Проводные и кабельные каналы связи. Линии и каналы связи

Типы каналов передачи данных и их характеристики

Применяемые в вычислительных сетях каналы передачи данных классифицируются по ряду признаков.

Во-первых , по форме представления информации в виде электрических сигналов каналы подразделяют на цифровые и аналоговые.

Во-вторых , по физической природе среды передачи данных различают каналы связи проводные (обычно медные), оптические (как правило, волоконно-оптические), беспроводные (инфракрасные и радиоканалы).

В третьих , по способу разделения среды между сообщениями выделяют упомянутые выше каналы с временным (TDM) и частотным (FDM) разделением.

Одной из основных характеристик канала является его пропускная способность (скорость передачи информации), определяемая полосой пропускания канала и способом кодирования данных в виде электрических сигналов. Информационная скорость измеряется количеством бит информации, переданных в единицу времени. Наряду с информационной оперируют бодовой (модуляционной ) скоростью, которая измеряется в бодах , то есть числом изменений дискретного сигнала в единицу времени. Именно бодовая скорость определяется полосой пропускания линии. Если одно изменение значения дискретного сигнала соответствует нескольким битам, то информационная скорость превышает бодовую.

Действительно, если на бодовом интервале (между соседними изменениями сигнала) передается N бит, то число градаций сигнала равно 2 N . Например, при числе градаций 16 и скорости 1200 бод одному боду соответствует 4 бит/с и информационная скорость составляет 4800 бит/с.
С ростом длины линии связи увеличивается затухание сигнала и, следовательно, уменьшаются полоса пропускания и информационная скорость.

Максимально возможная информационная скорость V связана с полосой пропускания F канала связи формулой Хартли-Шеннона. Предполагается, что одно изменение значения сигнала приходится на log 2 k бит, где k – число возможных дискретных значений сигнала. Так как скорость V = log 2 k / t , где t - длительность переходных процессов, приблизительно равная 3Т В, а Т В = 1 / (2pF), то:

V = 2F log 2 k, бит/с,

где k ≤ 1+A (A – отношение сигнал/помеха).

Проводные линии связи в вычислительных сетях представлены коаксиальными кабелями и витыми парами проводов.

Используются следующие коаксиальные кабели – «толстый» диаметром 12,5 мм и “тонкий” диаметром 6,25 мм. «Толстый» кабель имеет меньшее затухание, лучшую помехозащищенность, что обеспечивает возможность работы на больших расстояниях, но он плохо гнется, что затрудняет прокладку соединений в помещениях, и дороже «тонкого».

Существуют экранированные STP (Shielded Twist Pair) и неэкранированные UTP (Unshielded Twist Pair) пары проводов. Чаще используются неэкранированные пары, имеющие несколько категорий (типов).

Более совершенными являются неэкранированные витые пары категорий 5 и 6. Пару категории 5 применяют при частотах до 100 МГц. В ней проводник выполнен медными жилами диаметром 0,51 мм, навитыми по определенной технологии и заключенными в термостойкую изолирующую оболочку. Длины соединений в высокоскоростных ЛВС на UTP обычно не превышают 100 м.

Примерами пар категорий 6 и 7 могут служить кабели, выпускаемые фирмой PIC. В них размещается по 4 пары проводов, каждая со своим цветом полиэтиленовой изоляции. В кабеле категории 6 оболочка имеет диаметр 5 мм, а медные проводники имеют диаметр 0,5 мм. Затухание в этом кабеле на частоте 100 МГц составляет около 22 дБ. В кабеле категории 7 каждая пара дополнительно заключена в экранирующую алюминиевую фольгу, диаметр оболочки увеличен до 8 мм, затухание на 100 МГц составляет около 20 дБ, на 600 МГц – 50 дБ.

Витые пары иногда называют сбалансированной линией в том смысле, что в двух проводах линии передаются одни и те же уровни сигнала (по отношению к «земле»), но разной полярности. При приеме воспринимается разность сигналов, называемая парафазным сигналом. Синфазные помехи при этом самокомпенсируются.

Волоконно-оптические линии связи (ВОЛС) имеют значительное преимущество перед проводными линиями. Они незаменимы при передаче информации на большие расстояния, а также в высокоскоростных магистральных каналах корпоративных и территориальных сетей.

