Смотреть что такое "Протоколы прикладного уровня" в других словарях

1. Распределённая информационная система. Определение, характеристики и примеры . –

Рсои – набор независимых компьютеров, представляющийся их пользователям единой ИС. Характеристики – 1) От пользователей скрыты различия между компьютерами 2) Пользователи и приложения единообразно работают в распределенных системах 3) РС должны легко поддаваться расширению. Примеры – Служба Web, Сеть рабочей станции в отделе компании

2. Требования, предъявляемые к распределённым системам: прозрачность, открытость и масштабируемость - 1) Прозрачность – рсои, которая представляется в виде единой КС. 2) Открытость – использование стандартного синтаксиса и семантики для реализации служб системы. Открытые РС обладают гибкостью – легкость конфигурирования системы, состоящей из разных компьютеров. 3) Масштабируемость – измеряется в трех направлениях: 1. По отношению к размеру 2. Географический 3. В административном смысле

3. Возможности и проблемы связанные с использованием распределенных систем.

4. Технология «Клиент - сервер». Обязанности клиента и сервера. Двухуровневая и многоуровневая модели клиент-сервер. –

Технология взаимодействия, в которой одна программа запрашивает выполнение какой-либо совокупности действий, а другая её выполняет, называется Технология клиент-сервер. Модель клиент-серверного взаимодействия определяется прежде всего распределением обязанности между клиентом и сервером. Можно логически выделить три уровня: 1) Уровень пользовательского интерфейса 2) Уровень обработки (прикладной уровень) 3) Уровень данных(управления данными).

Двухуровневая архитектура – архитектура, в которой прикладные и пользовательский сервисы реализованы на клиентской рабочей станции,а данные централизованно хранятся на сервере

Многоуровневая архитектура – архитектура, распределяющая пользовательские сервисы, прикладные сервисы и сервисы данных

5. Серверы приложений и прикладные протоколы . – Сервер приложений – это ПО, предназначенное для выполнения прикладных процессов. Сервер приложений взаимодействует с клиентами и взаимодействует с БД

Протоколы – это набор правил и технических процедур, регулирующих порядок выполнения некоторой связи между компьютерами в компьютерной сети.

Прикладные протоколы – протокол пересылки файлов FTP, протокол Telnet, протокол http, протоколы SMTP POP3(почтовые протоколы), протокол NNTP

6. Удаленный вызов процедур RPC . Принципы реализации, этапы выполнения, асинхронный вызов RPC . – Технология RPC широко используется для построения распределенных систем. Удаленный вызов процедур – класс технологий, позволяющих компьютерными программами вызывать функции или процедуры в другом адресном пространстве.(на удаленных компьютерах)

Принципы – Вызывающая процедура не должна уведомляться о том, что вызываемая процедура выполняется на другой машине и наоборот – это прозрачность. Для выполнения удаленной процедуры в библиотеку помещается специальная версия этой процедуры, называемая клиентской заглушкой.

Этапы выполнения – 1) Процедура клиента обычным образом вызывает клиентскую заглушку 2) Клиентская заглушка создает сообщение и вызывает локальную ос 3) ОС клиента пересылает сообщение удаленной ос 4) Удаленная ОС передает сообщение серверной заглушке 5) Серверная заглушка извлекает из сообщения параметры 6) Сервер выполняет вызов 7) Серверная заглушка запаковывает результаты в сообщение 8) ОС сервера пересылает сообщении ос клиента 9) ОС клиента принимает сообщение и передает его клиентской заглушке

7. Основные понятия web -программирования. – web-документ – гипертекстовый документ, содержащий в себе гиперссылки на различные информационные ресурсы. Web-сайт – совокупность объединенных по смыслу и связанных с помощью гиперссылок web-документов. Публикация ресурсов – возможность размещения на сервере некоторого гипертекстового документа. Гипертекст – форма представления информационных объектов

8. Язык HTML. Основные теги. Структура HTML-документа. Пример. html – документ – это текстовый ascii-файл, содержащий текст, и html-теги. Существуют две группы тегов – контейнеры<имя тега [список атрибутов]>текст и автономные (одиночные) теги(). Метаданные – необработанная информация, предназначенная для идентификации документа и указания режима отображения web-страницы. Последней версией HTML является HTML 4.01.

9. Язык HTML. Теги форматирования текста: абзацы, заголовки, стиль шрифта. Пример. – Атрибуты тега body – bgcolor(цвет фона),text, link (цвет гиперссылок). Заголовки - 1 самый крупный, 6 самые мелкий. Абзацы -

10. Язык HTML. Формирование таблиц. Пример создания таблицы на языке HTML. Основные теги таблицы -

..
начало и окончание таблицы.. - начало и окончание строки - заголовок таблицы

Протоколы прикладного уровня

Почему существуют два транспортных протокола TCP и UDP, а не один из них? Дело в том, что они предоставляют разные услуги прикладным процессам. Большинство прикладных программ пользуются только одним из них. Вы, как программист, выбираете тот протокол, который наилучшим образом соответствует вашим потребностям. Если вам нужна надежная доставка, то лучшим может быть TCP. Если вам нужна доставка датаграмм, то лучше может быть UDP. Если вам нужна эффективная доставка по длинному и ненадежному каналу передачи данных, то лучше может подойти протокол TCP. Если нужна эффективность на быстрых сетях с короткими соединениями, то лучшим может быть протокол UDP. Если ваши потребности не попадают ни в одну из этих категорий, то выбор транспортного протокола не ясен. Однако прикладные программы могут устранять недостатки выбранного протокола. Например, если вы выбрали UDP, а вам необходима надежность, то прикладная программа должна обеспечить надежность. Если вы выбрали TCP, а вам нужно передавать записи, то прикладная программа должна вставлять маркеры в поток байтов так, чтобы можно было различить записи.

Какие же прикладные программы доступны в сетях с TCP/IP?

Общее их количество велико и продолжает постоянно увеличиваться. Некоторые приложения существуют с самого начала развития internet. Например, TELNET и FTP. Другие появились недавно: X-Window, SNMP.

Протоколы прикладного уровня ориентированы на конкретные прикладные задачи. Они определяют как процедуры по организации взаимодействия определенного типа между прикладными процессами, так и форму представления информации при таком взаимодействии. В этом разделе мы коротко опишем некоторые из прикладных протоколов.

Протокол TELNET

Протокол TELNET позволяет обслуживающей машине рассматривать все удаленные терминалы как стандартные "сетевые виртуальные терминалы" строчного типа, работающие в коде ASCII, а также обеспечивает возможность согласования более сложных функций (например, локальный или удаленный эхо-контроль, страничный режим, высота и ширина экрана и т.д.) TELNET работает на базе протокола TCP. На прикладном уровне над TELNET находится либо программа поддержки реального терминала (на стороне пользователя), либо прикладной процесс в обсуживающей машине, к которому осуществляется доступ с терминала.

Работа с TELNET походит на набор телефонного номера. Пользователь набирает на клавиатуре что-то вроде

и получает на экране приглашение на вход в машину delta.

Протокол TELNET существует уже давно. Он хорошо опробован и широко распространен. Создано множество реализаций для самых разных операционных систем. Вполне допустимо, чтобы процесс-клиент работал, скажем, под управлением ОС VAX/VMS, а процесс-сервер под ОС UNIX System V.

Протокол FTP

Протокол FTP (File Transfer Protocol - протокол передачи файлов) распространен также широко как TELNET. Он является одним из старейших протоколов семейства TCP/IP. Также как TELNET он пользуется транспортными услугами TCP. Существует множество реализаций для различных операционных систем, которые хорошо взаимодействуют между собой. Пользователь FTP может вызывать несколько команд, которые позволяют ему посмотреть каталог удаленной машины, перейти из одного каталога в другой, а также скопировать один или несколько файлов.

Протокол SMTP

Протокол SMTP (Simple Mail Transfer Protocol - простой протокол передачи почты) поддерживает передачу сообщений (электронной почты) между произвольными узлами сети internet. Имея механизмы промежуточного хранения почты и механизмы повышения надежности доставки, протокол SMTP допускает использование различных транспотных служб. Он может работать даже в сетях, не использующих протоколы семейства TCP/IP. Протокол SMTP обеспечивает как группирование сообщений в адрес одного получателя, так и размножение нескольких копий сообщения для передачи в разные адреса. Над модулем SMTP располагается почтовая служба конкретных вычислительных систем.

r-команды

Существует целая серия "r-команд" (от remote - удаленный), которые впервые появились в ОС UNIX. Они являются аналогами обычных команд UNIX, но предназначены для работы с удаленными машинами. Например, команда rcp является аналогом команды cp и предназначена для копирования файлов между машинами. Для передачи файла на узел delta достаточно ввести

rcp file.c delta:

Для выполнения команды "cc file.c" на машине delta можно использовать комаду rsh:

rsh delta cc file.c

Для организации входа в удаленную систему предназначена команда rlogin:

Команды r-серии используются главным образом в системах, работающих под управлением ОС UNIX. Существуют также реализации для MS-DOS. Команды избавляют пользователя от необходимости набирать пароли при входе в удаленную систему и существенно облегчают работу.

Сетевая файловая система NFS (Network File System) впервые была разработана компанией Sun Microsystems Inc. NFS использует транспортные услуги UDP и позволяет монтировать в единое целое файловые системы нескольких машин с ОС UNIX. Бездисковые рабочие станции получают доступ к дискам файл-сервера так, как-будто это их локальные диски.

NFS значительно увеличивает нагрузку на сеть. Если в сети используются медленные линии связи, то от NFS мало толку. Однако, если пропускная способность сети позволяет NFS нормально работать, то пользователи получают большие преимущества. Поскольку сервер и клиент NFS реализуются в ядре ОС, все обычные несетевые программы получают возможность работать с удаленными файлами, расположенными на подмонтированных NFS-дисках, точно также как с локальными файлами.

