, почему другие производители не переходят на платы уменьшенной высоты, ведь по большому счету, никаких причин использовать привычные, высокие планки нет, так как они были рассчитаны на чипы памяти старого типа (TSOP), в то время как DDR3 выпускается только в корпусах BGA. Впрочем, это не дает никакого преимущества памяти Kingston, так как по характеристикам она абсолютно идентична с конкурентами. Объем модуля – 4 гигабайта, максимальная частота – 1600 мегагерц, тайминги на данной частоте – 11-11-11-28, и рабочее напряжение 1,5 вольта. Самое что ни есть стандартные и обычные на сегодняшний день характеристики. На планках установлено 16 чипов памяти емкостью 2 гигабита, собственного производства с маркировкой Kingston NO6296-01.



Отдельно отметим то, что память Kingston, в отличие от других модулей памяти в тесте поставляется в индивидуальной упаковке, и снабжено инструкцией. Насколько этот момент критичен для оперативной памяти сказать сложно, но это, безусловно, приятно, тем более, что по цене модули Kingston не отличаются от конкурентов. А учитывая эти данные, и магическое имя, годами являющиеся символом качественной и быстрой памяти, понятно, что это главный претендент на кошелек покупателя. Посмотрим, как он покажет себя в тесте.

Silicon Power SP004GBLTU160V02


Тоже отнюдь не самое неизвестное имя, но все же весьма узнаваемое. Silicon Power давно закрепил за собой солидную долю рынка бюджетной памяти, благодаря высокой надежности и действительно доступной цене. В принципе в ассортименте Silicon Power есть и решения для энтузиастов и оверклокеров под собственным именем X-Power, но они не получили большой известности, всегда оставаясь в тени “продвинутых” решений от той же Kingston, Geil, Corsair и прочих. Поэтому, если бы это был тест супер-памяти, то Silicon Power был бы на вторых ролях, но мы-то тестируем бюджетные решения, а здесь продукты этой компании явные претенденты на победу.



Впрочем, исходные характеристики модулей Silicon Power вполне стандартны. Объем 4 гигабайта, базовая частота 1600 мегагерц, тайминги 11-11-11-28,и рабочее напряжение 1,5 вольта. Как и Kingston, Silicon Power использует чипы памяти собственного производства с маркировкой S-Power 20YT5NG. Всего таких чипов 16, а емкость каждого из них равна 2 гигабитам. Никакой упаковки и комплектации к эти модулям памяти не предусмотрено.

Team Elite TED34G1600HC11BK


Компания Team относительно новый игрок на рынке оперативной памяти, и ей пока трудно бороться за покупателя с именитыми конкурентами. Впрочем, на рынке быстрых модулей к Team уже относятся достаточно серьезно, благодаря весьма приличным сериям Vulkan и Extreem. Стремясь выделить и свои бюджетные решения на фоне конкурентов, компания нашла оригинальное решение. Взгляните на фотографию. Несмотря на то, что память Team Elite стоит не дороже конкурентов, она облачена в алюминиевый радиатор. Фактически этого не требовалось, так как тепловой режим современных модулей DDR3 с частотой 1600 мегагерц более чем приемлем. Но какой эффект! Да, безусловно, любой ценитель, да и значительная часть тех, кто не совсем понимает в модулях памяти, выберет ее. Просто потому, что она выглядит солиднее, нежели конкуренты. В нашем случае радиаторы на памяти могут помочь Team Elite при разгоне, хотя эффект этот вряд ли будет сильно заметен.


К сожалению, посмотреть на чипы памяти, установленные в модулях Team Elite, нам не удалось, так как радиаторы “насмерть” приклеены к ним термоклеем. Впрочем, это не критично. К тому же все спецификации указаны на наклейке. А они вновь те же, что и у двух предыдущих моделей. Объем памяти 4 гигабайта, частота 1600 мегагерца, стандартные тайминги 11-11-11-28, и напряжение 1,5 вольта. Никакой комплектации или упаковки для модулей Team Elite производителем не предусмотрено.

Transcend 640216-4610


У модулей Transcend, равно как и у Silicon Power не удалось выявить никаких оригинальных особенностей. Все просто, скромно, и максимально экономично. Впрочем, так выглядят 90 процентов всех планок памяти данного ценового сегмента. Данная компания вообще никогда не отличалась особой оригинальностью при производстве внутренних компонентов для ПК. Ее память всегда проста и дешева, а видеокарты, которыми Transcend также когда-то занималась, были полностью референсными. Тем не менее, она является таким же полноправным претендентом на покупку, хотя и уступает по известности бренда всем конкурентам. Впрочем, как известно из истории, победить может и тот, от кого этого совсем не ждешь.



