Сетевой жесткий диск своими руками. Собираем NAS своими руками, используя ОС FreeNAS

В предыдущих постах я неоднократно упоминал о zfs. Причем получалось, что и памяти и процессора она требует не по детски. Остался вопрос - и зачем? Сразу скажу, что не претендую на полноту и пр. Что такое zfs можно взглянуть в Википедии. Заинтересовавшимся серьёзнее советую нагуглить zfs administration guide (вроде бы был и по русски). Моё намерение - объяснить зачем вдруг дома файловая система корпоративного уровня. Прим. У читателя, особенно второй части поcта, предполагается уверенное понимание того, что такое дисковые массивы, напр. RAID5. Если понимания нет - вряд ли такие массивы стоит дома самому строить и этот текст читать.


1. Целостность файловой системы . Каждый сталкивался с ситуацией, когда файловую систему приходилось чинить. Успешно или не очень. zfs построена так, что в ней даже нет утилиты вроде виндовой chkdsk или линуксовой fsck. Ситуация, когда файловая система оказалась в противоречивом состоянии, просто невозможна. Реализовано через Copy-on-write (данные пишем не поверх старых, а выделяем новый блок, пишем туда, если все ОК - заменяем указатель со старых данных на новые. Подробнее - см гугл). В результате логическая структура диска не испортится из-за того, что-то не вовремя отключили или свет отрубился. Ну разве записанное в последние 10 сек пропадет. (впрочем, диск может и физически сгореть при играх с электричеством).

2. Уверенность, что не прочитаешь мусор, думая, что читаешь данные . Железо несовершенно. Например, если дребезжат контакты на SATA кабелях, на диск будет записано совсем не то, что было в памяти. И никто, замечу, долгое время об этом не узнает. Мой профессиональный опыт связан с полиграфией. Не раз приходилось на выводе видеть картинку до середины нормальную - а дальше шум. zfs хранит с каждым блоком данных его контрольную сумму. При считывании данных сумма автоматически сличается. Казалось бы, так просто...

3. Уверенность, что хранимые данные не протухли . Да, данные при хранении имеют тенденцию портиться. Что хорошо известно тем, кто поверил маркетингу производителей DVD болванок про 100 лет и записал на них свои архивы. Особенно это важно для "холодных" данных, долгое время лежащих без движения. Архивах, старых фото и т.п. Проверить данные вроде как просто - надо их считать и сличить контрольные суммы. Для zfs, понятно - достаточно файлы прочитать. Для регулярной проверки есть команда, в фоновом режиме все проверяющая.

4. Снимки файловой системы. Легкость запоминания состояния файловой системы на данный момент времени, хранение таких снимков и откат к ним при необходимости. Защищает от дурацких действий человека. Модель Copy-on-write просто располагает к такой функциональности - блоки удаленных или перезаписанных данных просто не освобождаем, а ссылки на них храним в снимке. В результате снимок занимает места столько, сколько содержит измененных по сравнению текущим моментом данных, а не весь объем данных.

Это все было для данных без избыточности, типа одиночного диска. Но zfs позволяет формировать массивы с избыточностью , подобные (и превосходящие) RAID1 (зеркало), RAID5 (избыточность в размере одного диска), RAID6 (двух) и даже "RAID7" (сохраняющий данные при выходе их строя любых трех дисков массива). Массивы можно объединять, получая что-то вроде RAID10 или RAID50. И чем же zfs массивы лучше?

5. Аппаратная независимость . Чтобы сделать аппаратный RAID5, тем более RAID6, нужен дорогой RAID контроллер. zfs raidz - вариант программного RAID, требуются только доступ к дискам, например SATA порты. zfs raidz вполне может быть построен на портах разных контроллеров и из дисков разных моделей (в использовании разных моделей дисков есть и плюсы и минусы). И перенесен чуть не на любое железо, куда можно подключить диски. Я, например, неоднократно переставлял диски между SATA портами, прозрачно импортировал массив, созданный в режиме IDE на контроллере, в ACHI режиме и на SAS контроллере. Хотя операционная система нумерует диски по портам и определяет IDE, ACHI и SAS диски по-разному, zfs все это способен молча отработать (до определенных пределов, конечно. Сдуру что хочешь можно сломать.)

6. Отсутствие Дыры по Записи . (Wiki) То есть разрушения данных, если диск массива не может принять данные. Дорогие RAID контроллеры оборудуют батарейками, которые позволяют много дней хранить данные, не успевшие попасть на диск, и записывать их в массив при появлении возможности.

7. Устойчивость при сбое диска . Пусть у нас одинаковые RAID5 и zfs raidz1. В каждом из них сбоит один из дисков, меняем его на новый. И в процессе замены (а она занимает многие часы для больших массивов) не читается блок на одном из оставшихся дисков массива.

Для RAID5 в большинстве случаев это катастрофа. Массив объявляется сбойным не читаемым, несем его профессионалам, которые за круглую сумму инфу будут восстанавливать.

Для zfs raidz1 сообщается на какие файлы пришлись сбойные блоки, остальное синхронизируется. А если с заменяемого диска хоть что-то читается и от компа его не отключали - информация с него тоже будет использована для синхронизации. И с высокой степенью вероятности данные вообще не потеряем.

8. Работа с полезными данными, а не всем массивом . Например, если я заменяю диск в RAID5 массиве, время восстановления зависит от объема массива. Если в zfs raid1 - от объема записанной в массив информации, тк не используемое для данных место не будет синхронизироваться.

Преимуществ еще много, но мне для дома интереснее именно эти. В корпоративном применении - есть и другие (сжатие данных, дедупликация...). Упомяну важные для меня недостатки .

1. Нарастить raidz массив на один диск нельзя . Можно заменить все терабайтные диски на тритеры - и увеличить объем. Можно собрать из 3 (и более) дисков еще один raidz и добавить его к существующему. Но превратить raidz1 из 5 дисков в raidz1 из 6 можно только слив куда-то информацию, разрушив массив и создав новый.

2. Массив нельзя уменьшить . Можно только увеличивать. Например, заменить в массиве терабайтные винты на двухтерабайтные - можно. А на полутерабайтные - нельзя, даже если в массиве хранится 1 килобайт инфы.
Можно подсоединить к массиву еще один - а отсоединить нельзя. Все такие процедуры - только через сохранение инфы куда-то вовне, разрушение массива и создание нового.

3. Ресурсоемкость . zfs постоянно считает контрольные суммы, что создает нагрузку на процессор и жрет под кеши память. В корпоративном применении есть мнение - гигабайт памяти на терабайт массива. Дома мне хватает 330 атома и 4 Гб памяти (а раньше и на 2 Гб работало - особой разницы не увидел). Хотя атома для полной утилизации гигабитной сети мне не хватает, но 40-50мб/с мои потребности закрывает.. А вот если железо старое и еще значительно слабее - zfs не для Вас.

Да, напомню, если понравилось - в NAS4free , которому и посвящен весь цикл постов, управление NAS, включая операции с zfs, идет через понятный новичку веб интерфейс.

В среднем, очередной пост про NAS появляется примерно раз в полгода, и рассказывает о том, как поставить систему по документации. Мы усложним задачу, привязав ее к реальному проекту и ограничив бюджет. Кроме того, мы еще и попытаемся подстелить себе соломку в тех местах, куда не еще не ступала нога молодого сисадмина, а также разрушим несколько отраслевых мифов.

Эта статья не для специалистов по серверному хранению данных, геймеров и прочих оверклокеров. На вас, коллеги, и так вся индустрия работает. Она для начинающих сисадминов, любителей UNIX-систем и энтузиастов свободного программного обеспечения. У всех накопилось старое железо. Всем нужно хранить большие объемы дома или в офисе. Но далеко не у всех есть простой доступ к серверным технологиям.