Протокол SNMP

Протокол SNMP (Simple Network Management Protocol - простой протокол управления сетью) работает на базе UDP и предназначен для использования сетевыми управляющими станциями. Он позволяет управляющим станциям собирать информацию о положении дел в сети internet. Протокол определяет формат данных, их обработка и интерпретация остаются на усмотрение управляющих станций или менеджера сети.

X-Window

Система X-Window использует протокол X-Window, который работает на базе TCP, для многооконного отображения графики и текста на растровых дисплеях рабочих станций. X-Window - это гораздо больше, чем просто утилита для рисования окон; это целая философия человеко-машинного взаимодействия.

Ключевой термин: протокол.

Протокол (protocol) - набор правил, алгоритм обмена информацией между абонентами сети.

Второстепенные термины

    Стек протоколов (protocol stack) - это комбинация протоколов. Каждый уровень определяет различные протоколы для управления функциями связи или ее подсистемами. Каждому уровню присущ свой набор правил.

    Привязка (binding) является установкой соответствия стека протоколов плате сетевого адаптера.

    Прикладные протоколы - это протоколы, работающие на верхнем уровне модели OSI и обеспечивающие взаимодействие приложений и обмен данными между ними.

    Транспортные протоколы - это протоколы, поддерживающие сеансы связи между компьютерами и гарантирующие надежный обмен данных между ними.

    Сетевые протоколы - это протоколы, обеспечивающие услуги связи, управляющие несколькими типами данных: адресацией, маршрутизацией, проверкой ошибок и запросами на повторную передачу и определяющие правила для осуществления связи в конкретных сетевых средах.

Назначение протоколов

Протоколы (protocols) - это правила и технические процедуры, позволяющие нескольким компьютерам при объединении в сеть общаться друг с другом.

Три основных момента, касающихся протоколов.

    Существует множество протоколов. И хотя все они участвуют в реализации связи, каждый протокол имеет различные цели, выполняет различные задачи, обладает своими преимуществами и ограничениями.

    Протоколы работают на разных уровнях модели OSI. Функции протокола определяются уровнем, на котором он работает.

    Если, например, какой-то протокол работает на Физическом уровне, то это означает, что он обеспечивает прохождение пакетов через плату сетевого адаптера и их поступление в сетевой кабель.

    Несколько протоколов могут работать совместно. Это так называемый стек, или набор, протоколов.

Как сетевые функции распределены по всем уровням модели OSI, так и протоколы совместно работают на различных уровнях стека протоколов. Уровни в стеке протоколов соответствуют уровням модели OSI. В совокупности протоколы дают полную характеристику функциям и возможностям стека.

Работа протоколов

Передача данных по сети, с технической точки зрения, должна быть разбита на ряд последовательных шагов, каждому из которых соответствуют свои правила и процедуры, или протокол. Таким образом, сохраняется строгая очередность в выполнении определенных действий.

Кроме того, эти действия (шаги) должны быть выполнены в одной и той же последовательности на каждом сетевом компьютере. На компьютере-отправителе эти действия выполняются в направлении сверху вниз, а на компьютере-получателе - снизу вверх.

Компьютер-отправитель

Компьютер-отправитель в соответствии с протоколом выполняет следующие действия:

    разбивает данные на небольшие блоки, называемые пакетами, с которыми может работать протокол;

    добавляет к пакетам адресную информацию, чтобы компьютер-получатель мог определить, что эти данные предназначены именно ему;

    подготавливает данные к передаче через плату сетевого адаптера и далее - по сетевому кабелю.

Компьютер-получатель

Компьютер-получатель в соответствии с протоколом выполняет те же действия, но только в обратном порядке:

    принимает пакеты данных из сетевого кабеля;

    через плату сетевого адаптера передает пакеты в компьютер;

    удаляет из пакета всю служебную информацию, добавленную компьютером-отправителем;

    копирует данные из пакетов в буфер - для их объединения в исходный блок данных;

    передает приложению этот блок данных в том формате, который оно использует.

И компьютеру-отправителю, и компьютеру-получателю необходимо выполнять каждое действие одинаковым способом, с тем чтобы пришедшие по сети данные совпадали с отправленными. Если, например, два протокола будут по-разному разбивать данные на пакеты и добавлять информацию (о последовательности пакетов, синхронизации и для проверки ошибок), тогда компьютер, использующий один из этих протоколов, не сможет успешно связаться с компьютером, на котором работает другой протокол.

Маршрутизируемые и немаршрутизируемые протоколы

До середины 80-х годов большинство локальных сетей были изолированными. Они обслуживали один отдел или одну компанию и редко объединялись в крупные системы. Однако, когда локальные сети достигли высокого уровня развития и объем передаваемой ими коммерческой информации возрос, ЛВС стали компонентами больших сетей.

Данные, передаваемые из одной локальной сети в другую по одному из возможных маршрутов, называются маршрутизированными. Протоколы, которые поддерживают передачу данных между сетями по нескольким маршрутам, называются маршрутизируемыми (routable) протоколами. Так как маршрутизируемые протоколы могут использоваться для объединения нескольких локальных сетей в глобальную сеть, их роль постоянно возрастает.

Протоколы в многоуровневой архитектуре

Несколько протоколов, которые работают в сети одновременно, обеспечивают следующие операции с данными:

    подготовку;

    передачу;

    прием;

    последующие действия.

Работа различных протоколов должна быть скоординирована так чтобы исключить конфликты или незаконченные операции. Этого можно достичь с помощью разбиения на уровни.

Стеки протоколов

Стек протоколов (protocol stack) - это комбинация протоколов. Каждый уровень определяет различные протоколы для управления функциями связи или ее подсистемами. Каждому уровню присущ свой набор правил.

Так же как и уровни в модели OSI, нижние уровни стека описывают правила взаимодействия оборудования, изготовленного разными производителями. А верхние уровни описывают правила для проведения сеансов связи и интерпретации приложений. Чем выше уровень, тем сложнее становятся решаемые им задачи и связанные с этими задачами протоколы.

Привязка

Процесс, который называется привязка, позволяет с достаточной гибкостью настраивать сеть, т.е. сочетать протоколы и платы сетевых адаптеров, как того требует ситуация. Например, два стека протоколов, IPX/SPX и TCP/IP, могут быть привязаны к одной плате сетевого адаптера. Если на компьютере более одной платы сетевого адаптера, то стек протоколов может быть привязан как к одной, так и к нескольким платам сетевого адаптера.

Порядок привязки определяет очередность, с которой операционная система выполняет протоколы. Если с одной платой сетевого адаптера связано несколько протоколов, то порядок привязки определяет очередность, с которой будут использоваться протоколы при попытках установить соединение. Обычно привязку выполняют при установке операционной системы или протокола. Например, если TCP/IP - первый протокол в списке привязки, то именно он будет использоваться при попытке установить связь. Если попытка неудачна, компьютер попытается установить соединение, используя следующий по порядку протокол в списке привязки.

Привязка (binding) не ограничивается установкой соответствия стека протоколов плате сетевого адаптера. Стек протоколов должен быть привязан (или ассоциирован) к компонентам, уровни которых и выше, и ниже его уровня. Так, TCP/IP наверху может быть привязан к Сеансовому уровню NetBIOS, а внизу - к драйверу платы сетевого адаптера. Драйвер, в свою очередь, привязан к плате сетевого адаптера.

Стандартные стеки

В компьютерной промышленности в качестве стандартных моделей протоколов разработано несколько стеков. Вот наиболее важные из них:

    набор протоколов ISO/OSI;

    IBM System Network Architecture (SNA);

    Digital DECnet;

    Novell NetWare;

    Apple AppleTalk;

    набор протоколов Интернета, TCP/IP.

Протоколы этих стеков выполняют работу, специфичную для своего уровня. Однако коммуникационные задачи, которые возложены на сеть, приводят к разделению протоколов на три типа:

    прикладной;

    транспортный;

    сетевой.

Схема расположения этих типов соответствует модели OSI.

Прикладные протоколы

Прикладные протоколы работают на верхнем уровне модели OSI. Они обеспечивают взаимодействие приложений и обмен данными между ними. К наиболее популярным прикладным протоколам относятся:

    АРРС (Advanced Program-to-Program Communication) - одноранговый SNA-протокол фирмы IBM, используемый в основном на AS/400;

    FTAM (File Transfer Access and Management) - протокол OSI доступа к файлам;

    X.400 - протокол CCITT для международного обмена электронной почтой;

    Х.500 - протокол CCITT служб файлов и каталогов на нескольких системах;

    SMTP (Simple Mail Transfer Protocol) - протокол Интернета для обмена электронной почтой;

    FTP (File Transfer Protocol) - протокол Интернета для передачи файлов;

    SNMP (Simple Network Management Protocol) - протокол Интернета для мониторинга сети и сетевых компонентов;

    Telnet - протокол Интернета для регистрации на удаленных хостах и обработки данных на них;

    Microsoft SMBs (Server Message Blocks, блоки сообщений сервера) и клиентские оболочки или редиректоры;

    NCP (Novell NetWare Core Protocol) и клиентские оболочки или редиректоры фирмы Novell;

    Apple Talk и Apple Share - набор сетевых протоколов фирмы Apple;

    AFP (AppleTalk Filling Protocol) - протокол удаленного доступа к файлам фирмы Apple;

    DAP (Data Access Protocol) - протокол доступа к файлам сетей DECnet.

Транспортные протоколы

Транспортные протоколы поддерживают сеансы связи между компьютерами и гарантируют надежный обмен данных между ними. К популярным транспортным протоколам относятся:

    TCP (Transmission Control Protocol) - TCP/IP-протокол для гарантированной доставки данных, разбитых на последовательность фрагментов;

    SPX - часть набора протоколов IPX/SPX (Internetwork Packet Exchange/Sequential Packet Exchange) для данных, разбитых на последовательность фрагментов, фирмы Novell;

    NWLink - реализация протокола IPX/SPX от фирмы Microsoft;

    NetBEUI - устанавливает сеансы связи между компьютерами (NetBIOS) и предоставляет верхним уровням транспортные услуги (NetBEUI);

    АТР (AppleTalk Transaction Protocol), NBP (Name Binding Protocol) - протоколы сеансов связи и транспортировки данных фирмы Apple.