Конструктивно ВОЛС представляет собой кварцевый сердечник диаметром 10 мкм, покрытый отражающей оболочкой с внешним диаметром 125...200 мкм. Типичные характеристики ВОЛС – работа на волнах 0,83...1,55 мкм, затухание 0,7 дБ/км, полоса частот до 2 ГГц.

Предельные расстояния D для передачи данных по ВОЛС
(без ретрансляции) зависят от длины волны излучения l : при l = 850 нм
D = 5 км, а при l = 300 нм – D = 50 км. Однако с уменьшением длины волны излучения значительно возрастает стоимость аппаратуры.

Примером среды передачи данных между мейнфреймами, рабочими станциями, пулами периферийных устройств может служить среда Fiber Channel на ВОЛС, обеспечивающая скорости от 133 до 1062 Мбит/с на расстояниях до 10 км. Для сравнения – по стандартному интерфейсу SCSI скорость составляет 160 Мбит/с при расстояниях не более десятков метров между рабочей станцией и дисководом.

К числу новых стандартов для высокоскоростных магистралей передачи данных относится стандарт цифровой синхронной иерархии SDH (Synchronous Digital Hierachy). В сетях SDH в качестве линий передачи данных используют ВОЛС. Стандарт устанавливает структуру фреймов, на которые разбивается поток передаваемых данных. Эта структура названа транспортным модулем.

1. Основные определения

2. Проводные линии связи

3. Аналоговые каналы передачи данных

4. Модемы

5. Амплитудная модуляция

6. Частотная и фазовая модуляция

7. Квадратурно-амплитудная модуляции

8. Организация дуплексной связи

9. Многоканальная аппаратура

10. Протоколы физического уровня для модемной связи

11. Протоколы канального уровня для модемной связи

12. Кодово-импульсная модуляция

13. Цифровые каналы передачи данных

14. Беспроводные каналы связи

15. Спутниковые каналы передачи данных

16. Сети мобильной связи

17. Оптические линии связи

1. Основные определения. Среда передачи данных - совокупность линий передачи данных и блоков взаимодействия (т.е. сетевого оборудования, не входящего в станции данных), предназначенных для передачи данных между станциями данных. Среды передачи данных могут быть общего пользования или выделенными для конкретного пользователя.

Линия передачи данных - средства, которые используются в информационных сетях для распространения сигналов в нужном направлении. Примерами линий передачи данных являются коаксиальный кабель, витая пара проводов, световод.

Характеристиками линий передачи данных являются зависимости затухания сигнала от частоты и расстояния. Затухание принято оценивать в децибеллах, 1 дБ = 10*lg(P1/P2), где Р1 и Р2 - мощности сигнала на входе и выходе линии соответственно.

При заданной длине можно говорить о полосе пропускания (полосе частот) линии. Полоса пропускания связана со скоростью передачи информации . Различают бодовую (модуляционную ) и информационную скорости. Бодовая скорость измеряется в бодах, т.е. числом изменений дискретного сигнала в единицу времени, а информационная - числом битов информации, переданных в единицу времени. Именно бодовая скорость определяется полосой пропускания линии.

Если на бодовом интервале (между соседними изменениями сигнала) передается N бит, то число градаций модулируемого параметра несущей равно 2 N . Например, при числе градаций 16 и скорости 1200 бод одному боду соответствует 4 бит/с и информационная скорость составит 4800 бит/с.

Максимально возможная информационная скорость V связана с полосой пропускания F канала связи формулой Хартли-Шеннона (предполагается, что одно изменение величины сигнала приходится на log 2 k бит, где k - число возможных дискретных значений сигнала)

V = 2*F*log 2 k бит/с,

так как V = log 2 k/t, где t - длительность переходных процессов, приблизительно равная 3*Т В, а Т В = 1/(2*p *F), Здесь k ? 1+A, A - отношение сигнал/помеха.