Я очень надеюсь, что вы найдете для себя несколько полезных идей и все-таки научитесь на чужих ошибках. Помните: система стоит не столько, сколько вы заплатили за железо, а сколько вы вложите потом времени и сил в тестирование и эксплуатацию.
Если не хотите читать - посмотрите ссылки и выводы в конце; может, и передумаете.

DISCLAIMER

Информация предоставляется AS-IS без какой-либо ответственности за ее использование кем-либо, где-либо и когда-либо. Все ненароком упомянутые торговые марки являются собственностью соответствующих владельцев. Некоторые из них в рекламе уже настолько не нуждаются, что я придумываю им шуточные названия.

Благодарности

Респект Андрею Александровичу Бахметьеву, инженеру и изобретателю. Я горд, что Андрей Александрович преподавал для меня в институте! Желаю ему всяческих успехов в его проектах!

Задача

Итак, есть малый бизнес-стартап, генерирующий порядка 50Гб файлов в неделю, с необходимостью их архивного хранения в течение нескольких лет. Файлы крупные (порядка 10-20 Мб каждый), обычными алгоритмами не сжимаемые. Начальный объем данных порядка 2Тб. Совсем старые данные можно хранить в оффлайне, подключая по требованию.
Нужно уложиться в весьма скромный начальный бюджет решения 500 евро (в ценах лета 2013) и двухнедельный срок на сборку и тестирование .

За эти деньги нужно построить систему, которая позволит работать с файлами небольшой группе в одной локальной сети с разных платформ (Windows, Mac OS). Требуется длительная работа без сисадмина на площадке, защита от отказов и базовые функции управления правами доступа.

Традиционные пути

Безусловно, можно купить сетевое хранилище: их делают NetApp , QNAP , Synology и другие игроки, и притом делают неплохо даже для малого бизнеса. Но наши 500 евро – это только начало разговора для пустой коробки, без самих дисков. Если у вас есть 1000-2000 евро, лучше купите готовое изделие, а мы попробуем максимально заплатить знаниями и минимально - временем и деньгами.

UPD (спойлер ред. 2 от 2014-03-08):

Если собираете из нового железа, а не из хлама

По совокупности этого поста и его комментариев, любезно предоставленных хаброкомьюнити, предлагаю следующий алгоритм для простой четырехдисковой системы:

  1. Если двойного размера самой ёмкой из доступных моделей диска не хватает для хранимых данных, прекращаем читать спойлер (пример: модель 4Тб, требуется хранить 7Тб данных, тогда продолжаем; если требуется хранить 10Тб, тогда прекращаем)
  2. Выбираем изделие из линейки MicroServer известного производителя серверов Харлампий-Панкрат; например, n36l, n40l, n54l, с четырьмя отсеками для дисков (главное, чтобы была поддержка ECC-памяти)
  3. Обязательно комплектуем наш сервер памятью с контролем четности (ECC) из расчета 1Гб на каждый 1Тб хранимых данных, но не менее 8Гб (по рекомендации FreeNAS для дисков до 4Тб получается как раз всего 8Гб)
  4. Если у нас нет ECC-памяти, немедленно прекращаем читать этот спойлер , читаем пост до конца
  5. Выбираем производителя дисков, используя актуальный обзор отказов; например, вот этот: http://habrahabr.ru/post/209894
  6. Выбираем недорогую линейку SATA дисков с обязательным наличием ERC , а зачем, читаем здесь: http://habrahabr.ru/post/92701
  7. Выбираем ёмкость дисков (2Тб, 3Тб или 4Тб) из расчета, что их будет четыре, и что доступной для данных будет только половина (вторая половина на избыточность RAID)
  8. Перед закупкой еще раз внимательно и досконально проверяем совместимость железа между собой, количества слотов, отсеков, планок и прочего, но для FreeNAS самое главное - поддержка всего железа актуальным ядром FreeBSD
  9. Выбираем хорошую загрузочную флэшку, прочитав продолжение данного поста (часть 2: хорошие воспоминания)
  10. Закупаем, вдыхаем ароматы нового железа, собираем, подключаем, запускаем; для ZFS обязательно выключаем все аппаратные RAID"ы
  11. Создаем том RAIDZ2 из четырех дисков, обязательно с двойной избыточностью (на размерах тома около 12Тб есть риск повстречать злобного URE, читайте о нем в этом посте; если мы не боимся URE и все-таки собираем RAIDZ на четырех дисках, проверяем размер физического сектора - на современных дисках он 4Кб, и в этом случае получится совершенно нелепый страйп 43Кб, который еще и просадит нам скорость массива: forums.servethehome.com/hard-drives-solid-state-drives/30-4k-green-5200-7200-questions.html)
  12. Соль, сахар, перец, jail"ы, шары, скрипты и тому подобную сметану добавляем по вкусу

А как же облачное хранение , спросите вы? На момент написания этой статьи популярные облачные хранилища для наших объемов выглядят дороже, чем хотелось бы. Например, стоимость хранения неограниченного объема данных 36 месяцев на известном сервисе Брось Бокс обойдется в пару тысяч долларов с лишним, хотя и выплачивать их можно постепенно. Конечно, есть сервисы вроде Amazon Glacier (благодарю А.М. за подсказку) или Ажурных Окон, но, во-первых, они тарифицируют не только хранение, но и обращение (как его априорно подсчитать?), а во-вторых не будем забывать, что бизнес сидит на Интернет-аплинке 10Мбит, и маневры терабайтами потребуют не только определенных усилий по управлению процессами, но и будут весьма утомительными для пользователей.

Обычно в таких случаях берут старый компьютер, докупают большие диски, ставят Linux (не обязательно, кто-то ухитряется и Windows 7), делают массив RAID5. Отлично. Всё работает хорошо примерно полгода-год, но одним солнечным утром сервер вдруг пропадает из сети без всякого предупреждения. Конечно, сисадмин уже давно работает в другой фирме (текучка кадров), резервной копии нет (объемы слишком велики), а новый сисадмин починить систему не может (при этом на чем свет стоит ругает старого сисадмина и диалект Linux YYY, ведь надо было использовать Linux ZZZ, тогда проблем бы точно не было). Все эти истории повторяются давно и одинаково, меняются только версии ОС и растут объемы данных.

Отраслевые мифы

Миф о RAID5
Самый распространенный миф, в который я и сам верил до недавнего времени – это то, что второго подряд отказа в массиве на практике не может быть по теории вероятности. А вот и может, да еще как! Смоделируем реальную ситуацию: сервер проработал пару лет, после чего в массиве отказывает диск. Пока ничего страшного, ставим новый диск, и что происходит? Ага, реконструкция массива, т.е. длительная максимальная нагрузка на уже порядком изношенные диски. В такой ситуации отказы очень даже возможны и происходят.
Но это не все. Есть еще заложенная производителем методическая вероятность ошибки чтения, которая при определенных обстоятельствах сейчас уже практически гарантирует, что RAID5 после отказа диска обратно не соберется.
Миф о терабайте
Можно, конечно, считать всех производителей дисков начинающими программистами, но один отраслевой килобайт у них принят 1000 байт, строго по системе СИ (тот, другой килобайт, на самом деле с 1998г зовут кибибайт и обозначают KiB). Однако это не всё. Дело в том, что все выпускаемые шпиндельные диски имеют уже обнаруженные на фабрике дефекты, количество которых случайно, и потому фактический доступный размер «гуляет». У бюджетных моделей он гуляет даже в пределах одной партии одинаковых изделий, причем как в большую, так и в меньшую сторону. У меня в наборе из четырех одинаковых дисков номиналом 2Тб два оказались примерно на 2Гб меньше, а другие два – примерно на 400Мб больше номинального объема. Т.е. килобайт, подобно синусу в военное время, колеблется от 999 байт 6 бит до честных 1000 байтов даже с полубитом на конце. Либо изделия поставляют к нам на рынок на протекающих подводных лодках, либо наводнение виновато, но биты куда-то деваются.