Сетевые протоколы

Сетевые протоколы обеспечивают услуги связи. Эти протоколы управляют несколькими типами данных: адресацией, маршрутизацией, проверкой ошибок и запросами на повторную передачу. Сетевые протоколы, кроме того, определяют правила для осуществления связи в конкретных сетевых средах, например Ethernet или Token Ring. К наиболее популярным сетевым протоколам относятся:

    IP (Internet Protocol) - TCP/IP-протокол для передачи пакетов;

    IPX (Internetwork Packet Exchange) - протокол фирмы NetWare для передачи и маршрутизации пакетов;

    NWLink - реализация протокола IPX/SPX фирмой Microsoft;

    NetBEUI - транспортный протокол, обеспечивающий услуги транспортировки данных для сеансов и приложений NetBIOS;

    DDP (Datagram Delivery Protocol) - AppleTalk-протокол транспортировки данных.

Стандартные стеки коммуникационных протоколов

Важнейшим направлением стандартизации в области вычислительных сетей является стандартизация коммуникационных протоколов. В настоящее время в сетях используется большое количество стеков коммуникационных протоколов. Наиболее популярными являются стеки: TCP/IP, IPX/SPX, NetBIOS/SMB, DECnet, SNA и OSI. Все эти стеки, кроме SNA на нижних уровнях - физическом и канальном, - используют одни и те же хорошо стандартизованные протоколы Ethernet, Token Ring, FDDI и некоторые другие, которые позволяют использовать во всех сетях одну и ту же аппаратуру. Зато на верхних уровнях все стеки работают по своим собственным протоколам. Эти протоколы часто не соответствуют рекомендуемому моделью OSI разбиению на уровни. В частности, функции сеансового и представительного уровня, как правило, объединены с прикладным уровнем. Такое несоответствие связано с тем, что модель OSI появилась как результат обобщения уже существующих и реально используемых стеков, а не наоборот.

Стек OSI

Следует четко различать модель OSI и стек OSI. В то время как модель OSI является концептуальной схемой взаимодействия открытых систем, стек OSI представляет собой набор вполне конкретных спецификаций протоколов. В отличие от других стеков протоколов стек OSI полностью соответствует модели OSI, он включает спецификации протоколов для всех семи уровней взаимодействия, определенных в этой модели. На нижних уровнях стек OSI поддерживает Ethernet, Token Ring, FDDI, протоколы глобальных сетей, Х.25 и ISDN, - то есть использует разработанные вне стека протоколы нижних уровней, как и все другие стеки. Протоколы сетевого, транспортного и сеансового уровней стека OSI специфицированы и реализованы различными производителями, но распространены пока мало. Наиболее популярными протоколами стека OSI являются прикладные протоколы. К ним относятся: протокол передачи файлов FT AM, протокол эмуляции терминала VTP, протоколы справочной службы Х.500, электронной почты Х.400 и ряд других.

Протоколы стека OSI отличает большая сложность и неоднозначность спецификаций. Эти свойства явились результатом общей политики разработчиков стека, стремившихся учесть в своих протоколах все случаи жизни и все существующие и появляющиеся технологии. К этому нужно еще добавить и последствия большого количества политических компромиссов, неизбежных при принятии международных стандартов по такому злободневному вопросу, как построение открытых вычислительных сетей.

Из-за своей сложности протоколы OSI требуют больших затрат вычислительной мощности центрального процессора, что делает их наиболее подходящими для мощных машин, а не для сетей персональных компьютеров.

Стек OSI - международный, независимый от производителей стандарт. Его поддерживает правительство США в своей программе GOSIP, в соответствии с которой все компьютерные сети, устанавливаемые в правительственных учреждениях США после 1990 года, должны или непосредственно поддерживать стек OSI, или обеспечивать средства для перехода на этот стек в будущем. Тем не менее стек OSI более популярен в Европе, чем в США, так как в Европе осталось меньше старых сетей, работающих по своим собственным протоколам.

Стек TCP/IP

Стек TCP/IP был разработан по инициативе Министерства обороны США более 25 лет назад для связи экспериментальной сети ARPAnet с другими сетями как набор общих протоколов для разнородной вычислительной среды. Большой вклад в развитие стека TCP/IP, который получил свое название по популярным протоколам IP и TCP, внес университет Беркли, реализовав протоколы стека в своей версии ОС UNIX. Популярность этой операционной системы привела к широкому распространению протоколов TCP, IP и других протоколов стека. Сегодня этот стек используется для связи компьютеров всемирной информационной сети Internet, а также в огромном числе корпоративных сетей.

Стек TCP/IP на нижнем уровне поддерживает все популярные стандарты физического и канального уровней: для локальных сетей - это Ethernet, Token Ring, FDDI, для глобальных - протоколы работы на аналоговых коммутируемых и выделенных линиях SLIP, РРР, протоколы территориальных сетей Х.25 и ISDN.

Основными протоколами стека, давшими ему название, являются протоколы IP и TCP. Эти протоколы в терминологии модели OSI относятся к сетевому и транспортному уровням соответственно. IP обеспечивает продвижение пакета по составной сети, a TCP гарантирует надежность его доставки.

За долгие годы использования в сетях различных стран и организаций стек TCP/IP вобрал в себя большое количество протоколов прикладного уровня. К ним относятся такие популярные протоколы, как протокол пересылки файлов FTP, протокол эмуляции терминала telnet, почтовый протокол SMTP, используемый в электронной почте сети Internet, гипертекстовые сервисы службы WWW и многие другие.

Сегодня стек TCP/IP представляет собой один из самых распространенных стеков транспортных протоколов вычислительных сетей. Действительно, только в сети Internet объединено около 10 миллионов компьютеров по всему миру, которые взаимодействуют друг с другом с помощью стека протоколов TCP/IP.

Стремительный рост популярности Internet привел и к изменениям в расстановке сил в мире коммуникационных протоколов - протоколы TCP/IP, на которых построен Internet, стали быстро теснить бесспорного лидера прошлых лет - стек IPX/SPX компании Novell. Сегодня в мире общее количество компьютеров, на которых установлен стек TCP/IP, сравнялось с общим количеством компьютеров, на которых работает стек IPX/SPX, и это говорит о резком переломе в отношении администраторов локальных сетей к протоколам, используемым на настольных компьютерах, так как именно они составляют подавляющее число мирового компьютерного парка и именно на них раньше почти везде работали протоколы компании Novell, необходимые для доступа к файловым серверам NetWare. Процесс становления стека TCP/IP в качестве стека номер один в любых типах сетей продолжается, и сейчас любая промышленная операционная система обязательно включает программную реализацию этого стека в своем комплекте поставки.

Хотя протоколы TCP/IP неразрывно связаны с Internet и каждый из многомиллионной армады компьютеров Internet работает на основе этого стека, существует большое количество локальных, корпоративных и территориальных сетей, непосредственно не являющихся частями Internet, в которых также используют протоколы TCP/IP. Чтобы отличать их от Internet, эти сети называют сетями TCP/IP или просто IP-сетями.

Поскольку стек TCP/IP изначально создавался для глобальной сети Internet, он имеет много особенностей, дающих ему преимущество перед другими протоколами, когда речь заходит о построении сетей, включающих глобальные связи. В частности, очень полезным свойством, делающим возможным применение этого протокола в больших сетях, является его способность фрагментировать пакеты. Действительно, большая составная сеть часто состоит из сетей, построенных на совершенно разных принципах. В каждой из этих сетей может быть установлена собственная величина максимальной длины единицы передаваемых данных (кадра). В таком случае при переходе из одной сети, имеющей большую максимальную длину, в сеть с меньшей максимальной длиной может возникнуть необходимость деления передаваемого кадра на несколько частей. Протокол IP стека TCP/IP эффективно решает эту задачу.

Другой особенностью технологии TCP/IP является гибкая система адресации, позволяющая более просто по сравнению с другими протоколами аналогичного назначения включать в интерсеть сети других технологий. Это свойство также способствует применению стека TCP/IP для построения больших гетерогенных сетей.

В стеке TCP/IP очень экономно используются возможности широковещательных рассылок. Это свойство совершенно необходимо при работе на медленных каналах связи, характерных для территориальных сетей.

Однако, как и всегда, за получаемые преимущества надо платить, и платой здесь оказываются высокие требования к ресурсам и сложность администрирования IP-сетей. Мощные функциональные возможности протоколов стека TCP/IP требуют для своей реализации высоких вычислительных затрат. Гибкая система адресации и отказ от широковещательных рассылок приводят к наличию в IP-сети различных централизованных служб типа DNS, DHCP и т. п. Каждая из этих служб направлена на облегчение администрирования сети, в том числе и на облегчение конфигурирования оборудования, но в то же время сама требует пристального внимания со стороны администраторов.

Можно приводить и другие доводы за и против стека протоколов Internet, однако факт остается фактом - сегодня это самый популярный стек протоколов, широко используемый как в глобальных, так и локальных сетях.

Стек IPX/SPX

Этот стек является оригинальным стеком протоколов фирмы Novell, разработанным для сетевой операционной системы NetWare еще в начале 80-х годов. Протоколы сетевого и сеансового уровней Internetwork Packet Exchange (IPX) и Sequenced Packet Exchange (SPX), которые дали название стеку, являются прямой адаптацией протоколов XNS фирмы Xerox, распространенных в гораздо меньшей степени, чем стек IPX/SPX. Популярность стека IPX/SPX непосредственно связана с операционной системой Novell NetWare, которая еще сохраняет мировое лидерство по числу установленных систем, хотя в последнее время ее популярность несколько снизилась и по темпам роста она отстает от Microsoft Windows NT.