Тем более что по базовым характеристикам модули Transcend не отличаются от остальных. Частота 1600 мегагерц, тайминги 11-11-11-28, напряжение 1,5 вольта, и объем 4 гигабайта. Учитывая, что сама Transcend чипы памяти не производит, совсем не удивительно было обнаружить на ее планках чипы производства компании Elpida с маркировкой J2108BDBG-GN-F. Их емкость равна 2 гигабитам, и как следствие, для достижения общего объема в 4 гигабайта их распаяно 16 штук.

Методика тестирования

Учитывая, что тестировать их на равных частотах бессмысленно, главной задачей данного теста было раскрытие скрытого потенциала с целью выявить лучший комплект модулей. Для этого мы пытались найти максимальную стабильную частоту работы при повышении напряжения до 1,65 вольта, то есть максимального безопасного уровня. Также мы попытались выяснить на каких минимальных таймингах способна работать память при своей номинальной частоте, которая для всех модулей составляет 1600 мегагерц. Ведь, как известно, базовые модули выставляются с запасом, и всегда есть вероятность получить чуть большую производительность снижая тайминги. Так же минимальных таймингов мы пытались добиться и на самой высокой достигнутой частоте.


Учитывая, что наш тестовый стенд использует процессор Intel с фиксированной частотой опорной шины, разгон памяти мы могли осуществлять только с помощью множителей, что несколько ограничило наши возможности фиксированными частотами в 1600, 1866, 2000, и 2133 мегагерца. Тем не менее, достаточно объективные данные о потенциале модулей благодаря этому мы получим. К тому же ранжировать память с одинаковой максимальной частотой должны помочь тайминги. Если при равных частотах, один из модулей сможет работать на более низких таймингах, то он, безусловно, будет более предпочтителен. Кстати, обладатели процессоров AMD, благодаря возможности регулировки частоты передней шины, имеют больше возможностей по поиску предельной частоты, и естественно смогут добиться от тех же модулей памяти большего.

Разгон

Если честно, то в глубине души мы надеялись на то, что хоть одна пара моделей достигнет заветной планки в 2000 мегагерц, но эти надежды разбились о суровую действительность. Тем не менее, назвать результаты “огорчающими” нельзя, так как три из четырех решений отлично работали на частоте 1866 мегагерц. И только модули от Transcend совершенно отказались делать этот шаг, так и оставшись на уровне 1600 мегагерц. Обидно. Тройка лучших после повышения частоты начала бороться за минимальные тайминги, чтобы выявить однозначного лидера. Им оказались модули производства Silicon Power, которые при повышенной частоте смогли стабильно работать на великолепных таймингах 8-9-8-24. Это вполне достойный показатель не только для бюджетной, но и для оверклокерской памяти. А вот модулям Team Elite и Kingston такое повышение не далось малой кровью, и функционировать они смогли лишь на таймингах 12-12-12-32, что трудно назвать хорошим результатом. А модули Silicon Power, в итоге довершили разгром соперников, тем, что смогли работать при указанных таймингах и частоте на номинальном напряжении в 1,5 вольта, а не 1,65, как предполагалось по условиям теста. Однозначная и безоговорочная победа.


Вторая дисциплина по достижению минимальных таймингов на базовой частоте в 1600 мегагерц и без повышения напряжения также покорилась именно модулям Silicon Power, хотя и с небольшим перевесом. Впрочем, тайминги 8-9-8-21 можно назвать отменными для такой частоты. Вторая группа состоящая из модулей производства Team и Kingston вновь продемонстрировала одинаковые результаты “согласившись” на тайминги 9-9-9-21. А вот Transcend вновь проявил упорство достойное лучшего применения, отказавшись работать даже на 10-10-10-26, так и оставшись истинным приверженцем своей базовой частоты и таймингов.

Тесты

Итак, результаты разгона ясны, но перед тем как переходить к заключению, давайте проверим, к каким результатам привело это повышение частот и снижение таймингов. Большое количество тестов использовать бессмысленно, так как большинство приложений практически не заметит такие изменения в конфигурации, да и потребность в пропускной способности памяти у каждого приложения разная, а потому мы решили обойтись синтетикой. AIDA 64 покажет нам какой прирост в чистой пропускной способности мы получили, и как изменились задержки. А PCMark 7, а точнее входящий в него тест Video Transcoding Downscaling оценит реальный эффект от этих изменений, так как именно к пропускной способности памяти он очень критичен.





Как видите, AIDA 64 оценила все изменения более чем адекватно, продемонстрировав большую любовь к более высоким частотам, нежели к низким таймингам. Впрочем, пара модулей Silicon Power, благодаря сочетанию минимальных таймингов и максимальной частоты, все же оказывается впереди, да и задержки он демонстрирует минимальные. Удивительно выглядят результаты модулей от Transcend, которые местами демонстрируют неплохие результаты. Видимо AIDA решила накинуть им немного “за стабильность”…


В PCMark 7 разброс результатов выше, и здесь Transcend делать уже нечего. При этом, что интересно, модули Team Elite при работе на минимальных таймингах оказались лучшими, опередив даже Silicon Power. А вот Kingston заметно отстал. Зато на максимальной частоте реванш берет Silicon Power, опережая Kingston, а модули Team оказываются лишь на третьем месте. Кстати, отметим, что этот тест явно показал, что он предпочитает меньшие задержки, нежели более высокую частоту.