Не стоит недооценивать данный фактор: если замена отказавшего диска в массиве окажется хоть на один блок короче номинального объема, то деградировавший RAID-массив теоретически может и не собраться до оптимального состояния, и мы получим головную боль, которую можно было легко избежать вначале. Исходя из этого, больше - не значит лучше, главное - постоянство.
Я предполагаю, что производители серверного оборудования решают эту проблему, всегда делая технологический запас и одновременно искусственно занижая объем доступного пространства в прошивке диска, поэтому по определенному коду изделия у них всегда (в пределах поддержки) можно получить диск, который имеет одну и ту же ёмкость. Наверное, это одна из причин, почему диск Seagate под известной серверной торговой маркой Харлампий-Панкрат и его «родной брат» без нее – не совсем одно и то же изделие. Но это только мое предположение. Возможно, у лидеров рынка хранения данных есть в рукаве и более технологичные козыри.

Риски проекта

В любом проекте важно понять риски, ведь в конечном итоге мы строим не ради забавы, но ради успеха бизнеса. Чтобы достичь гармонии Крепсондо (простите, непрерывности бизнеса), для начала мы построим упрощенную модель рисков, которая должна учитывать вероятные сбои и их последствия.
Аппаратные
По бюджету мы не имеем доступа к серверному оборудованию, поэтому и диски, и контроллеры можем использовать только дешевые, а это территория спонтанных отказов на ровном месте. К аппаратным рискам относим: механический износ (шпиндельные диски, вентиляторы), электрический износ (особенно касается флэш-памяти), ошибки в прошивках диска или контроллера, некачественный блок питания, некачественные диски, рассыпание аппаратного RAID-массива. Риском можно считать и отсутствие комплектующих запасного имущества прибора (ЗИП) в продаже вследствие устаревания.
Программные
К программным сбоям отнесем проблемы стандартных операционных систем, которые обладают склонностью к саморазрушению и не самой лучшей способностью к самовосстановлению после отказов питания, требуя регулярного администрирования. Добавим сюда ошибки реконструкции программного RAID-массива, ошибки в драйверах контроллеров, действия пользователей (намеренные и ненамеренные), действия вредоносного кода.

Имеющееся железо

Под рукой оказался мой старый компьютер примерно 2004г. выпуска на материнской плате Socket 478 GA-8IPE1000MK , с ЦП Pentium 4 @3ГГц и 1Гб ОЗУ. На корпусе написано ZEUS, он имеет целых шесть внутренних отсеков 3.5” (по тогдашним меркам это много), один 3.5” под архаичный FDD, четыре 5.25”, два места под вентиляторы охлаждения и блок питания на 250Вт. Видеокарта ATI RADEON 8500 в свое время рендерила такие хиты, как Soldiers of Anarchy, но ее вентилятор на масляном подшипнике уже давно воет, как собака Баскервилей (конечно, когда у него вообще получается вращение). Охлаждение ЦП было решено Zalman CNPS5700D-Cu , который затягивал нагретый воздух от радиатора и через эксцентричный воздуховод выдувал его внутрь корпуса, откуда его вновь приходилось выдувать наружу вторым вентилятором.

В один из дней мне настолько надоел весь этот аэродром, что я решил выпилить его в буквальном смысле: взял электропилу и вырезал круглое отверстие в корпусе (по решетке вентилятора), нарастив воздуховод куском пластиковой бутылки из-под минеральной воды Карма Дома. Убрал второй вентилятор и понизил первому (на ЦП) обороты реостатом.

В таком слегка панковском виде вся эта материальная часть и грустила на полке до наших дней.

Дополняла мою кунсткамеру дыра на задней панели корпуса из-за вольного трактования производителем корпуса стандартов ATX: вогнать туда панель-заглушку без напильника оказалось никак невозможно, и я оставил эти попытки.

Материнская плата имела контроллер ОЗУ, который не позволял менять планки в режиме STANDBY (это когда компьютер выключен кнопкой, но блок питания включен). Там даже светодиодный индикатор специальный выведен RAM_LED, задачей которого было предупреждать сисадмина о наличии напряжения в контуре:

When RAM_LED is ON, do not install / remove DIMM from socket

Конечно, в итоге контроллер накрылся; и если не пошевелить память в разъеме определенным шаманским образом, материнка ее не видела и начинала противно пищать. В справочнике писков данный сигнал мог означать как проблему ОЗУ, так и проблему блока питания, что окончательно сбивало с толку. Для довершения картины BIOS создавал какую-то особенно кривую среду при загрузке с флэшек, из-за чего у меня категорически не загружались все производные SYSLINUX (для справки: это почти безальтернативный загрузчик CD/флэшек для огромного количества вариантов Linux).
Так к чему я это всё?

Выводы:

  1. Такой компьютер для серверной задачи совершенно непригоден.
  2. Молодым сисадминам категорически противопоказан секс со старым железом.

Идеи

Замена железа
Конечно, глючная мать, изношенная механика и старый блок питания совершенно не укладываются в философию Крепсондо (ой, снова простите, непрерывность бизнеса), и потому подлежат замене в первую очередь и без лишних обсуждений. Гармония Крепсондо для нас важнее, поэтому попрощаемся со старым железом, оно свою историческую миссию выполнило.
Выбор замены для Socket 478 оказался невелик: ASRoсk P4i65G . Вроде бы неплохая мать с бортовой графикой, тремя PCI, двумя SATA и шестью USB на борту. Аппаратный мониторинг сделан на базе Winbond W83627 (поддерживается в пакете lm-sensors ; это оказалось потом полезным при калибровке реостата вентилятора по температуре ЦП работающей системы).

Теперь ничего не пищит, загрузка с флэшек работает нормально, что уже радует. Бортовых ста мегабит для сети NAS маловато, поэтому один слот PCI сразу же занимаем бюджетным D-Link DGE-530T , еще два PCI оставляем на дисковые контроллеры. Обычно они имеют до четырех портов, что вместе с двумя бортовыми даст нам возможность подключить десять дисков.
Про новый блок питания я расскажу позже, пока лишь отмечу, что для моей системы на базе Socket 478 вполне хватало 250Вт. Поэтому, прикинув в уме запас мощности 200Вт на раскрутку шпиндельных дисков, я с ходу согласился на предложенный мне в магазине бюджетный источник FSP Group ATX-450PNR номиналом 450Вт. Поверхностно мне понравился большой низкооборотный 120мм вентилятор – значит, шуму будет меньше (UPD: забегая вперёд, ATX-450PNR, несмотря на все ухищрения, с поставленной задачей не справился, и я не рекомендую его использовать ; см. habrahabr.ru/post/218387).

Заодно я прихватил пару вентиляторов Zalman ZM-F1-FDB на модном гидродинамическом подшипнике: первый пойдет на кулер ЦП, второй – на обдув первой группы дисков.
Собственно, осталось выбрать самое важное.