Многие особенности стека IPX/SPX обусловлены ориентацией ранних версий ОС NetWare (до версии 4.0) на работу в локальных сетях небольших размеров, состоящих из персональных компьютеров со скромными ресурсами. Понятно, что для таких компьютеров компании Novell нужны были протоколы, на реализацию которых требовалось бы минимальное количество оперативной памяти (ограниченной в IBM-совместимых компьютерах под управлением MS-DOS объемом 640 Кбайт) и которые бы быстро работали на процессорах небольшой вычислительной мощности. В результате протоколы стека IPX/SPX до недавнего времени хорошо работали в локальных сетях и не очень - в больших корпоративных сетях, так как они слишком перегружали медленные глобальные связи широковещательными пакетами, которые интенсивно используются несколькими протоколами этого стека (например, для установления связи между клиентами и серверами). Это обстоятельство, а также тот факт, что стек IPX/SPX является собственностью фирмы Novell и на его реализацию нужно получать лицензию (то есть открытые спецификации не поддерживались), долгое время ограничивали распространенность его только сетями NetWare. Однако с момента выпуска версии NetWare 4.0 Novell внесла и продолжает вносить в свои протоколы серьезные изменения, направленные на их адаптацию для работы в корпоративных сетях. Сейчас стек IPX/ SPX реализован не только в NetWare, но и в нескольких других популярных сетевых ОС, например SCO UNIX, Sun Solaris, Microsoft Windows NT.

Стек NetBIOS/SMB

Этот стек широко используется в продуктах компаний IBM и Microsoft. На физическом и канальном уровнях этого стека используются все наиболее распространенные протоколы Ethernet, Token Ring, FDDI и другие. На верхних уровнях работают протоколы NetBEUI и SMB.

Протокол NetBIOS (Network Basic Input/Output System) появился в 1984 году как сетевое расширение стандартных функций базовой системы ввода/вывода (BIOS) IBM PC для сетевой программы PC Network фирмы IBM. В дальнейшем этот протокол был заменен так называемым протоколом расширенного пользовательского интерфейса NetBEUI - NetBIOS Extended User Interface. Для обеспечения совместимости приложений в качестве интерфейса к протоколу NetBEUI был сохранен интерфейс NetBIOS. Протокол NetBEUI разрабатывался как эффективный протокол, потребляющий немного ресурсов и предназначенный для сетей, насчитывающих не более 200 рабочих станций. Этот протокол содержит много полезных сетевых функций, которые можно отнести к сетевому, транспортному и сеансовому уровням модели OSI, однако с его помощью невозможна маршрутизация пакетов. Это ограничивает применение протокола NetBEUI локальными сетями, не разделенными на подсети, и делает невозможным его использование в составных сетях. Некоторые ограничения NetBEUI снимаются реализацией этого протокола NBF (NetBEUI Frame), которая включена в операционную систему Microsoft Windows NT.

Протокол SMB (Server Message Block) выполняет функции сеансового, представительного и прикладного уровней. На основе SMB реализуется файловая служба, а также службы печати и передачи сообщений между приложениями.

Стеки протоколов SNA фирмы IBM, DECnet корпорации Digital Equipment и AppleTalk/AFP фирмы Apple применяются в основном в операционных системах и сетевом оборудовании этих фирм.

На рис. 3.4.3 показано соответствие некоторых, наиболее популярных протоколов уровням модели OSI. Часто это соответствие весьма условно, так как модель OSI - это только руководство к действию, причем достаточно общее, а конкретные протоколы разрабатывались для решения специфических задач, причем многие из них появились до разработки модели OSI. В большинстве случаев разработчики стеков отдавали предпочтение скорости работы сети в ущерб модульности - ни один стек, кроме стека OSI, не разбит на семь уровней. Чаще всего в стеке явно выделяются 3-4 уровня: уровень сетевых адаптеров, в котором реализуются протоколы физического и канального уровней, сетевой уровень, транспортный уровень и уровень служб, вбирающий в себя функции сеансового, представительного и прикладного уровней.

Реализация межсетевого взаимодействия средствами TCP/IP

В настоящее время стек TCP/IP является самым популярным средством организации составных сетей. На рис. 3.4.4 показана доля, которую составляет тот или иной стек протоколов в общемировой инсталляционной сетевой базе. До 1996 года бесспорным лидером был стек IPX/SPX компании Novell, но затем картина резко изменилась - стек TCP/IP по темпам роста числа установок намного стал опережать другие стеки, а с 1998 года вышел в лидеры и в абсолютном выражении. Именно поэтому дальнейшее изучение функций сетевого уровня будет проводиться на примере стека TCP/IP.

В стеке TCP/IP определены 4 уровня (рис. 3.4.5). Каждый из этих уровней несет на себе некоторую нагрузку по решению основной задачи - организации надежной и производительной работы составной сети, части которой построены на основе разных сетевых технологий.

Таблица 3.4.1. Многоуровневая архитектура стека TCP/IP

Уровень 1 Прикладной уровень
Уровень 2 Основной (транспортный) уровень
Уровень 3
Уровень 4 Уровень сетевых интерфейсов

Уровень межсетевого взаимодействия

Стержнем всей архитектуры является уровень межсетевого взаимодействгм, который реализует концепцию передачи пакетов в режиме без установления соединений, то есть дейтаграммным способом. Именно этот уровень обеспечивает возможность перемещения пакетов по сети, используя тот маршрут, который в данный момент является наиболее рациональным. Этот уровень также называют уровнем internet, указывая тем самым на основную его функцию - передачу данных через составную сеть.

Основным протоколом сетевого уровня (в терминах модели OSI) в стеке является протокол IP (Internet Protocol). Этот протокол изначально проектировался как протокол передачи пакетов в составных сетях, состоящих из большого количества локальных сетей, объединенных как локальными, так и глобальными связями. Поэтому протокол IP хорошо работает в сетях со сложной топологией, рационально используя наличие в них подсистем и экономно расходуя пропускную способность низкоскоростных линий связи. Так как протокол IP является дейтаграммным протоколом, он не гарантирует доставку пакетов до узла назначения, но старается это сделать.

К уровню межсетевого взаимодействия относятся и все протоколы, связанные с составлением и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информации RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol). Последний протокол предназначен для обмена информацией об ошибках между маршрутизаторами сети и узлом-источником пакета. С помощью специальных пакетов ICMP сообщает о невозможности доставки пакета, о превышении времени жизни или продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т. п.

Основной уровень

Поскольку на сетевом уровне не устанавливаются соединения, то нет никаких гарантий, что все пакеты будут доставлены в место назначения целыми и невредимыми или придут в том же порядке, в котором они были отправлены. Эту задачу - обеспечение надежной информационной связи между двумя конечными узлами - решает основной уровень стека TCP/IP, называемый также транспортным.

На этом уровне функционируют протокол управления передачей TCP (Transmission Control Protocol) и протокол дейтаграмм пользователя UDP (User Datagram Protocol). Протокол TCP обеспечивает надежную передачу сообщений между удаленными прикладными процессами за счет образования логических соединений. Этот протокол позволяет равноранговым объектам на компьютере-отправителе и компьютере-получателе поддерживать обмен данными в дуплексном режиме. TCP позволяет без ошибок доставить сформированный на одном из компьютеров поток байт в любой другой компьютер, входящий в составную сеть. TCP делит поток байт на части - сегменты и передает их ниже лежащему уровню межсетевого взаимодействия. После того как эти сегменты будут доставлены средствами уровня межсетевого взаимодействия в пункт назначения, протокол TCP снова соберет их в непрерывный поток байт.

Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным способом, как и главный протокол уровня межсетевого взаимодействия IP, и выполняет только функции связующего звена (мультиплексора) между сетевым протоколом и многочисленными службами прикладного уровня или пользовательскими процессами.

Прикладной уровень

Прикладной уровень объединяет все службы, предоставляемые системой пользовательским приложениям. За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и служб прикладного уровня. Прикладной уровень реализуется программными системами, построенными в архитектуре клиент-сервер, базирующимися на протоколах нижних уровней. В отличие от протоколов остальных трех уровней, протоколы прикладного уровня занимаются деталями конкретного приложения и "не интересуются" способами передачи данных по сети. Этот уровень постоянно расширяется за счет присоединения к старым, прошедшим многолетнюю эксплуатацию сетевым службам типа Telnet, FTP, TFTP, DNS, SNMP сравнительно новых служб таких, например, как протокол передачи гипертекстовой информации HTTP.

Уровень сетевых интерфейсов

Идеологическим отличием архитектуры стека TCP/IP от многоуровневой организации других стеков является интерпретация функций самого нижнего уровня - уровня сетевых интерфейсов. Протоколы этого уровня должны обеспечивать интеграцию в составную сеть других сетей, причем задача ставится так: сеть TCP/IP должна иметь средства включения в себя любой другой сети, какую бы внутреннюю технологию передачи данных эта сеть не использовала. Отсюда следует, что этот уровень нельзя определить раз и навсегда. Для каждой технологии, включаемой в составную сеть подсети, должны быть разработаны собственные интерфейсные средства. К таким интерфейсным средствам относятся протоколы инкапсуляции IP-пакетов уровня межсетевого взаимодействия в кадры локальных технологий. Например, документ RFC 1042 определяет способы инкапсуляции IP-пакетов в кадры технологий IEEE 802. Для этих целей должен использоваться заголовок LLC/ SNAP, причем в поле Туре заголовка SNAP должен быть указан код 0x0800. Только для протокола Ethernet в RFC 1042 сделано исключение - помимо заголовка LLC/ SNAP разрешается использовать кадр Ethernet DIX, не имеющий заголовка LLC, зато имеющий поле Туре. В сетях Ethernet предпочтительным является инкапсуляция IP-пакета в кадр Ethernet DIX.

Уровень сетевых интерфейсов в протоколах TCP/IP не регламентируется, но он поддерживает все популярные стандарты физического и канального уровней: для локальных сетей это Ethernet, Token Ring, FDDI, Fast Ethernet, Gigabit Ethernet, 100VG-AnyLAN, для глобальных сетей - протоколы соединений "точка-точка" SLIP и РРР, протоколы территориальных сетей с коммутацией пакетов Х.25, frame relay. Разработана также специальная спецификация, определяющая использование технологии ATM в качестве транспорта канального уровня. Обычно при появлении новой технологии локальных или глобальных сетей она быстро включается в стек TCP/IP за счет разработки соответствующего RFC, определяющего метод инкапсуляции IP-пакетов в ее кадры (спецификация RFC 1577, определяющая работу IP через сети ATM, появилась в 1994 году вскоре после принятия основных стандартов этой технологии).