Выводы

Назвать однозначного победителя теста несложно – это модули от Silicon Power, которые показали более чем достойные результаты, особенно это относится к минимальным таймингам. По своим характеристикам после разгона они оказались лучше чем большая часть оверклокерских решений одно- двухлетней давности. И это при вполне бюджетной цене. Такие модули мы, безусловно, рекомендуем к покупке.

Середняками, которые также не стоит списывать со счетов, стали Team Elite и Kingston. Причем их главным достоинством является возможность снизить тайминги на номинальных частотах. Это дает хороший эффект. Значительно лучший, чем повышенная частота при более высоких таймингах. Они также вполне достойны покупки… в том случае, если нет возможности купить Silicon Power.

  • Я попал. Не стрелой в яблоко. Я попал тем чем в троллейбусе сидят приличные люди.
    И прямо на рабочее место проктолога. Я почему с вами так откровенно? У вас тоже этот Интел? На котором сколько память не разгоняй, все одно АМД сзади? И в играх FPS хороший? Только немного слева или справа? Ну вы в курсе? И тут то мне досталась (вру, сам выпросил) на тест память.

    Я почему так с вами (второй раз спрашиваю, не?). Их было два комплекта для обзора. Клянусь своим деревянным глазом! Я то думал как: разгонит, оторвет радиаторы, напишет все, не скрывая интимного, и мне останется только вот так немного пошутить. А он то не дурак.. У него тоже интел. И написал он хорошо. Ну а вы знаете как на этом разгонять память? Нет? У, тогда моя статья - вам)
    Ладно, завязываю я с лирикой и начинаю писать исключительно суръезно.

    Упаковка и комплектация.
    Тут мне и писать то нечего. съел весь мой хлеб и масло в придачу. Да. Комплект памяти Kingston HyperX Predator 1866MHz KHX18C9T2K2/8X поставляется в скромном пластиковом блистере.


    _
    На упаковке надписи с названием товара и стилизованная голова какого-то мужика (основатель фирмы что-ли?).
    Внутри лежат, прочно закрепленные силой трения, 2 модуля памяти и бумажка. Так, кто спер бумажку? Ну что за варвары? Туалетную бумагу придумали в Китае в 6 веке нашей эры!
    А, прошу прощения, вот она!
    _________________________________________________________

    _________________________________________________________
    На бумажке простыми и незамысловатыми рисунками объяснено куда что вставить и откуда перед этим вытащить, чтобы у вас все сложилось хорошо с памятью Kingston.
    Достаем сами модули. Ого! Это алюминиевые радиаторы? А не чугун?
    __________________________________________________________







    __________________________________________________________

    Вес модулей весьма солидный и сразу заставляет вас проникнуться мыслью, что держите вы не какие-нибудь безделушки, а настоящие модули для энтузиастов. И пусть вас не смущает голубой цвет радиаторов - это модули для настоящих мужчин!
    Технические характеристики
    Про характеристики я тоже не все писать буду. Кому интересно, можете прочитать у . Или сходить на официальный сайт. Что повторяться то?
    Добавлю только что в серии HyperX Predator у Kingston несколько комплектов модулей памяти с частотами до 2666МГц. Мне на тестирование достался младший комплект из двух модулей памяти по 4 Гб: Kingston HyperX Predator KHX18C9T2K2/8X с частотой 1866 МГц.
    Модули могут работать на частотах:
    800 МГц с таймингах 6-6-6-15
    1066 МГц с таймингах 7-7-7-20
    1333 МГц с таймингами 9-9-9-24

    Так же имеются 2 профиля Intel XMP версии 1.2
    1600 МГц с таймингами 9-9-9-27 при напряжении питания модулей 1.65 В.
    1866 МГц с таймингами 9-11-9-27 при напряжении питания модулей 1.65 В.

    _________________________________________________________

    _________________________________________________________

    Разгон

    Разгон памяти производился на 2 матплатах:
    Очень бюджетная Gigabyte GA-PA65-UD3-B3
    На Intel® H61 чипсете.
    И среднебюджетная ASUS P8 Z77-V-LX
    На чипсете Intel® Z77 Express.
    * Процессор: Intel® Core i5-3550;
    * Кулер: Thermaltake Big Typhoon;
    * Видеокарта: Asus GeForce GTX 650 Ti;
    * SSD Plextor M5S 128Гб;
    * БП: Thermaltake Tough Power W0104 650Вт
    и Corsair CX600.