Дискововая подсистема

Для сетевого хранилища важнейшей задачей является выбор режима массива (RAID). Поскольку бюджет решения не позволяет нам воспользоваться серверным оборудованием, вздыхаем и сразу откладываем аппаратные RAID-контроллеры, SAS и прочие Fiber Channel в сторону. Туда же откладываем и твердотельные диски. Раз у нас на кухне NAS (простите за каламбур), то тернистый путь пройдет через волшебный мир программных решений RAID на базе дешевых шпиндельных дисков SATA . Так гораздо занимательнее, но да помогут нам практики Крепсондо.
Диски
На мой субъективный взгляд, у продуктов SATA (по сравнению с SAS/FC) с выбором всё еще более запутано и сильнее перемешано с маркетингом. У шпиндельных дисков Seagate я увидел два условных ценовых диапазона, которые отличаются примерно на 40%. Верхний принято считать решением для среднего бизнеса, а нижний – для домашних пользователей и малого бизнеса. Чем же грозит использование самых дешевых дисков? По субъективным оценкам некоторых экспертов (ссылка), дешевые диски отказывают ощутимо чаще дорогих в первую же неделю эксплуатации, и по результатам года тенденция сохраняется. Осторожно приведя здесь эту таблицу, повторю, что это очень приближенная субъективная оценка одного из пользователей Интернета, без указания конкретных изделий:

По наблюдению того же пользователя, примерно один-два из дюжины годовалых дисков SATA отказывают на втором году жизни. Само собой, все SATA ощутимо ведут себя хуже, чем SAS или Fiber Channel, с этим вряд ли можно спорить. Как, впрочем, и с выделенным бюджетом, который почти не оставляет нам выбора.

Производителя Seagate я выбрал достаточно интуитивно, поэтому не буду описывать данный процесс.

UPD:
Поскольку описанные события происходили летом 2013г, то я не прочитал вот этот замечательный пост: http://habrahabr.ru/post/209894/ . Из него следует, что Seagate не самый лучший выбор, но читатель, безусловно, теперь предупрежден и вооружен. Благодарю, хаброкомьюнити, вы лучшие!

Бегло анализируя предложения в магазинах, я отметил, что цена бюджетных дисков крупного объема 4Тб почти на 90% выше предложений на 2Тб, т.е. удельная стоимость хранения гигабайта росла почти линейно от объема. Почему это так важно? Дело в том, что мне не удалось найти контроллер для шины PCI с гарантированной поддержкой накопителей 4Тб, а экспериментировать не было возможности. Это поставило перед непростым выбором: либо ограничить диски 2Тб, либо отказаться от старого железа и переходить на шину PCI Express (с покупкой нового компьютера). К счастью, почти линейная зависимость цены от ёмкости избавила от трудных решений, но читателю рекомендую всегда считать совокупную стоимость дисковой подсистемы, ибо в NAS она определяющая, и выгода от ёмких дисков может перевесить всё остальное.

Приглянулась своей ценой модель ST2000DM001 . Это был самый бюджетный вариант в линейке Seagate на 2Тб, использует новый размер сектора 4Кб и требует правильной инициализации (форматирования) файловой системы. Интересно, что представители ST2000DM001 попадаются как с двумя, так и с тремя пластинами (на картинке - вариант с двумя).

Похоже, новые владельцы проекта FreeNAS не пожалели сил на глубокий рефакторинг кода, который, вероятно, дался ценой отказа от некоторых «устаревших» функций (например, RAID5). Во всяком случае, FreeNAS выглядит сильным драйвером развития для FreeBSD, и заметен явный интерес к развитию ZFS во «фришном» ядре. Что ж, пожелаем удачи коллегам.

Если сравнивать FreeNAS и его предка-бранч NAS4free, то для меня субъективно FreeNAS выглядит сильнее, несмотря на отсутствие RAID5. Есть некое ощущение, которое непросто объяснить словами: сквозь графический интерфейс NAS4free так и веет запахом кода, требующего глубокого рефакторинга («кода с душком»). Так что же это за рефакторинг такой? Вот вам простой пример: в отличие от NAS4free, даже при работе с флэшки FreeNAS может применять изменения в конфигурации без полной перезагрузки системы. И это при том, что корневая система смонтирована в режиме read-only. Для меня это был сильный аргумент. К тому же FreeNAS перешел на хранение конфигурации в РСУБД SQlite , а NAS4free до сих пор использует простой, но не самый надежный формат XML.

RAID5 или не RAID5
Хотя UFS и софтверные RAID-массивы GEOM и не дотягивают по технологичности до ZFS с RAIDZ (на первый взгляд вообще кажется, что это соревнование набора шпал против вантового моста), но популярные режимы RAID0/1/5 в GEOM есть. Однако современный FreeNAS при этом не позволяет создавать тома RAID5, а для совместимости оставлены только простейшие режимы RAID0 (stripe) и RAID1 (зеркало).

Почему так?

На это, наверное, есть две причины, назовем их упрощенно: механическая и математическая (хотя в шпиндельных дисках они переплетены подобно корпускулярно-волновому дуализму).

Представим себе отказ/замену одного диска в массиве 10Тб спустя два года эксплуатации: процесс реконструкции в течение недели (!) будет мучить уже и так изношенные шпиндели (см. выше Миф о RAID5 ). Но при таком стрессе старые диски могут не протянуть и трех дней, повалив массив окончательно, вот тогда стресс начнется уже у нас, да еще какой.

Вы спросите: как же так, почему неделя на реконструкцию? Обратим взор на представителей двух поколений Seagate Barracuda (используем материалы http://www.storagereview.com):

Если ёмкости выросли примерно в 8 раз, то скорости лишь троекратно. Ирония, правда, в том, что априорно мы можем представить тут скорость реконструкции RAID1, и даже такой быстрый вариант на нашем винтажном PCI-контроллере будет не ахти. В массивах же RAID5 скорость вообще определяется математическими способностями процессора, и по разным оценкам составляет порядка суток на каждый Тб данных (увы, ссылок дать не могу, простите).

Но и это еще не все, дорогой читатель. Диски имеют параметр, именуемый Unrecoverable Read Error Rate, который на современных бюджетных моделях SATA составляет 1 сектор на каждые сто триллионов битов. Т.е. примерно из каждых записанных 12Тб диск один раз скажет «прости, хозяин, но выдать обратно нужный сектор совершенно никак невозможно; ошибка чтения». Это методическая ошибка, заложенная производителем и потому теоретически гарантирующая невозможность реконструкции массива RAID5 емкостью более 12Тб на дешевых дисках (справедливости ради отметим, что URE на дисках SAS, как минимум, на порядок меньше, а критический объем, соответственно, больше). Эпитафию RAID5 написал Robin Harris в своей статье Why RAID 5 stops working in 2009 .

По итогам выбора железа максимальная совокупная ёмкость наших дисков составляет 20Тб (18TiB), поэтому в очередной раз напомним себе о пути к непрерывности бизнеса через философские практики Крепсондо, вздохнем и дружно помянем RAID5.

Окончательный выбор: разборный массив
Итак, я отказываюсь и от аппаратных RAID (дорого), и от ZFS (дорого) и от софтверного RAID5 (медленно и ненадежно). Выбираю FreeNAS с томами UFS на базе технологий GEOM: просто, надежно и при необходимости ремонтируется, как автомат Калашникова. То, что надо.
Добавим USB флэшку для загрузки системы – шпиндельные диски целиком отведем для данных. Мы не хотим, чтобы торчащую снаружи загрузочную флэшку кто-то случайно выдернул, поэтому выбираем бюджетную флэшку с наименьшими габаритами (как потом выяснилось, это было роковое и необдуманное решение: http://habrahabr.ru/post/214803/).

Из вариантов Stripe и Mirror я выбираю, понятное дело, Mirror (т.е. RAID1). Итоговая дисковая система выглядит как набор из нескольких независимых томов-зеркал. Каждое зеркало собрано из пары дисков 2Тб (ограничение контроллера), инициализируется и монтируется независимо. Максимальный объем онлайн хранимых данных на десяти дисках составит около 10Тб в пяти независимых томах (точнее, 9TiB).