Соответствие уровней стека TCP/IP семиуровневой модели ISO/OSI

Так как стек TCP/IP был разработан до появления модели взаимодействия открытых систем ISO/OSI, то, хотя он также имеет многоуровневую структуру, соответствие уровней стека TCP/IP уровням модели OSI достаточно условно (рис. 3.4.6). Рассматривая многоуровневую архитектуру TCP/IP, можно выделить в ней, подобно архитектуре OSI, уровни, функции которых зависят от конкретной технической реализации сети, и уровни, функции которых ориентированны на работу с приложениями (рис. 3.4.7).

Протоколы прикладного уровня стека TCP/IP работают на компьютерах, выполняющих приложения пользователей. Даже полная смена сетевого оборудования в общем случае не должна влиять на работу приложений, если они получают доступ к сетевым возможностям через протоколы прикладного уровня.

Протоколы транспортного уровня уже более зависят от сети, так как они реализуют интерфейс к уровням, непосредственно организующим передачу данных по сети. Однако, подобно протоколам прикладного уровня, программные модули, реализующие протоколы транспортного уровня, устанавливаются только на конечных узлах. Протоколы двух нижних уровней являются сетезависимыми, а следовательно, программные модули протоколов межсетевого уровня и уровня сетевых интерфейсов устанавливаются как на конечных узлах составной сети, так и на маршрутизаторах.

Каждый коммуникационный протокол оперирует с некоторой единицей передаваемых данных. Названия этих единиц иногда закрепляются стандартом, а чаще просто определяются традицией. В стеке TCP/IP за многие годы его существования образовалась устоявшаяся терминология в этой области (рис. 3.4.8).

Потоком называют данные, поступающие от приложений на вход протоколов транспортного уровня TCP и UDP.

Протокол TCP нарезает из потока данных сегменты.

Единицу данных протокола UDP часто называют дейтаграммой (или датаграм-мой). Дейтаграмма - это общее название для единиц данных, которыми оперируют протоколы без установления соединений. К таким протоколам относится и протокол межсетевого взаимодействия IP.

Дейтаграмму протокола IP называют также пакетом.

В стеке TCP/IP принято называть кадрами (фреймами) единицы данных протоколов, на основе которых IP-пакеты переносятся через подсети составной сети. При этом не имеет значения, какое название используется для этой единицы данных в локальной технологии.

Выводы по теме

    Формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах, называются протоколом.

    Иерархически организованный набор протоколов, достаточный для организации взаимодействия узлов в сети, называется стеком коммуникационных протоколов.

    Работа различных протоколов скоординирована так, чтобы исключить конфликты или незаконченные операции. Этого достигается с помощью разбиения на уровни стека протоколов.

    Важнейшим направлением стандартизации в области вычислительных сетей является стандартизация коммуникационных протоколов. Наиболее популярными являются стеки: TCP/IP, IPX/SPX, NetBIOS/SMB, DECnet, SNA и OSI.

    Процесс, который называется привязка, позволяет с достаточной гибкостью сочетать протоколы и платы сетевых адаптеров, как того требует ситуация. Если на компьютере более одной платы сетевого адаптера, то стек протоколов может быть привязан как к одной, так и к нескольким платам сетевого адаптера.

    Коммуникационные задачи, которые возложены на компьютерную сеть, приводят к разделению протоколов на три типа:

    а) прикладной;

    б) транспортный;

    в) сетевой.

    Наибольшее распространение для построения составных сетей в последнее время получил стек TCP/IP. Стек TCP/IP имеет 4 уровня: прикладной, основной, уровень межсетевого взаимодействия и уровень сетевых интерфейсов. Соответствие уровней стека TCP/IP уровням модели OSI достаточно условно.

    Прикладной уровень объединяет все службы, предоставляемые системой пользовательским приложениям: традиционные сетевые службы типа telnet, FTP, TFTP, DNS, SNMP, а также сравнительно новые, такие, например, как протокол передачи гипертекстовой информации HTTP.

    На основном уровне стека TCP/IP, называемом также транспортным, функционируют протоколы TCP и UDP. Протокол управления передачей TCP решает задачу обеспечения надежной информационной связи между двумя конечными узлами. Дейтаграммный протокол UDP используется как экономичное средство связи уровня межсетевого взаимодействия с прикладным уровнем.

    Уровень межсетевого взаимодействия реализует концепцию коммутации пакетов в режиме без установления соединений. Основными протоколами этого уровня являются дейтаграммный протокол IP и протоколы маршрутизации (RIP, OSPF, BGP и др.). Вспомогательную роль выполняют протокол межсетевых управляющих сообщений ICMP, протокол группового управления IGMP и протокол разрешения адресов ARP.

    Протоколы уровня сетевых интерфейсов обеспечивают интеграцию в составную сеть других сетей. Этот уровень не регламентируется, но поддерживает все популярные стандарты физического и канального уровней: для локальных сетей - Ethernet, Token Ring, FDDI и т. д., для глобальных сетей - Х.25, frame relay, PPP, ISDN и т. д.

    В стеке TCP/IP для именования единиц передаваемых данных на разных уровнях используют разные названия: поток, сегмент, дейтаграмма, пакет, кадр.


Наибольший интерес для пользователя представляет прикладной информационный уровень, т.к. пользователь непосредственно работает с объектами, относящимися именно к этому уровню.

Существующие на настоящий момент прикладные ресурсы Internet и соответствующие им протоколы можно свести в следующую таблицу (Таблица 1.3).

Таблица 1.3

В настоящее время e-mail и WWW почти вытеснили остальные сервисы, так что, например, Gopher и WAIS используются очень редко, а FTP постепенно ассимилируется Web’ом.

С другой стороны, сейчас постепенно формируются новые прикладные ресурсы, связанные, в первую очередь, с потоковыми информационными технологиями и с работой в реальном времени (например, IP-телефония, Real Audio, компьютерное телевидение). Возможно, в ближайшем будущем они потеснят Web.

Электронная почта

Это один из двух наиболее распространенных в настоящее время прикладных ресурсов.

Электронная почта – это прикладной ресурс Internet, имеющий дело с данными в виде прикладных пакетов и работающий в рамках почтовых протоколов (например, ESMTP/POP3).

Электронная почта предназначена для передачи информации от одного пользователя сети к другому. Этим она отличается от большинства других сервисов. Если главная задача других сервисов - запросить и получить информацию, то электронная почта позволяет эту информацию переслать и записать на компьютер другого пользователя.

Как и любой другой прикладной ресурс, электронная почта использует системный уровень, т.е. TCP/IP протокол. На системном уровне процесс отправки/получения сообщения сводится к созданию набора датаграмм, передаче их через Internet и последующей сборке.



На прикладном уровне действуют почтовые протоколы.

SMTP - Simple Mail Transfer Protocol,

ESMTP - Extended Simple Mail Transfer Protocol и

POP 3 - Post Office Protocol.

Кроме программы Outlook Express существует несколько распространенных программ-клиентов для работы с электронной почтой. Это, например:

Почтовый блок программы Netscape Navigator.

Каждая из этих программ делает практически то же самое, что и Outlook Express и обладает таким же интерфейсом.

Структура адреса электронной почты

Для того, чтобы абоненты могли обмениваться сообщениями через электронную почту, у каждого из них должен быть уникальный адрес. Структура адреса электронной почты (e-mail – адреса) имеет вид, приведенный в Таблице 1.4.

Таблица 1.4.

К большинству других прикладных ресурсов (к Web-страницам, к файлам на FTP-серверах и др.) можно обратиться по универсальному URL-адресу (о нем будет сказано позже). Электронная почта с точки зрения структуры адресов стоит особняком, e-mail–адреса отличаются от URL-адресов. Это связано с историческими причинами. Адреса e-mail появились значительно раньше URL-адресов.

Электронная почта через Web

Существует возможность использовать электронную почту в рамках прикладного ресурса World Wide Web по протоколу НТТР.

В Internet есть Web-серверы, работающие как почтовые серверы – Web / Mail серверы . На таких серверах формируются Web-страницы, выполняющие функции простых почтовых программ-клиентов. Загружая такую страницу, пользователь, по сути дела, загружает программу-клиент электронной почты, аналогичную программе Outlook Express, хотя и обладающую более скромными возможностями.

Если Пользователь 1 зарегистрировал почтовый ящик на Web/Mail сервере, а Пользователь 2 работает с электронной почтой стандартным образом – через Почтовый сервер 2 и протоколы POP 3 и ESMTP, то общение между такими пользователями происходит следующим образом (Рис. 1.8).



При отправке сообщения от Пользователя 1 Пользователю 2 сообщение сначала пересылается на Web / Mail сервер по протоколу HTTP. Затем Web / Mail сервер осуществляет его отправку Почтовому серверу 2 по протоколу ESMTP. После получения сообщения Почтовым сервером 2 Пользователь 2 получает доступ к нему по протоколу POP 3. При отправке сообщения от Пользователя 2 Пользователю 1 реализуется обратный процесс: сначала сообщение отправляется Web / Mail серверу по протоколам POP 3 и ESMTP, после чего Пользователь 1 получает доступ к сообщению по протоколу HTTP.

Регистрация почтового ящика на Web / Mail серверах, как правило, бесплатна. Для того, чтобы зарегистрировать свой почтовый ящик в такой электронной почте, необходимо зайти на такой сервер по его адресу.

Главное преимущество Web-почты заключается в том, что обычная электронная почта доступна только с одного личного компьютера, подключенного к почтовому серверу провайдера через POP 3 - протокол. Web-почта доступна с любого компьютера, подключенного к Internet.

Среди недостатков Web-почты по сравнению с обычной почтой можно выделить следующие 3 недостатка.

1. Более скромный сервис, чем в специализированных почтовых клиентах типа Outlook Express.