    Немного о методике разгона памяти на платформе Intel®.
    Частоту памяти можно изменить только множителем. Множитель задает соотношение частоты BCLK (базовой частоты тактового генератора на материнской плате) и частоты памяти. Частоту BCLK на платформе Intel® можно менять в очень небольших пределах- пару мегагерц вверх и вниз. Стандартное напряжение для памяти (Vdimm) DDR3 составляет 1.5 В (существуют еще энегроэффективные DDR3L с 1.35В и DDR3U с 1.25 В, но у нас речь не о них). Обычное напряжение для оверклокерских модулей - 1.65 В. Intel не рекомендует превышать отметку в 1.65 В, так как это может привести к повреждению процессора. Дело в том что контроллер памяти питается от Vdimm, и завышение этого напряжения может привести к локальному перегреву процессора с фатальными последствиями. То есть весь разгон сводится к установке множителя памяти, подбора таймингов и напряжения при которых память будет работать стабильно.

    Часть первая. Матплата Gigabyte GA-PA65-UD3-B3

    С установкой, благодаря конструкции кулера Big Typhoon, у меня проблем не возникло. У него радиатор вынесен достаточно далеко от матплаты и не перекрывает слоты памяти. С башенными кулерами могут быть проблемы при установке таких крупногабаритных модулей.
    К сожалению, фото настроек BIOS и установки погибли вместе с первым вариантом статьи, а на второй раз меня не хватило. Впрочем, интересного там и нет ничего. Хотя вот фото модулей, установленных в плату Gigabyte с размерами.
    __________________________________________________________


    __________________________________________________________
    Если Вы хотите приобрести подобную память и Вас габаритный кулер, по данному рисунку можно прикинуть, будет ли он мешать установке модулей.

    Настройки памяти у Gigabyte достаточно скромные. Можно выставить частоту (множитель), настроить тайминги и менять напряжение с шагом 0.02В (то есть даже рекомендованные 1.65В для XMP профилей не выставишь - либо 1.64 В, либо 1.66 В). О существовании профилей Intel XMP плата не подозревает.
    В общем, долго я рассказывать не буду. Один раз каким-то чудом мне удалось запустить память на 1600 МГц. Потом полез в BIOS что-то менять и все. Как ни бился, на частоте выше 1333 МГц палата не стартовала. Вывод: покупать оверклокерскую память для установки в такие бюджетные платы не стоит.

    Часть вторая. Разгон на ASUS P8 Z77-V-LX.

    Матплата поддерживает ХМР профили.
    Установка модулей так-же прошла без проблем - свободного места достаточно.
    __________________________________________________________


    __________________________________________________________
    Настройки памяти на этой плате гораздо интереснее.
    Напряжение можно менять от 1.185В до 2.135В с шагом 0.005В.
    __________________________________________________________


    __________________________________________________________

    Эффективную частоту можно установить от 800 до 3200 МГц.
    __________________________________________________________


    __________________________________________________________
    Ну и, естественно, задавать все тайминги вручную.
    __________________________________________________________


    __________________________________________________________

    Лирика: Так меня утомила плата Gigabyte, что я стал настройки BIOS на асусе врукопашную фотоаппаратом фотографировать. Потом вспомнил, что есть волшебная кнопочка "сделать скриншот" :)
    По дефолту память заводится на частоте 1333 МГц. Чтобы она заработала на заявленной частоте, нужно в BIOS активировать ХМР профили и выставить частоту.
    Вот в картинках для неопытных пользователей, а то очень часто задают вопросы, почему я купил память 1866 МГц, а она работает на 1333 МГц. Это, конечно для ASUS P8 Z77-V-LX, но и на других материнских платах настройки сильно отличаться не будут.
    Выбираем параметр Ai Overclock Tuner и ставим значение Х.М.Р. для использования ХМР профилей или Manual для ручного разгона.
    __________________________________________________________


    __________________________________________________________
    Теперь, если мы выставили ХМР профили, можно выбрать, какой профиль использовать.
    __________________________________________________________