Хоть такой дизайн и может показаться несколько неуклюжим, но он действительно оправдан при наших объемах данных и количестве дисков: иначе мы бы получили неразборный монолит с запредельным временем реконструкции при отказах.

Добавим сюда один маленький штрих: поскольку используются дешевые потребительские диски, придется при создании томов искусственно занижать объем, чтобы не иметь потом проблем с заменой отказавших дисков новыми (с плавающей около 2Тб емкостью). Оставим в конце технологические «хвосты» для лучшего сна.

О пропускной способности вагона, груженого стриммерными кассетами
С точки зрения архивного хранения не стоит вообще расстраиваться по поводу ёмкости: массив-то у нас разборный. Исчерпав доступный объем хранимых данных на сервере онлайн в томах №№1-5, мы можем вручную отключить самый старый том №1, извлечь его диски, установить два новых диска по 2Тб и инициализировать новый том №6. Старые диски затем можно обуть в USB-конструктив и подключать по требованию бизнеса к тому же серверу FreeNAS, не разбирая при этом весь корпус. Можно их монтировать read-only. При большом желании можно подключить это и к Windows, и к Mac. В любом случае, помните: старый шпиндельный диск лучше по пустякам не трясти, а то от возраста посыплется магнитный песок из гермоблока.

Есть еще интересный сценарий с unionfs : заполненные тома переводить в режим для чтения и подкладывать «вниз» под файловую систему «верхнего» тома, тогда будет иллюзия непрерывности дискового пространства. Правда, unionfs - штука заумная и потому опасная, а вариант с read-only, наверное, единственный более-менее обкатанный.

Все, объемы архивного хранения теперь ограничены объемом шкафа или кейса, куда складываются старые диски. Если этот кейс еще и перемещать в пространстве, то полоса пропускания вообще зашкалит.

Корпусная инженерия

Подумаем немного о первичном охлаждении, ибо диски наши на 7200rpm будут тепленькими. Находим в корпусе место для обдува отсеков 3.5” и с почти хирургическим трудом приспосабливаем туда наш вентилятор Zalman ZM-F1-FDB на антивибрационных резинках, которые приходится тянуть пальцами через тонкие щели корпуса. Черт бы побрал эти потребительские корпуса с их проходами и щелями…

Вспомнил старую комедию.

Солдата спрашивают: «Почему так плохо видишь?». Тот отвечает: «Ну, есть одна глазная операция, но ее делают через задний проход, а я туда ни одного мужика не подпущу»…

Эксцентрично-зеленый пластик бутылки из-под минеральной воды Карма Дома, торчащий сзади корпуса, уже порядком намозолил глаза. Поэтому разбираем кулер CNPS5700D-Cu, берем с собой воздуховод и идем в продуктовый магазин за покупками. Примерив по очереди бутылки с минеральной водой разных марок, убеждаемся в идеальном совпадении диаметров двухлитровой бутылки Звон Аква с круглой частью воздуховода CNPS5700D-Cu (на одном заводе их отливали что ли?).

Поблагодарим компанию Штука-Школа за столь удачное совпадение, и, проведя, еще пару часов с различными острыми предметами, получаем часть воздуховода сложной формы из прозрачного пластика.

Ставим в кулер новый вентилятор ZM-F1-FDB 80мм, его гидродинамические подшипники обладают сопоставимым ресурсом, но потише звонких шариковых. В последний момент, само собой, выясняется, что отверстие на корпусе находится на полсантиметра выше, чем надо, поэтому добавляем лепестковую юбку из клейкой ленты, идею которой подсказали авиаконструкторы истребителей с изменямым вектором тяги.

Наше изделие действительно чем-то смахивает на отклоняемое сопло, но выглядит уже не так по-панковски.

Наконец, пришло время разобраться с тем самым местом, где мне десять лет назад не удалось разгадать Великий Китайский Инженерный Замысел. Напомню, речь о задней панельке на разъемы ATX, идущей в комплекте с материнской платой, точнее, о невозможности ее установить вот в это гнездо:

Оказывается, ребус вполне решается плоскогубцами, просто разогнем профиль по периметру, сантиметр за сантиметром. Панелька будет прекрасно держаться своими отверстиями на разъемах, а неровности уйдут внутрь корпуса и не нарушат нам инженерную эстетику:

Во избежание эффекта спагетти шнуры SATA прихватываем друг к другу стяжками, ибо макаронным изделиям в серверных корпусах не место. Кабели помечаем, используя маркеры для витой пары. Реостат вентилятора крепим к корпусу на оказавшейся очень к месту незанятой ножке для материнской платы. Старые диски пока стоят в корпусе для лучшей калибровки обдува, но скоро мы от них избавимся.

Руководствуясь опять же соображениями тепловой эффективности, массивы-зеркала из дисков будем собирать хотя бы через один отсек, т.е. так, чтобы диски одного массива не оказались соседями по отсекам и не грели друг друга , особенно на длинных операциях реконструкции. Диски также маркируем, хотя бы номером тома. UPD: лучше еще и серийный номер диска разместить, напечатав его на ленточном термопринтере, а при отсутствии оного просто на полоске бумаги под прозрачной клейкой лентой. Когда дисков больше двух, это бывает очень полезным при спешных и аварийных работах.

Осталось только включить питание, померять температуру и откалибровать реостаты вентиляторов под нагрузкой.

Вопрос собирать NAS самому или купить готовый неизменно вызывает холивар в узких кругах. Вот и свежая статья Кирилла Кочеткова Выбор сетевого накопителя породила уже три страницы обсуждения . Что характерно - полностью посвящённого холивару. Кирилл IMHO по причине широчайшей практики знает тему покупных NAS лучше всех в рунете. Но не считает полезным сабжевую тему обсуждать. Придётся мне попытаться:)

IMHO вынесенный в заголовок вопрос имеет очень простой и не эмоциональный ответ: По разному, зависит от ваших потребностей и ресурсов. А эмоций ему придаёт попытка не просто выдачи универсального ответа, но навязывание этого ответа всем и каждому.

Так вот, давайте зададим себе первый вопрос - зачем вам нужен NAS? И окажется, что подавляющему большинству NAS не нужен вовсе. Да, они его могут использовать - если, к примеру, брат, cын и т.п. настроит и подарит. Но они не купят себе новый (и будут его настраивать), даже если старый исчезнет. Потребности большинства людей по просмотру кино удовлетворяются телевизором, обычным компьютером, в самом продвинутом случае - стриминговыми сервисами, iTunes и Play. По бекапу, если делают - USB диском и облачными сервисами. Так что оставим в стороне тех, кому обсуждаемая железка не нужна ни в каком виде.

А в остатке имеем многократно меньшее меньшинство, способное рассказать, зачем именно им NAS понадобился. Этот список заслуживает отдельного поста (который напишу следом), но сейчас полезнее обдумать этот список самостоятельно. Скорее всего, список окажется без экзотики, как у всех. Качать торренты, смотреть кино и слушать музыку через медиаплеер, умный телевизор или HTPC. Бекапить домашние компьютеры и мобильные устройства. Хранить домашние фотки. Тогда вам подойдёт и покупной и самосборный NAS. Если же экзотика будет в наличии (яркие примеры - виртуализация, использование конкретного программного обеспечения, не включённого в поставку готовых NAS) - то это веский аргумент в сторону самосбора. Не так чтобы это совсем нельзя на готовых NAS. Но если вам нужна виртуализация (дома!), то проблемы собрать и настроить NAS самому для вас не существует. Точно также, вроде бы обычные потребности, но по-крупному (не пара терабайт, а десять-двадцать, транскодирование видео на разные устройства и тп) поднимают требования к готовому NAS от простых домашних устройств до продвинутых, а то и корпоративных. Поднимают вместе с ценой.