2. Ограниченный объем почтового ящика, выделяемый каждому пользователю.

3. Менее надежная защита информации, чем на сервере провайдера или в локальной сети.

Тем не менее, Web-почта развивается весьма бурными темпами, и сейчас уровень сервиса и объем предоставляемых ресурсов у крупнейших поставщиков услуг Web-почты (например, у mail.ru) не уступают обычной почте. Уровень защиты Web-почты у таких поставщиков (включая антивирусную, антиспамовую и антихакерскую защиты) также неуклонно растет. Кроме того, развиваются технологии доступа к Web-почте с помощью почтовых программ-клиентов типа Outlook Express. Вполне возможно, что в ближайшем будущем Web-почта вытеснит традиционную электронную почту.

Ресурс WWW

Подавляющее число пользователей Internet работает с прикладным ресурсом World Wide Web (или сокращенно WWW), который по-русски называют Всемирной паутиной.

Ресурс WWW был разработан в Центре ядерных исследований в Женеве группой физиков. В его основу была положена технология обмена гипертекстом, разработанная английским физиком Тимом Бернером Ли, который за изобретение этой технологии был удостоен в 2004 г. премии "Выдающиеся достижения тысячелетия" (Millennium Technology Prize). Тима Бернера Ли иногда по ошибке называют создателем сети Internet. На самом деле он изобретатель одного из прикладных ресурсов сети Internet – Всемирной Паутины WWW. Впервые этот ресурс появился в Internet в 1990 г., а к концу 1994 г. практически завоевал Сеть, вытеснив все основные, использовавшиеся до этого, ресурсы.

Ресурс WWW основан на протоколе прикладного уровня HTTP - Hyper Text Transfer Protocol и на языке HTML - Hyper Text Markup Language. В его основе также лежат такие понятия, как: HTML-документ, гипертекст, Web-страница, сайт.

Рассмотрим основные определения и элементы ресурса WWW.

Гипертекстовый документ или HTML-документ – это файл, состоящий из фрагментов текста и элементов языка HTML.

Можно также сказать, что такой документ состоит из гипертекста. HTML -документ хранится в виде файла с расширением html или htm.

Гиперссылки могут быть внутренними (указывающими на объекты, расположенные на том же сервере или в той же локальной сети) или внешними (указывающими на объекты в других сетях). Впрочем, деление гиперссылок на внешние и внутренние в большой степени условно.

Web-страница – это HTML документ, который расположен вместе со своими внутренними ссылками на сервере Internet. Он может передаваться другим узлам Internet по протоколу HTTP.

Сайт – это блок из Web‑страниц, связанных между собой гиперссылками, содержащих информацию на определенную тему и принадлежащих одному владельцу.

Броузер – это программа-клиент прикладного уровня, основным назначением которой является запрос, получение и отображение Web-страниц. Примером программы-броузера является Internet Explorer.

World Wide Web (WWW ) – это прикладной ресурс Internet, работающий по протоколу HTTP. Данные в WWW представляются в виде совокупности Web-страниц и сайтов, связанных между собой гиперссылками.

Работа ресурса WWW осуществляется следующим образом.

Если загрузить какую-нибудь Web‑страницу в броузер, например в Internet Explorer, то отображение этой страницы появится на экране в виде текста и рисунков, причем некоторые фрагменты текста и/или элементы изображений будут гиперссылками - щелчок по ним приведет к загрузке другой страницы, которая также будет содержать свои гиперссылки и т.д. Таким образом, различные Web-страницы оказываются связанными между собой гиперссылками. Любая Web-страница может указывать на любую другую, независимо от того, где она находится - в той же сети, в другом городе или в другой стране. Из-за этого структура гипертекстовых связей между Web-страницами оказывается весьма хаотичной и запутанной (Рис. 1.9).


Рис. 1.9. Структура гипертекстовых связей между Web-страницами

Изображенная на Рис. 1.9 структура ресурса WWW очень похожа на структуру самой сети Internet (Рис. 1.2). Сеть Internet состоит из миллионов связанных между собой компьютеров, причем связи эти весьма причудливы и хаотичны. Точно также WWW состоит из весьма хаотично связанных Web‑страниц. Однако, между этими структурами есть существенная разница. Сеть Internet состоит из компьютеров и других устройств, соединенных физическими связями (телефонными линиями, кабелями, эфирной связью и т.д.), а WWW состоит из Web-страниц, связанных логическими связями (гиперссылками). Структура логических связей не имеет никакого отношения к физической структуре сети.

Несмотря на указанную разницу, топологическое сходство между логической структурой WWW и физической структурой сети Internet обеспечивает очень органичное встраивание ресурса WWW в Internet. Этим, по-видимому, и объясняется такое бурное развитие ресурса WWW и ассимиляция им всех остальных ресурсов.

Структура URL - адреса

Для вызова элемента прикладного ресурса нужно обратиться к тому серверу, на котором этот элемент расположен. Сервер является узлом Internet, и к нему можно обратиться по доменному имени или IP-адресу. Однако указать только адрес сервера недостаточно. Предположим, например, что необходимо загрузить Web-страницу. В этом случае, кроме адреса Web-сервера необходимо указать, что это именно Web-страница, а не, например, файл, загружаемый по FTP протоколу. Кроме того, нужно указать, какую именно страницу из десятков или сотен тысяч Web-страниц, размещенных на этом сервере, необходимо загрузить. Возможно, также, что загрузить эту Web-страницу нужно в каком-либо особом режиме (например, в режиме быстрого просмотра, без графики, или в защищенном режиме, без активных компонентов). Это также необходимо указать.

Таким образом, для того, чтобы обратиться к элементу прикладного ресурса, необходимо указать адрес этого элемента, который может содержать большое количество разнообразной информации.

В Internet в основном используется универсальный формат адресов прикладных ресурсов, так называемый URL – Uniform Resource Locator.

Если пользователь знает URL-адрес информации, он может запросить необходимые данные у какой-либо сервисной системы. Обычно это WWW, но может быть и FTP, Gopher, WAIS и т.д.

Структура URL-адреса показана в следующей таблице (Таблица 1.5).

Не все компоненты URL-адреса являются обязательными, некоторые могут не задаваться - в этом случае используются значения таких компонент, установленные по умолчанию.

Таблица 1.5.

Первый компонент – протокол – указывает на прикладной ресурс, которому принадлежит запрашиваемый элемент. Например, протокол http указывает на ресурс WWW, протокол ftp указывает на ресурс FTP и т.д. Возможно также специальное значение file, которое соответствует файлу на том же локальном компьютере, или в той же локальной сети, где работает программа-клиент (а, следовательно, и пользователь, работающий с этой программой). Протокол, вообще говоря, должен быть задан в URL-адресе, однако, некоторые программы-клиенты (например, Internet Explorer) допускают отсутствие этого компонента, считая, что по умолчанию задан протокол http. Первый компонент URL-адреса отделяется от следующего компонента комбинацией из трех знаков - двоеточия и двух слешей:// .

Второй компонент URL-адреса задает узел Internet и должен присутствовать обязательно, если не задан протокол file. Если же задан протокол file, то компонент "узел" должен обязательно отсутствовать, т.к. протоколом уже определено, что узлом является текущий локальный компьютер.

Третий компонент – адрес порта - существенен, если на сервере есть несколько аппаратных портов (входных каналов) и необходимо указать через какой из них информация должна водиться. В настоящее время входной поток разделяется обычно не по аппаратным, а по программным каналам. В этом случае адрес порта просто дублирует содержащееся в первом элементе URL-адреса (в протоколе) указание на прикладную программу-сервер. Так что, как правило, этот компонент URL-адреса необязателен. Между адресом узла и адресом порта ставится двоеточие: .

Четвертый компонент – командная строка – указывает файл и какие-либо дополнительные параметры. Этот компонент является необязательным. Если в запросе, поступившем от программы-клиента, командная строка отсутствует, то программа-сервер отправляет файл, ссылка на который установлена по умолчанию. У Web-серверов это обычно файл с именем index.html, называемый заглавной страницей и содержащий каталог всей информации, находящейся на сервере.

Возможность опустить командную строку в URL-адресе часто позволяет обратиться к ресурсам, которые были перемещены или переименованы. Так, если вызывается URL-адрес несуществующего файла на сервере, то всегда можно сократить URL-адрес, убрав командную строку, и таким образом обратиться к заглавной странице сервера, а затем найти нужную информацию по каталогу.

Командная строка, как видно из таблицы, состоит из пути к файлу (полного имени файла) и параметров. Для разделения каталогов и подкаталогов (вложенных папок) используется слеш / , в отличие от аналогичной записи в OS Windows, где используется обратный слеш \ . Internet Explorer допускает любой из этих двух разделителей. Имя файла и параметры в командной строке разделяются знаком? . Для каждого параметра задается его имя и значение. Параметры отделяются друг от друга знаком & . Для присваивания параметру значения используется знак = . Если в параметре необходимо указать символы, код которых выходит за рамки основной кодовой таблицы ASCII, т.е. символы, коды которых не попадают в диапазон 32:127, то используется запись, состоящая из значка % и шестнадцатеричного значения кода символа.

Таким образом, в структуру URL-адреса могут входить 6 специальных символов: / , : , ? , & , = и % .

Примеры URL –адресов.

Http://www.ibm.com - обращение к заглавной странице сервера IBM.

Http://www.mfua.ru - обращение к заглавной странице сайта МФЮА.

Http://market.yandex.ru/search.xml?text=%EA%E8%E9&nl=0 - обращение к поисковой системе Яндекса для поиска товара "кий" ("EA", "E8" и "E9" - это шестнадцатеричные коды букв "к", "и", "й" соответственно.

Http://yandex.ru:8081 - то же, что и http://yandex.ru или http://yandex.ru/index.html.

Ftp://ftp.ipswitch.com/ipswitch/product_downloads - обращение к каталогу ftp-сервера.

Адрес электронной почты можно задать в формате URL, используя имя протокола mailto. В отличие от обычного формата URL-адреса двойной слеш после имени протокола не ставится. Запись выглядит следующим образом.