    __________________________________________________________

    Матплата корректно выставила напряжение и тайминги, прописанные в профиле.
    Максимальная частота, на которой память работала без проблем составила 2400 МГц с таймингами 11-12-11-30-1 и напряжением 1.75 В. Радиаторы при таком напряжении нагревались максимум до 35 градусов Цельсия. Такой нагрев ставит под сомнение целесообразность их применения на такой памяти. Это скорее дань "статусности".
    Уменьшение таймингов или напряжения приводило к нестабильности. Что характерно, проблемы в первую очередь возникали с браузером Firefox, при малейшей нестабильности он вываливался с ошибкой, багрепортами я заспамил сайт Мозиллы:) Видимо, работа браузера очень зависит от стабильности оперативной памяти.
    Ну а теперь немного негатива о платах Asus: как меня задолбала эта плата! Ну почему нельзя сделать нормальный продукт? При переразгоне памяти плата делала что хотела:
    1)стартовала с черным экраном и не пускала в биос;
    2)тупо несколько раз подряд пыталась завестись, не реагируя никак на мои действия;
    3)зависала в BIOS.
    Несколько раз пришлось сбрасывать джампером биос в дефолт. Почему дешевенькая Gigabyte при нестабильных настройках памяти просто сбрасывала все в дефолт и предлагала зайти в биос и самому все исправить?
    Еще из косяков этой платы: ни в какую не захотела работать с моим БП Thermaltake Tough Power W0104 650Вт. Клянусь, все с блоком нормально. Паранойя какая-то. Причем, выглядело это так: загружается система, все работает, потом бац - выключение, перезагрузка, опять все хорошо и опять через пару минут - бац! Никаких синих экранов. Я голову сломал, пока додумался БП заменить. С другими платами он абсолютно нормально работает. Asus Anti-Surge выключил сразу в BIOS, но что-то у меня подозрение что она все равно работает.
    После установки комплектных драйверов с диска, в диспетчере остается нераспознанное устройство. Это не мешает работе, но неприятно. Лечится.

    Тестирование
    Для тестирования использовалось следующее ПО:
    7-Zip (встроенный тест упаковки-распаковки архивов);
    3DMark 2013 Тест Fire Strike;
    S.T.A.L.K.E.R. Call of Pripyat Benchmark;
    AIDA64 тесты пропускной способности.
    Память тестировалась в 3 режимах:
    частота 1333 МГц, тайминги 9-9-9-24-1, напряжение 1.5В;
    частота 2200 МГЦ, тайминги 9-11-10-27-1, напряжение 1.72В;
    частота 2400 МГц, тайминги 11-12-11-30-1, напряжение 1.75В.
    В 7-Zip и AIDA64 очень наглядно наблюдается зависимость скорости от частоты памяти:
    __________________________________________________________








    __________________________________________________________

    3DMark 2013 никак не реагирует на изменение частоты работы памяти.
    __________________________________________________________


    __________________________________________________________
    Результаты 3DMark подтверждает бенчмарк Call of Pripyat.
    __________________________________________________________


    __________________________________________________________
    Максимальная производительность изменяется в пределах погрешности. Хотя минимальный FPS растет с ростом частоты. Кроме тестовой сцены "Дождь", где почему-то наоборот минимальный FPS падает с ростом частоты.

    Выводы : Очень неплохой комплект памяти с актуальным объемом 8Гб, которого сейчас достаточно для основного круга задач выполняемых компьютером. Неплохой разгонный потенциал, который впрочем, зависит от возможностей вашей материнской платы. Красивые радиаторы, именно придание красоты и статусности и есть их основная функция, ибо реально они при штатных частотах работы памяти не нужны.
    Из минусов можно назвать только увеличенные габариты модулей, которые ограничивают вас в выборе кулера. Ну и более скоростной комплект 2400MHz Kingston HyperX Intel XMP Predator стоит всего примерно на 250 руб. дороже. Впрочем, с разгоном эта память прекрасно работает на таких частотах.

    07.08.2012

    Сравнение четырех комплектов памяти для разгона.

    За пять лет эволюции DDR3-памяти вышло уже несколько поколений продуктов, нацеленных на энтузиастов, стремящихся добиться максимальной производительности. Перед тем как приступать к рассмотрению возможностей современных модулей, давайте вспомним, как происходила эта эволюция.

    Чтобы было понятно, о чем речь, приведем базовые понятия.

    Частота работы памяти . Измеряется количеством тактов в секунду. Это основная характеристика, определяющая пропускную способность памяти.

    Тайминги . Проще говоря, это задержки, необходимые для выполнения той или иной операции. Формула основных таймингов выглядит как CL-tRCD-tRP-tRAS-Command Rate, где CL (Cas Latency) – минимальное количество тактов между подачей команды на чтение данных и непосредственно началом чтения данных. Если рассмотреть память как двумерный массив, то tRCD (RAS to CAS delay) – это минимальное количество тактов между подачей сигнала на выбор строки и сигнала на выбор столбца. tRP (Row Precharge) - минимальное время закрытия строки, после чего можно активировать новую строку банка. tRAS (Row Active Time) - минимальное время активности строки. Command Rate - минимальное время между подачей двух команд.

    Чем выше частота работа памяти и чем ниже значения таймингов, тем производительнее память. Также стоит понять, что задержки измеряются в количестве необходимых для операции тактов, а частота работы есть не что иное, как количество тактов в секунду, т. е. при росте частоты временные значения таймингов уменьшаются. Именно поэтому повышение частоты сопряжено с необходимостью увеличивать значения таймингов.

    А теперь о том, какие микросхемы были наиболее популярны в различные временные отрезки.