Но, предположим, что у вас без экзотики. Тогда вступает в действие вопрос о ресурсах . Если вам проще доплатить , чем копаться в софте и железе - выбираем готовый NAS, их хватает. Тем более, что доплатить не так и много - грубо цену одного жёсткого диска для случая домашних конфигураций без экзотики. Если собрать и настроить самому - в удовольствие , то внимательно пересматриваем хотелки, пытаемся прикинуть запас на вырост, выбираем софт, затем по его требованиям - железо. Именно в этом порядке, не наоборот. Какой бы софт и конфиг вы ни выбрали, не боги горшки обжигают. Если вы способны выбрать железо под офисный комп и поставить туда ось, а также умеете гуглить и понимать прочитанное - то вы обладаете необходимым навыком для создания своего NAS. Кроме навыка вам понадобится время. Минимум день-два. Максимум, если это выльется в хобби - сколь угодно много. Если временной ресурс критичен - снова возвращаемся к варианту покупного.

PS Как видим - в самом выборе места для холивара нет. Он есть в психологических моментах, которые мы тут обсуждать не будем. За одним исключением. Практически всегда на старте происходит подмена понятий. И вместо сравнения яблок с яблоками, а ананасов с ананасами идёт сравнение яблок с ананасами.

Ещё несколько лет назад по железу самосборный NAS означал x86 платформу, а базовый готовый - ARM. Конечно, ARM жрёт меньше, меньше греется и много слабее по производительности. Но в последние годы появилась возможность собирать и на ARM. Например, под новый год я купил на авито за 2500+300+300+200 = 3300руб + блок питания + корпус + SD карту, нашёл в загашнике USB коробку для HDD, оставшуюся от покупки внешнего диска по цене меньше внутреннего той же модели. Поставил в коробку старый полуторатерабайтный диск, ставший не нужным в медиаплеере при наличии NAS. Настроил nas4free (с zfs!), включая робота для автоматической загрузки новых эпизодов сериалов и для передачи туда и обратно фоток и прочего через горячие папки, т.е. способом, понятным для домохозяйки. И отвёз родственникам в другой город. Аптайм подходит к 5 месяцам.

Точно также, готовый NAS нынче не обязательно на слабосильном процессоре - если у вас почему-либо нагрузка выше среднего, выбор достаточно широк. Так что ни вопрос сколько жрёт энергии ни хватит ли производительности не есть в решающий в выборе. Если случай не экзотический - оба варианта могут обеспечить требования.

По софту 99.99% готовых NAS - это сборки на основе Linux. А в самосборе можете выбрать хоть Win, от Windows 7 Embedded standard, вычищенного от всякого хлама до Win Server 2016 Tech Preview, хоть *nix во всём многообразии, от Linux до FreeBSD и Solaris. Но есть ли это сравнительное преимущество? IMHO почти наверняка - нет. Потому, что если для вашего случая не хватает софтового функционала покупного NAS - у вас, скорее, необычные требования.

PPS UPD про вопрос, который наверняка зададите - а в каком варианте больше функционала?
IMHO - одинаково, причём что практически, что теоретически.

Практически: вам не нужен весь функционал, а лишь тот, что используете. И всё, кроме экзотики во всех вариантах есть.

Теоретически: на достаточное мощном железе и в готовых и в самосборных NAS поддерживается гипервизор. Соответственно в виртуалку на самосборе можно поставить Xpenology. (Это легально, тк оная есть компиляция кодов, опубликованных по GNU лицензии. Обратного, кстати, не утверждает и Synology.) И поиметь весь функционал, который есть в DCM и отсутствует в хост системе. Точно также - наоборот, на готовый NAS в виртуалку ставим что угодно - и вперёд. Так что вопрос лишь в железе, читай - про деньги. такой подход не решает, конечно, вопрос с некими облачными сервисами производителей NAS. Но если(!) они вам нужны - вряд ли среди них есть что-то уникальное настолько, что не найдётся замена. Т.е. снова про деньги. И невеликие.

Этот небольшой мануал поможет вам собрать полноценный NAS сервер из старого компьютера. Если вы готовы купить новые комплектующие и сделать свое файловое хранилище компактным и придать ему более современный вид и функциональность, то для вас больше подойдет статья , ну а любителям готовых решений я подготовил этот материал: . Теперь вернемся к старому ПК и оценим его возможности.

Требования к старому ПК

  • SATA разъемы на материнской плате, так как HDD c этим интерфейсом обладают наилучшим соотношением цена/производите-льность и имеют гораздо больший объем, в отличии от IDE винчес-теров.
  • Количество разъемов для подклю-чения жестких дисков на мате-ринской плате и свободных слотов в корпусе (возможность установить HDD в 5,25-дюймовые отсеки (специальные боксы)) Для сборки HTPC я использую такие боксы с 2-мя слотами под 2.5″ HDD.
  • При недостаточном количестве SATA-штекеров на блоке питания можно воспользоваться специальными переходниками IDE-SATA.

Процедура установки HDD в корпус

Чтобы установить 3,5-дюймовые жесткие диски в 5,25-дюймовые отсеки для оптических приводов поместите их в специальный бокс (см. рис).

Такие корпуса также могут быть выполнены в виде направляющих, которые крепятся с обеих сторон к HDD.

Еще можно воспользоваться пятидюймовым отсеком, в который инсталлирован оптический привод, так как его необходимость отпадает в серверном решении.

Установка программного обеспечения

Для реализации серверного решения будем использовать ПО FreeNAS . Скачайте ISO-образ по ссылке для 32-битной или 64-битной системы и запишите на минимальной скорости на диск CD-R\RW. Если нет болванки можно установить на флешку, как сделать загрузочную флешку написано в . Временно подключите к ПК дисковод (который сняли ранее или воспользуйтесь USB приводом). Зайдите в BIOS и установите в разделе Boot загрузку с дисковода. После установки программного обеспечения и перезапуска ПК запомните его IP-адрес, который будет указан на экране.

Настройка NAS сервера

Подключите NAS-сервер к своей сети. Откройте браузер вашего рабочего компьютера в этой сети и введите в адресной строке: http://»IP-адрес вашего NAS». В появившемся окне введите имя пользователя — admin и пароль — freenas. Перейдите в меню «Storage | Volumes | Create Volume» и выберите жесткие диски, которые будут образовывать RAID-массив. Далее активируйте файловую систему ZFS.

Можно использовать:

  • RAID 0 — дисковый массив повышенной производительности, без отказоустойчивости.
  • RAID 1 — зеркальный дисковый массив, имеет высокую надежность

Будем использовать RAID 1, как более надежный. Теперь нажмите «Add Volume» для форматирования ваших дисков в массив.

Доступ к NAS серверу в локальной сети

Чтобы открыть доступ к серверу перейдите в меню «Services | Control Services», задействуйте службы CIFS и настроить доступ в разделе «Sharing | Windows Shares» . Как и к любому сетевому носителю локальной сети доступ осуществляется с помощью Проводника Windows (например, \\NAS для доступа к корню или \\NAS\Photos для доступа к определенной расшаренной папке). Также можно сделать ярлыки, нажав на кнопку «Подключить сетевой диск» в окне Компьютер (Windows 7) под строкой проводника.

P.S. Вы всегда сможете сделать дополнительный массив, добавив жесткие диски, а также можно настроить доступ для удаленного использования вашего NAS сервера.