Mailto: Пользователь@почтовый сервер.

Компьютерные вирусы

Повышение ценности информации в современном мире, естественно, привело к появлению угрозы разрушения информации со стороны злоумышленников. Компьютерные данные могут быть:

1) рассекречены, т.е. доведены до сведения тех, кому они не были предназначены;

2) частично или полностью изменены вопреки желанию их владельца;

3) частично или полностью уничтожены, что сделает невозможной их дальнейшую обработку.

К проблеме третьего типа относится также нарушение идентификации пользователя путём удаления файлов, утраты или подмены пароля, преднамеренного разрушения жёсткого диска.

Иногда опасности для сохранения компьютерных данных связаны со случайными сбоями и нарушениями режима работы технических средств. Их называют случайными угрозами .

Нарушения функционирования компьютерных систем, связанные с преднамеренными действиями злоумышленников, называются умышленными угрозами .

Для реализации умышленных угроз могут применяться самые разнообразные средства: агентурная работа; визуальное наблюдение; перехват электромагнитного излучения, возникающего при работе; подслушивание телефонных переговоров; радиозакладки; физическое разрушение аппаратуры; несанкционированный доступ к информации.

Среди угроз случайного характера можно выделить:

1) ошибки операторов;

2) потери информации, вызванные её неправильным хранением;

3) случайные ошибки, повлёкшие уничтожение или изменение данных;

4) сбои и отказы аппаратных средств;

5) нарушения электропитания;

6) сбои в работе программных средств;

7) случайное заражение системы компьютерными вирусами.

Компьютерные вирусы существуют в самых разных видах, но единой классификации для них пока не создано.

Устоялось определение, согласно которому вирусом называют вредоносные программы, способные к саморазмножению , т. е. к созданию собственной копии и к внедрению её в тело файла пользователя или в системную область диска.

Программы или отдельные модули программ, которые могут нарушать целостность, доступность или конфиденциальность данных, называются программными закладками . Программные закладки делятся на программы-шпионы (Spy Ware) и логические бомбы . Программы-шпионы выполняют вредоносные функции до тех пор, пока присутствуют в компьютере. К ним относятся также программы Ad Ware, включающие дополнительный код и выводящие на экран «всплывающие окна» с рекламной информацией. Иногда они отслеживают личные данные пользователя (адреса электронной почты, выбор Web-сайтов, возраст и т.п.) для передачи в источник распространения Ad Ware.

Разновидность вируса, которая распространяется вместе с вложением к электронным письмам, называется почтовым червем (mail worms) . Распространяются эти вирусы по адресам рассылки, указанным в адресной книге пользователя. Некоторые черви способны генерировать текст отправляемого письма и наименование темы, а вирус прикрепляется к письму как вложение. За редким исключением черви не уничтожают локальные данные.

Одна из возможных классификаций вирусов включает следующие признаки для деления на классы.

  1. Среда обитания.
  2. Способ заражения.
  3. Разрушающие способности.
  4. Характеристики алгоритма вирусной программы.

По среде обитания вирусы делятся на загрузочные вирусы, файловые и сетевые.

Загрузочные вирусы инфицируют загрузочный (boot) сектор диска или сектор, в котором расположен системный загрузчик винчестера.

Файловые вирусы заражают файлы с расширением.com, .bat, .exe. Такие вирусы можно писать на языке Visual Basic Application, или в виде скриптов, входящих в HTML страницы (VBScript, Java Script). Их называют сценарными или скриптовыми.

Сетевые вирусы распространяются по компьютерным сетям и могут принудительно выполнять свой код на любом удалённом компьютере.

Возможны комбинированные варианты вирусов.

По способу заражения вирусы делятся на резидентные вирусы и нерезидентные.

Резидентный вирус инфицирует компьютер и вставляет в оперативную память резидентную часть, которая заражает те объекты, к которым обращается операционная система. Резидентные вирусы активны до выключения или перезагрузки компьютера. Макросы относятся к резидентным вирусам, так как присутствуют в памяти компьютера вместе с работающим приложением.

Нерезидентные вирусы не заражают оперативную память, не остаются в памяти после выполнения заражённой программы. Они активны ограниченное время и перед передачей управления исходной программе ищут незаражённый файл для внедрения.

По разрушающим способностям вирусы делятся на безвредные вирусы, неопасные, опасные и очень опасные.

Безвредные вирусы проявляются через уменьшение свободной памяти на диске.

Неопасные вирусы помимо влияния на память вызывают графические, звуковые и другие эффекты.

Опасные вирусы вызывают серьёзные нарушения в работе компьютера, уничтожают программы, данные, могут разрушить BIOS.

Очень опасные вирусы приводят к разнообразным разрушениям. Они включают: изменение данных в файлах; изменение данных, передаваемых через последовательные и параллельные порты; изменение адреса пересылки; переименование файлов; форматирование части или всего жёсткого диска; уничтожение, изменение, перемещение загрузочного сектора диска; снижение производительности системы; отказы типа блокирования клавиатуры; блокирование загрузки программы с защищенной от записи дискеты и т.п.

Алгоритмы работы программы вируса можно разделить на следующие разновидности:

1) с использованием стеллс-алгоритмов;

2) с включением самошифрования и полиморфизма;

3) с применением нестандартных приёмов.

Программы-шпионы внедряются через файлы аналогично вирусам.

Часто они сопровождают дистрибутивы полезных программ и устанавливаются на компьютер с соблюдением всех существующих правил. Антишпионские базы данных содержат сведения о более чем 300 Spy Ware.

Среди сетевых программ-шпионов наиболее вредоносны бекдоры (Backdoor) , управляющие компьютером на расстоянии. Они изменяют параметры рабочего стола, права доступа пользователей, удаляют и устанавливают программные средства и т.п.

Для защиты от вредоносных программ создаются программы контроля целостности данных, антивирусные программы, средства контроля и разграничения доступа, средства сетевой защиты, криптографической защиты, программы для работы с жёсткими дисками и сменными носителями, имеющие защитные функции.

За время борьбы с вредоносными программами создано большое количество антивирусных средств. Они значительно различаются и по цене, и по выполняемым функциям. Рассмотрим наиболее интересные с точки зрения индивидуального пользователя антивирусные программы. К наиболее эффективным антивирусным пакетам можно отнести Doctor Web (компания «Диалог-Наука»), антивирус Касперского AVP («Лаборатория Касперского»), Norton AntiVirus (корпорация Symantec), McAfeeVirus Scan (компания Network Associates), Panda Antivirus.

Среди алгоритмов, основанных на современных технологиях выявления и нейтрализации компьютерных вирусов, можно выделить сканеры, мониторы, ревизоры изменений, иммунизаторы, поведенческие блокираторы.

Антивирусные сканеры просматривают оперативную память, загрузочные секторы дисков и файлы, разыскивая уникальные программные коды вирусов (вирусные маски). Возможности этих алгоритмов ограничены тем, что они выявляют только известные коды вирусов и не способны бороться с полиморфными вирусами, которые изменяют свой код при копировании.

Мониторы имеют тот же образ действия, что и сканеры. Работают как резидентные программы. Они позволяют избежать запуска заражённых программ и предотвратить распространение вируса. Обычно мониторы устанавливаются в процессе инсталляции антивирусного пакета. Они лечат файл, перемещают заражённые файлы в «карантин» или удаляют согласно начальным настройкам. Мониторы специализируются как файловые, мониторы почтовых программ, мониторы специальных приложений.

Ревизоры изменений выполняют контрольные вычисления, называемые контрольными свёртками (CRC), для файлов, системных секторов и системного реестра. Эти значения сохраняются в базе данных и сравниваются при следующем запуске программы с текущими значениями. Лечение основано на представлении об исходном файле. Любые отклонения от исходного файла выявляются при проверке. Ревизоры не определяют вирусы в новых файлах до определения CRC и не выявляют вирусы в момент появления до заражения файлов компьютера.

Иммунизаторы или вакцины делятся на информирующие вакцины и блокирующие. Информирующие вакцины записываются в конце файла и проверяют при запуске, не изменился ли файл. Вирусы-невидимки они не выявляют. Блокирующие иммунизаторы добавляют в файл метки, определённые для известных вирусов. При появлении вируса файл не заражается, т.к. вирус считает его заражённым. Большого распространения иммунизаторы не получили.

Поведенческие блокираторы выполняют эвристический анализ программ на основе базы знаний. Их можно применять как против вирусов, так и против программ-шпионов. Удаление вирусов они не выполняют и должны сопровождаться антивирусным сканированием для уничтожения выявленных вирусов.

Работа в сети и интенсивное использование Internet-а повышают опасность заражения компьютера. Среди средств сетевой защиты наибольшее внимание уделяется предупредительным средствам, т.е. препятствующим инфицированию компьютера. Они делятся на межсетевые экраны, системы обнаружения атак, сетевые сканеры, «антиспамеры».

Межсетевые экраны или брандмауэры (fire wall ) представляют собой аппаратно-программную систему, разбивающую вычислительную сеть на части и устанавливающую жёсткие правила прохождения информационных пакетов из одной части в другую.

В состав Windows XP входит персональный брандмауэр ICF (Internet Connection Firewall), предназначенный для защиты отдельного компьютера. Он позволяет настроить параметры защиты для каждого сетевого подключения в отдельности. Для включения функционирования ICF необходимо в меню Пуск выбрать через пункт Настройка/Сетевые подключения нужное сетевое подключение, щёлкнуть на его имени правой кнопкой мыши. В контекстном меню подключения выбрать пункт Свойства . Перейти на вкладку Дополнительно и включить опцию «Защитить моё подключение к Internet-у».