    1. Изначально в продаже появилась память DDR3 на базе микросхем плотностью 512 Мбит, что давало объем 512 Мбайт для односторонних и 1 Гбайт для двусторонних модулей. Это было в 2008 г., и в основном энтузиасты ценили память на базе микросхем Micron D9GTR. Главное, что их отличало, – возможность работать с таймингами вида 6-5-5 при частотах вплоть до 1800 МГц или 7-6-6 при частотах вплоть до 2 ГГц. Кроме того, к особенностям можно отнести линейную зависимость результатов разгона от используемых напряжений, которые поднимались вплоть до значений 2,2--2,3 В. Данные микросхемы отошли на второй план с появлением платформы LGA 1156, где высокие напряжения питания памяти были критичными и могли приводить к деградации процессоров.

    2. В конце 2009 г. начали массово появляться модули памяти на базе микросхем с плотностью в 1 Мбит, что позволило удвоить емкость модулей. Здесь пальму первенства перехватили микросхемы производства Elpida, а именно, Elpida MNH-E Hyper. Данные микросхемы позволили работать с частотами вплоть до 2200 МГц при агрессивных таймингах (вплоть до 7-8-7) и сравнительно небольших напряжениях. Интересно, что почти сразу после начала выпуска микросхем MNH-E массово появились случаи деградации памяти и ее выхода из строя. Эта проблема была разрешена выпуском обновленной версии микросхем, которую назвали MGH-E.

    Дальнейший прогресс и снижение цен на память сделали популярными микросхемы «с неровными» сочетаниями таймингов, в основном, требующие завышения значения TRCD на две-три единицы относительно CAS и TRP. Здесь отличились Elpida BDBG и Elpida BBSE, а также несколько поколений микросхем Powerchip. Особенностью данной памяти является возможность работать на частотах 2200--2400 МГц при низких напряжениях и не слишком высоких таймингах. При этом прогресс не стоит на месте, и если раньше 2200 МГц достигались при таймингах вида 8-10-8 или 8-11-8, то сейчас особенно удачные модули могут обеспечивать и 2300--2400 МГц при 7-10-7/7-11-7. Данная память популярна и по сей день, микросхемы Powerchip и Elpida BBSE до сих пор являются основой всех «оверклокерских» двусторонних модулей объемом 2 Гбайт. Следует отметить, что с выходом процессоров Intel Sandy Bridge из-за плохой совместимости вышла из моды память на базе MGH-E.

    3. 2011 г. ознаменовался началом массового выпуска памяти на базе микросхем плотностью 2 Мбит. Наиболее популярными стали модули, имеющие объем 4 Гбайт. Здесь выбор микросхем невелик, наиболее распространенной стала продукция производства Samsung и Hynix. В способностях использовать агрессивные значения таймингов данная память уступает микросхемам плотностью 1 Мбит, но превосходит их в умении работать на высоких частотах. Кроме того, особенностью этой памяти является работоспособность при низких напряжениях. В общем, микросхемы Samsung предпочтительнее в диапазоне частот до 2400 МГц, в то время как на микросхемах Hynix уже встречается память, штатно функционирующая на частоте 2800 МГц. Один из таких комплектов даже будет участвовать в данном тестировании. А еще среди модулей объемом 4 Гбайт следует отметить микросхемы Micron D9PFJ, способные разгоняться на уровне старых D9GTR. Причем для хорошего разгона требуется напряжение питания около 2 В. Также данная память независимо от таймингов «упирается» в частоту 2150--2200 МГц. В настоящее время начинают появляться микросхемы плотностью 4 Мбит, однако они пока не отличаются высоким частотным потенциалом.

    В нашем тестировании будут участвовать четыре современных комплекта высокочастотной памяти, а именно два 2-Гбайт Kingmax Hercules Nano DDR3-2400 на базе микросхем Powerchip, два 4-Гбайт G.Skill Trident X DDR3-2400, два 4-Гбайт Corsair Dominator GT DDR3-2133 на основе микросхем Samsung и два 2-Гбайт Kingston HyperX DDR3-2800, построенных на микросхемах Hynix.

    Тестовый стенд и методика тестирования

    Для изучения частотного потенциала были выбраны платформа AM3+, системная плата Asus M5A99X Evo и процессор AMD FX-8150. Как выяснилось в процессе тестирования, максимальная частота работы памяти, доступная связке «системная плата - процессор», оказалась на уровне 2637 МГц. Это недотягивает до максимальных способностей комплекта Kingston, но все же перекрывает весь диапазон «потребительских» частот, достижимых с процессорами, не подвергающимися селекции.