Немного информации об опасности использования RAID

RAID — это избыточный массив независимых жестких дисков. RAID — это не система хранения резервных копий, он лишь помогает повысить комфорт доступа к данным. RАID-система представляет собой набор HDD, объединенных в один массив. Если ваш жесткий диск вышел из строя его можно заменить, а после восстановить RAID и ваши данные будут с вами, исключая массив RAID 0.

Недостатки RAID 0

Данный режим дает лишь скорость доступа к данным. В Striping Mode (режим чередования) данные разбиваются на блоки и записываются одновременно на несколько жестких дисков. При поломке одного жесткого диска все данные будут потеряны.

Недостатки RAID 1

В режиме RAID 1 применяется метод зеркалирования данных, то есть на втором диске располагается идентичная копия данных. Есть одно уязвимое место — возможная неисправность контроллера, которая приведет к повреждению обоих носителей.

Недостатки RAID 1 и RAID 5

В процессе восстановления RAID скорость записи высока и после выхода из строя какого-нибудь жесткого диска, она может стать причиной отказа другого HDD, а, следовательно, и потери данных.

Также неисправный RАID-контроллер может привести к выходу из строя HDD. В RAID-массивах изменения применяются к файлам и при случайном удалении или изменении данных, действия необратимы.

Здравствуйте, уважаемые читатели этого прекрасного интернет-сайта! Хочу продолжить описание своих трудов по сборке самодельного NAS. Про первый важный компонент своей системы я уже писал в категории «Компьютеры и планшеты», это ADSL-модем Asus DSL-N55U. Почему я купил именно его и вообще краткую предысторию зачем мне вообще NAS нужен, можно почитать . Внимание! Много фото!

Сегодня я хотел бы подробнее рассказать о покупке второго не менее важного компонента (все IMHO, кому-то он не нужен вообще) - корпусе. Вообще для меня удобство монтирования комплектующих, их охлаждение, надежность и внешний вид играют большую роль… поэтому любая коробка от старого системного блока мне не подходила, хотелось что-то небольшого размера (mini-ITX), с возможностью установки винчестеров в количестве не менее четырех (слишком разрослась моя коллекция) и с хорошо организованной системой охлаждения (или хотя бы с возможностью таковую организовать самому), экономичное.

Конечно же в первую очередь я обратил внимание на корпуса известных всем кто интересуется данным вопросом компаний - Lian Li, Chenbro, Thermaltake. Chenbro и Thermaltake отпали, т.к. были значительно дороже или не было нужного формата (мне хотелось использовать mini ITX). В конце концов остановился на 2 корпусах: Lian Li PC-Q08 и Lian Li PC-Q25 (первый дешевле и можно с удобством использовать в дальнейшем для домашнего небольшого компьютера, второй удобней именно для построения NAS, но из-за особого способа крепления боковых стенок говорят что дребезжит и требует небольшой дороботки). Пока искал информацию о этих корпусах, на youtube увидел несколько обзоров корпуса Prodigy, который как раз был в ассортименте магазина, где я и собирался делать заказ. Корпус очень понравился, жаль что не было подробных обзоров про корпус в русскоязычном сегменте интернета. Как я ранее уже говорил, в республике Беларусь ограничение на беспошлинный ввоз товара из-за рубежа всего лишь 120 евро (при получении на почте, конечно), хоть мы и вступили в таможенный союз с Россией и Казахстаном, поэтому я и решил купить именно этот корпус из тех двух трех что выбирал (тем более что более дешевый Lian Li PC-Q08 временно исчез на сайте из продажи, сейчас снова есть).

Корпус Prodigy бывает четырех цветов - черный, белый, оранжевый и красный, для себя я выбрал черный, как наиболее практичный. Вместе с корпусом (60 евро), чтобы покупка была выгодна (хотя скажу честно, т.к. выбора у меня в городе, да и РБ таких корпусов почти нет, я заказал бы и только один этот корпус) заказал в наш лимит 120 евро еще блок питания (37 евро) и кулер (23 евро) для процессора, с учетом скидки 5 евро для первой покупки, получилось ровно 115 евро, доставка в Беларусь и комиссия банку за оплату картой VISA - 28.55 евро. Покупал корпус с вышеописанными комплектующими в немецком интернет магазине Computeruniverse.ru.

В результате для моего «домашнего» NAS получилась такая конфигурация:
- процессор Pentium G2020 (Box), кулер Scythe Shuriken Rev.B
- мат.плата ITX Asus P8H-77 I
- корпус Prodigy
- память DDR3 1333 Samsung 2х4 Gb, была получена в наследство от ББ («большой брат, т.е. настольный компьютер»), туда установил 16 Gb DDR3 AMD 1600
- ИБП Ippon 850 уже был у меня, только необходимо заменить батарею
- блок питания (с сертификатом 80 PLUS Bronze - важно, так как наш NAS работает в режиме 24/7)
- HDD WD Green 2x3 Tb, 2x2 Tb, 1х1,5 Tb для торрентов
- флеш-накопитель 4 Gb QUMO Nano flash
Операционная система - .
ВИДЕО:
Небольшое ВИДЕО с этими компонентами можно посмотреть здесь:

Хотел уточнить по выбору именно такого набора комплектующих - прежде всего такой выбор обусловлен тем, что повышенные требования к памяти и процессору предъявляет файловая система ZFS используемая в качестве основной в ОС NAS4FREE и УЖЕ ИМЕЮЩИМИСЯ у меня изначально (память и частично жесткие диски). Очень кратко что же такого особенного предлагает ZFS:

Дополнительная информация

«Основное преимущество ZFS - это её полный контроль над физическими и логическими носителями. Зная, как именно расположены данные на дисках, ZFS способна обеспечить высокую скорость доступа к ним, контроль их целостности, а также минимизацию фрагментации данных. Это позволяет динамически выделять или освобождать дисковое пространство на одном или более носителях для логической файловой системы. Кроме того, имеет место переменный размер блока, что лучшим образом влияет на производительность, параллельность выполнения операций чтения-записи, а также 64-разрядный механизм использования контрольных сумм, сводящий к минимуму вероятность незаметного разрушения данных.»


Хоть при заказе все выбранные позиции были помечены как «на складе», после оплаты в кабинете увидел что блок питания стал с пометкой ожидается через 1-2 дня… но на следующий день все выслали. Через неделю посылка была на таможне, а еще через 5 дней коробку принесли прямо в квартиру. Общая коробка доехала нормально (внутри заводские коробки, все новое в пленке), по ее внешнему виду видно, что возможно ее несколько раз прилично тряханули, но ничего порванного и т.п. нет.


Итак, продолжу про корпус.
Для того чтобы было понятно о чем идет речь несколько фотографий.