Включённый межсетевой экран проверяет пакеты на соответствие записям в Nat-таблице потоков (Network Address Translation). Пакет пропускается, если задано разрешение. Список разрешений можно открыть через окно настроек на вкладке Параметры . Затем необходимо нажать на кнопку ICMP. В других персональных брандмауэрах можно найти и другие возможности. Например, брандмауэр Agnitum Outpost Firewall (Agnitum Ltd.) контролирует входящий и исходящий трафики на основе правил, заданных заранее или установленных в процессе обучения. Он способен работать в режиме невидимки (Stealth), блокировать загружаемые Web-страницы по HTML коду, блокировать загружаемые Web-сайты по адресам, блокировать активные элементы Web-страниц, такие как сценарии, Java-апплеты, элементы ActivX, запоминать серверы DNS для ускорения запуска Web-страниц при последующем подключении.

Системы обнаружения атак (IDE – Intrusion Detection System ) обнаруживают некорректную деятельность, выраженную в увеличении интенсивности поступления пакетов данных, поступающих извне или циркулирующих в локальной сети. Основная цель таких атак обычно скрыта. Это может быть исчерпание ресурсов, приводящее к тому, что атакуемый компьютер перестаёт обслуживать обычные запросы (DoS – Denied of Service), поиск незащищённых точек входа в систему, анализ сетевого трафика и т.п.

Для обнаружения атак выявляют аномальное поведение (anomaly detection) или злоупотребления (misuse detection), которые определяют в виде шаблонов по описанию в сетевом трафике или журнале регистрации.

В составе брандмауэров присутствуют модули, выполняющие обнаружение атак. Например, в Agnitum Outpost Firewall функционирует модуль Детектор атак, который обнаруживает атаки. Существует, кроме того, ряд специализированных пакетов.

Сетевые сканеры просматривают узлы в сети и формируют рекомендации по изменению параметров защиты. При обнаружении незарегистрированных устройств сообщают администратору сети.

«Антиспамеры » фильтруют сообщения, поступающие по электронной почте, для отсечения писем, исходящих с серверов, замеченных в распространении спама.

Тема 2. Работа с браузером

Начало работы в Internet

После установления связи пользовательского компьютера с сетью Internet любым из перечисленных выше способов, для путешествия по Internet необходимо запустить специальную клиентскую программу-проводник. Эти программы называют броузерами (от англ. browse – листать, просматривать) или обозревателями. Наиболее широко распространены броузеры Netscape Communicator , Microsoft Internet Explorer , Opera , Firefox , Mozilla . Эти программы разработаны фирмами-конкурентами, но имеют много общего.

Броузеры позволяют просматривать гипертексты, получаемые из Internet по указанным пользователем адресам. Гипертекст, как было сказано ранее, – это текст, содержащий гиперссылки. Попадая на гиперссылку, указатель мыши превращается в изображение кисти руки человека с вытянутым указательным пальцем.

Гипертекстовое содержимое WWW создается с помощью языка разметки гипертекстовых документов – HTML (HyperText Markup Language).

Окно броузера содержит ряд кнопок, приведённых в Таблице 2.1. Пример окна броузера показан на Рис. 2.2.

Полезную информацию при работе с броузером пользователь может получить из строки состояния, которая находится в нижней части окна. Профессиональная работа с Netscape Communicator и Internet Explorer обязательно включает в себя умение разбираться в надписях, появляющихся на этой строке. В процессе работы с Интернетом в строку состояния периодически выводятся сообщения об адресах источников информации, режиме ожидания, готовности запрошенного документа и ряд других полезных сведений.

Таблица 2.1.

Кнопка Название, назначение
1 «Назад » и «Впере д» – позволяют перемещаться по просмотренным документам.
2 «Обновить » – дает возможность пользователю повторить попытку получения документа.
3 «Домой » – возвращает пользователя на страницу браузера, зарегистрированную как стартовую при загрузке браузера.
4 «Поиск » - открывает стандартное окно в Windows для поиска текстовой строки в текущем документе.
5 «Печать » – позволяет напечатать текущую страницу на принтере.
6 «Избранное » – позволяет перейти к создаваемому пользователем списку адресов.
7 «Журнал » – дает возможность просмотреть список ссылок на те страницы, которые были просмотрены ранее и быстро перейти на любую страницу.
8 «Останов » (или клавиша ESC) – прерывает загрузку документа.

Для изменения начальной страницы необходимо найти страницу, которая станет начальной. Затем вызвать последовательно Меню à Сервис à Свойства обозревателя . В окне Свойства обозревателя щелкнуть по вкладке Общие .В разделе Домашняя страница щелкнуть по кнопке С текущей . Адрес, который был в окне, изменится на адрес отображаемой страницы. Затем нажать кнопку ОК .

Меню любого Web-броузера и, в частности, Internet Explorer-а содержит раздел Справка . При вызове справки Internet Explorer-а появляется диалоговая панель, разделённая на две части. В левой части предусмотрены 3 кнопки: Содержание , Указатель , Поиск . После нажатия на кнопку Содержание появляется список, в котором перечислены все разделы справочного файла.

В правой части диалоговой панели отображается содержание раздела справки с подробными пояснениями и необходимыми гиперссылками.

После нажатия на кнопку Указатель в левой части диалоговой панели появляется перечень основных действий, для которых в справке предусмотрены пояснения.

После нажатия на кнопку Поиск в левой части диалоговой панели появляется окно для ввода ключевых слов. После ввода ключевых слов можно нажать на кнопку Разделы , и в нижнем окне левой части диалоговой панели появляется список разделов Справки , в которых встречаются указанные ключевые слова. После выбора раздела и нажатия на кнопку Показать в правой части диалоговой панели появляется содержание выбранного раздела справки.

При необходимости в разделе Меню Вид можно изменить параметры просмотра Web-страницы. При искажении текста необходимо выбрать строку Кодировка . Появится перечень возможных вариантов кодировок. Для русскоязычных страниц выбирается Кириллица (Windows) , для Web-страниц, созданных на других языках, выбираются другие варианты. В строке Размер шрифта можно установить размер шрифта на странице от Самый крупный до Самый мелкий . Строка Во весь экран позволяет убрать панели инструментов и увеличить размер изображения. Строка Просмотр HTML-кода демонстрирует текст страницы в исходном виде (на языке HTML).

Объем Web-страницы (в байтах) определяется в первую очередь графическими и другими мультимедийными элементами. Если страница содержит много таких элементов, то на ее загрузку будет тратиться много времени и расходоваться большой объем трафика. Для уменьшения времени загрузки и экономии объема трафика можно отказаться от загрузки графических элементов. Для этого необходимо в Меню выбрать Свойства обозревателя à Дополнительно . В окне Параметры убрать флажок Отображать рисунки и нажать OK . Аналогично можно отключить загрузку звуковых элементов (убрать флажок Воспроизводить звуки на Веб-страницах ) и видеоклипов (убрать флажок Воспроизводить видео на Веб-страницах ).

Согласованный набор протоколов разных уровней, достаточный для организации межсетевого взаимодействия, называется стеком протоколов. Для каждого уровня определяется набор функций–запросов для взаимодействия с вышележащим уровнем, который называется интерфейсом. Правила взаимодействия двух машин могут быть описаны в виде набора процедур для каждого из уровней, которые называются протоколами.

Существует достаточно много стеков протоколов, широко применяемых в сетях. Примерами популярных стеков протоколов могут служить стек IPX/SPX фирмы Novell, стек TCP/IP, используемый в сети Internet и во многих сетях на основе операционной системы UNIX, стек OSI международной организации по стандартизации, стек DECnet корпорации Digital Equipment и некоторые другие.

Стеки протоколов разбиваются на три уровня:

Сетевые;

Транспортные;

Прикладные.

Сетевые протоколы

Сетевые протоколы предоставляют следующие услуги: адресацию и маршрутизацию информации, проверку на наличие ошибок, запрос повторной передачи и установление правил взаимодействия в конкретной сетевой среде. Ниже приведены наиболее популярные сетевые протоколы.

- DDP (Datagram Delivery Protocol – Протокол доставки дейтаграмм).Протокол передачи данных Apple, используемый в Apple Talk.

- IP (Internet Protocol – Протокол Internet). Протокол стека TCP/IP, обеспечивающий адресную информацию и информацию о маршрутизации.

- IPX (Internetwork Packet eXchange – Межсетевой обмен пакетами) в NWLink.Протокол Novel NetWare, используемый для маршрутизации и направления пакетов.

- NetBEUI (NetBIOS Extended User Interface – расширенный пользовательский интерфейс базовой сетевой системы ввода вывода). Разработанный совместно IBM и Microsoft, этот протокол обеспечивает транспортные услуги для NetBIOS.

Транспортные протоколы

Транспортные протоколы предоставляют услуги надежной транспортировки данных между компьютерами. Ниже приведены наиболее популярные транспортные протоколы.

- ATP (Apple Talk Protocol – Транзакционный протокол Apple Talk) и NBP (Name Binding Protocol – Протокол связывания имен). Сеансовый и транспортный протоколы Apple Talk.

- NetBIOS (Базовая сетевая система ввода вывода).NetBIOS устанавливает соединение между компьютерами, а NetBEUI предоставляет услуги передачи данных для этого соединения.

- SPX (Sequenced Packet eXchange – Последовательный обмен пакетами) в NWLink.Протокол Novel NetWare, используемый для обеспечения доставки данных.

- TCP (Transmission Control Protocol – Протокол управления передачей).Протокол стека TCP/IP, отвечающий за надежную доставку данных.

Прикладные протоколы

Прикладные протоколы отвечают за взаимодействие приложений. Ниже приведены наиболее популярные прикладные протоколы.

- AFP (Apple Talk File Protocol – Файловый протокол Apple Talk).Протокол удаленного управления файлами Macintosh.

- FTP (File Transfer Protocol – Протокол передачи файлов). Протокол стека TCP/IP,используемый для обеспечения услуг по передачи файлов.

- NCP (NetWare Core Protocol – Базовый протокол NetWare). Оболочка и редиректоры клиента Novel NetWare.

- SNMP (Simple Network Management Protocol – Простой протокол управления сетью).Протокол стека TCP/IP, используемый дляуправления и наблюдения за сетевыми устройствами.

- HTTP (Hyper Text Transfer Protocol) – протокол передачи гипертекста и другие протоколы.