    Проверка частотного потенциала производилась для трех значений напряжения питания: 1,5 В – стандартное значение напряжения питания памяти, установленное спецификациями JEDEC; 1,65 В – значение напряжения большинства «оверклокерских» комплектов памяти; и 1,8 В – значение, близкое к предельно допустимому для современной памяти типа DDR3. В качестве теста стабильности был применен Prime95 в режиме Blend, наиболее быстро выявляющий нестабильность в работе ОЗУ. Проверка на стабильность производилась в течение 5--10 мин.

    Kingmax FLLE85F-B8KJ9A FEIS

    Данный комплект не имеет радиаторов системы охлаждения, однако, по заверениям Kingmax, на микросхемах используется специальное напыление, существенно улучшающее отвод тепла. Верить производителю или нет, вопрос спорный. На мой взгляд, достаточно одного факта – на модулях имеются наклейки с характеристиками, которые перекрывают сразу по три микросхемы. Следовательно, тепло от них не отводится вовсе. Однако микросхемы Powerchip горячим нравом не отличаются, и если не «жарить» их напряжениями 1,8 В+, то и проблем возникать не должно.

    Упрощенно, многие считают оптимальной формулу таймингов вида X (X+3) X, т. е. когда CL=TRP, а значение TRCD завышено на три единицы. На самом же деле, проблема разгона Powerchip кроется не в наличии оптимальных или неоптимальных формул таймингов, а в различном частотном потенциале памяти для каждого из них. К примеру, зависимость CL от напряжения в диапазоне от 1,5 до 1,8--1,85 будет линейная, и удачные модули характеризуются значением частоты 1400 МГц/В для CL7, т. е. от приблизительно 2100 МГц при 1,5 В до примерно 2500 МГц при 1,8 В. Частотный потенциал по TRCD с ростом напряжения обычно изменяется не так сильно, как в случае с CL, и для разных частот нужны разные значения. Так, для CL равного 9 в зависимости от удачливости комплекта доступны частоты 1950--2100 МГц, для 10 - частоты 2200--2350 МГц и для 11 - частоты 2400--2600 МГц. А если разгон упирается в CL или TRCD, то наблюдается минимальная разница между частотой стабильной работы и максимальной «скриншотной» частотой. Особняком стоит тайминг TRP, который на удачных комплектах можно держать на одинаковом с CL значении вплоть до частот 2600 МГц+. В случае же с неудачными модулями TRP приходится завышать на одну или даже две единицы. Если же разгон ограничивается значением TRP, то появляется очень большая разница между значением «скриншотной» частоты и частоты полностью стабильной работы, иногда достигающая даже 500 МГц.

    Как видно на графике, в комплект Kingmax попали не слишком удачные микросхемы, иначе говоря, просто не повезло. Если оценивать разгон по CL, то показатели в целом неплохие, ведь в итоге с CL7 удалось достичь частоты работы памяти 2360 МГц. В то же время комплект оказался неудачным по значению TRCD и еще более неудачным по значению TRP, что показали результаты при таймингах вида 7-10-8, 7-11-8 и 7-11-9. Интересно отметить, что при таймингах вида 7-11-7 и напряжении питания 1,65 В частота стабильной работы составляет всего 1967 МГц, в то время как Windows можно загрузить и при частоте работы памяти 2400 МГц. Реакция на недостаточное значение TRP проявляется в полной мере. Также показателен режим 7-10-8, демонстрирующий, что память не любит высоких напряжений, когда разгон ограничивается значением TRCD.

    При «родных» для комплекта таймингах 9-11-9 видно, что частотный потенциал памяти падает при росте напряжения свыше 1,65 В, что свидетельствует о слишком низком значении TRCD. К слову, свои штатные 2400 МГц память способна взять при напряжении питания 1,65 В, но не сможет при напряжении питания 1,7 В, штатном для модулей. Следовательно, при установках согласно штатным характеристикам память нестабильна. Интересно, что разгон модулей при таймингах 8-11-9 и 7-11-9 совпадает, и от CL8 есть хоть какая-то польза лишь при таймингах 8-12-10. Также минимален прирост частоты при переходе на CL9/CL10/CL11, а максимальной достигнутой частотой является 2480 МГц.

    Kingston KHX2800C12D3T1K2/4GX

    Эта память оснащена высокими радиаторами, и хотя микросхемы расположены лишь с одной стороны модуля, они закрывают модуль с обеих сторон.

    Если учитывать холодный характер современной памяти, то такие радиаторы представляют собой, скорее, декоративное решение, способное привести к проблемам совместимости с крупными процессорными охладителями. Используются микросхемы производства Hynix, которые, в отличие от Powerchip, ведут себя куда более предсказуемо и логично. Для наиболее полного раскрытия частотного потенциала памяти на микросхемах Hynix используется формула таймингов вида X (X+2) (X+1), т. е. когда TRCD завышен относительно CL на две единицы, а TRP - на одну. Кроме того, одной из особенностей памяти, основанной на микросхемах Hynix, является слабый отклик на увеличение напряжения питания свыше 1,65 В.