Краткие ТТХ корпуса с сайта производителя:

Materials Steel, Plastic
Colors (Int/Ext) Black/Black, White/White
Dimensions (WxHxD) 250 x 404 x 359mm
Internal Dimensions (WxHxD) 250 x 310 x 340 = 26.35 liters
Motherboard Sizes Mini-ITX
5.25" Drive Bays x 1 (removable)
3.5" Drive Bays x 5 (3 + 2 modular)
2.5" Drive Bays x 9 (5 + 2 + 1 +1)
Cooling Front 120mm x 2 (120mm x 1included) or 140/180/200/230mm x 1(optional)
Cooling Rear 120mm x 1 (included) or 140mm x 1(optional)
Cooling Top 120mm x 2 (optional)
PCI Slots x 2
I/O USB 3.0 x 2, HD Audio
Power Supply PS2 ATX (bottom, multi direction), PSU cage depth 180mm, max PSU depth 160mm
Extras FyberFlex™ Composite handles, SofTouch™ surface treatment, filtered intakes, tool-free drive locking

Общие впечатления о корпусе весьма и весьма положительные, IMHO система получилась не очень громоздкой, достаточно объемной (имею ввиду по числу винчестеров которые можно установить) и тихой (скажу честно, это с двумя установленными 140 мм. тихоходными вентиляторами о которых ниже).
По поводу сборки в этом корпусе - по сравнению с тем как я собирал когда-то HTPC в корпусе mATX Thermaltake Lanbox Lite, это просто праздник какой-то. Никаких усилий, попыток что-то как-то разместить, лишь бы влезло и т.п., хотя по объему данный корпус меньше. Жесткость корпуса достаточная, верхняя и нижняя «ручки» корпуса (из-за которых он напоминает компьютеры очень известной фирмы:-)) из гибкой софт-тач пластмассы. Материнская плата на свое место устанавливается горизонтально (корпус из-за этого довольно широкий) на уже впаянные стойки и ограничений по высоте для кулера башенного типа практически нет, здесь уже все будет зависеть от совместимости с конкретной мат.платой, т.е. в принципе можно построить систему с пассивным охлаждение для процессора. Собранный компьютер выглядит след. образом:


Далее про охлаждение - в комплекте два 120 мм. кулера с подключением к мат.плате 3 pin (нужно иметь переходники тем, у кого как и у моей мат.платы, разъема для подключения только два, один из них заберет кулер процессора). Т.к. у меня установлено пять винчестеров, а лето у нас довольно жаркое в последнее время, штатные вентиляторы были заменены на 2х140 мм, один на 900 об/мин, другой 1000 об/мин - его подключил к мат.плате и в BIOS поставил «тихий» режим, в таком режиме он работает на 600 об/с. Сейчас (идет копирование на один из дисков NAS) температура винчестеров - 32 градуса, процессора - до 41. Возможно придется придумывать что-то еще, т.к. обдув идет только на корзину с 3 винчестерами, а возможно и нет (летом будет видно). Один из купленных 140 мм вентиляторов оказался с синей подсветкой и если для домашнего компьютера это приемлемо, то для 24/7 работающего NAS нет, раздражает ночью.

Продолжу про охлаждение - всего корпус позволяет установку 1х120 (140) мм. вентилятор сзади, 2х120 мм. или водяное охлаждение сверху, 2х120 мм вентилятора спереди, но при условии что снята корзина для 5" устройства или 1х140/180/200/230 мм. вентилятор, т.е. вполне по силам создать практически бесшумную машину. Например, установить большую башню без кулера на процессор и 230 мм. кулер на 600- 900 оборотов спереди. Жаль что у себя в городе я такого размерчика не нашел, а в интернет-магазине купить не мог из-за таможенного лимита (да и вспомнил, когда корпус уже приехал), возможно закажу при следующих заказах…
Чем еще реально удобен корпус, так это возможностью снимать «не нужные» части - корзины для винчестеров, отсек для 5" устройства, есть 2 съемных фильтра - один сверху и один под блоком питания.


Допускается установка пяти 3.5" винчестеров (в корзины, используя салазки с возможностью дополнительного закрепления винтом, штырьки в салазках в резиновых демпферах) и еще двух SSD на боковой стенке или девяти 2.5" винчестеров - в корзинах, на корпусе снизу и на боковой крышке. Расстояние между винчестерами в большой корзине достаточно большое, что должно хорошо сказаться на их температурном режиме.
Блок питания можно использовать стандартный и это большой плюс корпусу, но желательно не длиннее 160 мм (сам отсек длинной побольше и если блок модульный, думаю встанет и 165 мм), он устанавливается на резиновые ножки приклеенные прямо в дно корпуса, с боков остается еще пространство шириной около 3 см, куда можно укладывать не используемые кабели - я так и сделал, спрятал не нужное ближе к задней стенке. Хоть раньше я и планировал купить блок питания модульного типа, чтобы в корпусе было как можно меньше проводов, в Prodigy я уместил все без особых трудностей, спрятав все «хвосты», благо пространство и довольно удачная конструкция это позволяют.


На поддоне для мат.платы есть отверстия для кабелей, тоже очень продумано и удобно, боковые стенки прикручены на «барашки» с большими накатанными головками. Как будет видно на фото из кабелей у меня остались торчать SATA кабели, основное питание, звук и USB, т.е. можно вполне получить не «захламленный» проводами красивый корпус, если не подключать не используемые при построении NAS звук и USB 3.0 для передней панели (у меня просто привычка, чтобы все было подключено). Тем кто будет использовать корпус в качестве игровой машины или HTPC - мне нравится что здесь наконец-то USB 3.0 для передней (вернее боковой) внешней панели подключается к разъему мат.платы, а не через кабель к задним разъемам, как, например, у меня в ББ (HAF X).
Что еще нужно иметь в виду? Если ставить такой же кулер как у меня, нужно иметь ввиду что он перекроет единственный слот PCI express и использовать его не получиться (для видеокарты, например). Когда я вскрыл коробку с корпусом, то при распаковке мне под ноги высыпалось несколько пластмассовых кусочков, оказалось что при перевозке и встряске поломались ограничители для корзины винчестеров на 3 диска (они расположены сзади и на фото, к сожалению, не видны) и пришлось немного повозиться с суперклеем, так что осторожно - при покупке в офлайн магазине проверяйте этот момент. Софт-тач материал довольно быстро пачкается, после того как я перенес корпус пару раз, остались видны отпечатки пальцев - стираются влажной тканью. Немного не понравилось как закрываются боковины - не так плотно как хотелось бы, мне нравится чтобы боковые крышки закрывались и нормально держались без винтов, здесь прикручивать стенки на «барашки» обязательно.
Что оказалось неожиданным в корпусе? Размер. На видео и фото в интернете мне он казался немного поменьше, поэтому лучше прикиньте его габариты на каком-нибудь похожем предмете, коробке, например.
Фотографии пустого корпуса и уже почти собранного можно посмотреть в моем , а как я открывал коробку с корпусом на видео можно увидеть здесь:
ВИДЕО:

Дополню свой пост, т.к. спрашивают в комментариях о вопросах, которые относятся больше к собранной системе в целом, а не конкретно к корпусу. Скорости копирования по сети (клиент Windows компьютер, протоколы SMB2 и FTP): на NAS - до 120 МБайт/с, с NAS - до 70 МБайт/с. Сколько потребляет система не могу сказать точно, только основываясь на приблизительных расчетах - до 80 Вт (и все зависит еще от выбранного режима работы жестких дисков - включены постоянно (наиболее предпочтительно для механики винчестера), с остановкой шпинделя и т.п.).

Еще одно дополнение поста. Недавно приобрел нужную в хозяйстве вещь (пусть и изредка)- простейший ваттметр Xavax Energiekostenmessgerät. Хочу привести данные по энергопотреблению системой в типовом режиме, при загрузке системы(пик) и при перезаписи информации с одного диска на другой:
типовой режим (торренты) - 53,6 Вт
загрузка системы - 82 Вт (максимальное значение)
перезапись образов с одного диска на другой - 63,6 Вт
В настройках системы по энергосбережению стоит - «не останавливать жесткий диск».

И небольшое видео с уже собранным и настроенным NAS, на нем можно посмотреть и что представляет собой web-оболочка для управления и настройки NAS4FREE:
ВИДЕО:


Спасибо, что прочитали мое творение до конца. Если у кого-то будут уточнения и пожелания, могу скорректировать свой пост.
Еще раз спасибо всем кто прочитал и поблагодарил за труд, просто если писать всем персональное спасибо, то комментариев станет в раза два больше - и будет не удобно читать, спасибо Вам.

P.S. Про скидку 5 euro (реферал) на первую покупку в магазине : Обзор понравился +97 +205