    Результаты разгона для микросхем Hynix неплохие, комплект относительно удачный. Об этом свидетельствует возможность работать при таймингах 9-11-10 на частотах вплоть до 2312 МГц. При таймингах вида 12-14-13 и выше ограничивает разгон связка «процессор - системная плата».

    G.Skill F3-2400C10D-8GTX

    Как и в случае с модулями Kingston, комплект G.Skill, несмотря на низкое тепловыделение микросхем, оснащен высокими радиаторами.

    Используются микросхемы Samsung, максимально предсказуемые при разгоне, как и в случае с Hynix. Они имеют оптимальные формулы таймингов. Но, в отличие от Hynix, для микросхем Samsung используется две различные формулы таймингов: X (X+1) (X+1), оптимальные при низких напряжениях, и X (X+2) (X+2), оптимальные при высоких.

    Как видно из графика, в диапазоне частот 2000--2500 МГц более предпочтительна память на базе микросхем компании Samsung, нежели на микросхемах Hynix, поскольку она позволяет достигать тех же частот при меньших значениях таймингов, особенно если рассматривать режимы работы с низкими напряжениями. А вот после 2500 МГц память на микросхемах Samsung уже не слишком хороша. Дальнейшее увеличение таймингов не привело бы к значительному росту частотного потенциала, даже если бы разгон не сдерживался используемой платформой. Помимо того, следует отметить наличие запаса по частоте, превышающего 100 МГц, при использовании штатных характеристик (10-12-12, 1,65 В), что является редкостью для «оверклокерской» памяти.

    Corsair CMT8GX3M2B2133C9

    Если у Kingston и G.Skill все же имеются высокие радиаторы, то в Corsair пошли еще дальше, обеспечив модули памяти активным охлаждением с омощью

    двух вентиляторов.

    .

    Понятно, что пользы от этого никакой (особенно с учетом штатного напряжения памяти в 1,5 В), зато внешний вид модулей самый грозный. К слову, о внешнем виде. На этикетке с характеристиками указана формула таймингов 9-11-9, хотя в XMP-профиле написана формула 9-11-10. Разумеется, при 2133 МГц и 9-11-9 память даже не стартует. Как и в случае с комплектом G.Skill, используются микросхемы Samsung, так что от модулей можно ожидать схожего поведения.

    Данный комплект чуть более удачный, чем G.Skill, хотя с увеличением напряжений и таймингов разница все же стирается. Основное превосходство комплекта Corsair проявляется при таймингах 8-9-9 и 8-10-10. Кстати, частотный потенциал памяти при штатных таймингах (9-11-10) совпадает с потенциалом памяти при 9-10-10. Следовательно запас по частоте со штатными характеристиками превышает 100 МГц.

    Тестирование производительности

    Для исследования производительности мы использовали следующие тесты: wPrime 1.55 (режимы 32M и 1024М), Super Pi 1.5 (режим 1M), WinRar (встроенный тест производительности), 7-Zip (встроенный тест производительности), Cinebench R10 (тест CPU), Cinebench R11.5 (тест CPU) и тесты памяти из программного комплекса Aida64.

    Базовые настройки системы:

    частота работы процессора - 4503 МГц (19x237), контроллера памяти - 2607 МГц.

    Тестирование производилось для частот работы памяти 2528, 2212 и 1896 МГц при минимально доступных для каждого из комплектов памяти таймингах. Показатели комплектов Corsair и G.Skill объединены, ибо результаты их разгона практически идентичны. Память Kingmax тестировалась только при частотах 2212 и 1896 МГц, поскольку работать при частоте 2528 МГц не способна.

    По результатам измерений производительности прежде всего выделяется комплект Kingmax. Несмотря на свое невезение с одним конкретным модулем, он лидирует в большинстве тестов. Память на базе микросхем Samsung и Hynix показала приблизительно одинаковые результаты. Однако следует отметить провал комплекта Kingston в тесте производительности WinRar. Это, скорее всего, было обусловлено односторонней компоновкой модулей с восемью микросхемами, а не с шестнадцатью, как у всех остальных участников тестирования.

    Итоги

    Пока еще пальма первенства в тестах производительности остается за памятью на микросхемах плотностью 1 Мбит. Однако за более высокий частотный потенциал при агрессивных значениях таймингов зачастую приходится расплачиваться непредсказуемостью поведения модулей, а также отсутствием каких-либо универсальных формул таймингов. Полной противоположностью можно назвать память на основе микросхем Samsung и Hynix. Разгонять их несложно, память максимально предсказуема, однако предельные возможности данной памяти все же выше. Если выбирать между Hynix и Samsung, то в большинстве случаев предпочтительнее будет выглядеть память на базе микросхем Samsung, т.е. среди испытуемых комплектов - Corsair и G.Skill.