Канал (канал связи) - средства односторонней передачи данных. Примером канала может быть полоса частот, выделенная одному передатчику при радиосвязи. В некоторой линии можно образовать несколько каналов связи, по каждому из которых передается своя информация. При этом говорят, что линия разделяется между несколькими каналами. Существуют два метода разделения линии передачи данных: временное мультиплексирование (иначе разделение по времени или TDM), при котором каждому каналу выделяется некоторый квант времени, и частотное разделение (FDM - Frequency Division Method), при котором каналу выделяется некоторая полоса частот.

Канал передачи данных - средства двустороннего обмена данными, включающие АКД и линию передачи данных.

По природе физической среды передачи данных (ПД) различают каналы передачи данных на оптических линиях связи, проводных (медных) линиях связи и беспроводные. В свою очередь, медные каналы могут быть представлены коаксиальными кабелями и витыми парами, а беспроводные - радио- и инфракрасными каналами.

В зависимости от способа представления информации электрическими сигналами различают аналоговые и цифровые каналы передачи данных. В аналоговых каналах для согласования параметров среды и сигналов применяют амплитудную, частотную, фазовую и квадратурно-амплитудную модуляции. В цифровых каналах для передачи данных используют самосинхронизирующиеся коды, а для передачи аналоговых сигналов - кодово-импульсную модуляцию.

Первые сети ПД были аналоговыми, поскольку использовали распространенные телефонные технологии. Но в дальнейшем устойчиво растет доля цифровых коммуникаций (это каналы типа Е1/Т1, ISDN, сети Frame Relay, выделенные цифровые линии и др.)

В зависимости от направления передачи различают каналы симплексные (односторонняя передача), дуплексные (возможность одновременной передачи в обоих направлениях) и полудуплексные (возможность попеременной передачи в двух направлениях).

В зависимости от числа каналов связи в аппаратуре ПД различают одно- и многоканальные средства ПД. В локальных вычислительных сетях и в цифровых каналах передачи данных обычно используют временное мультиплексирование, в аналоговых каналах - частотное разделение.

Если канал ПД монопольно используется одной организацией, то такой канал называют выделенным, в противном случае канал является разделяемым или виртуальным (общего пользования).

К передаче информации имеют прямое отношение телефонные сети, вычислительные сети передачи данных, спутниковые системы связи, системы сотовой радиосвязи.

2. Проводные линии связи. В вычислительных сетях проводные линии связи представлены коаксиальными кабелями и витыми парами проводов.

Используются коаксиальные кабели: "толстый" диаметром 12,5 мм и "тонкий" диаметром 6,25 мм. "Толстый" кабель имеет меньшее затухание, лучшую помехозащищенность, что обеспечивает возможность работы на больших расстояниях, но он плохо гнется, что затрудняет прокладку соединений в помещениях, и дороже "тонкого".

Существуют экранированные (STP - Shielded Twist Pair) и неэкранированные (UTP - Unshielded Twist Pair) витые пары проводов. Экранированные пары сравнительно дороги. Неэкранированные витые пары имеют несколько категорий (типов). Обычный телефонный кабель - пара категории 1. Пара категории 2 может использоваться в сетях с пропускной способностью до 4 Мбит/с. Для сетей Ethernet (точнее, для ее варианта с названием 10Base-T) разработана пара категории 3, а для сетей Token Ring - пара категории 4. Наиболее совершенной является витая пара категории 5, которая применима при частотах до 100 МГц. В паре категории 5 проводник представлен медными жилами диаметром 0,51 мм, навитыми по определенной технологии и заключенными в термостойкую изолирующую оболочку. В высокоскоростных ЛВС на UTP длины соединений обычно не превышают 100 м. Затухание на 100 МГц и при длине 100 м составляет около 24 дБ, при 10 МГЦ и 100 м - около 7 дБ.

Витые пары иногда называют сбалансированной линией в том смысле, что в двух проводах линии передаются одни и те же уровни сигнала (по отношению к земле), но разной полярности. При приеме воспринимается разность сигналов, называемая парафазным сигналом. Синфазные помехи при этом самокомпенсируются.

3. Аналоговые каналы передачи данных. Типичным и наиболее распространенным типом аналоговых каналов являются телефонные каналы общего пользования (каналы тональной частоты). В каналах тональной частоты полоса пропускания составляет 0,3...3,4 кГц, что соответствует спектру человеческой речи.

Для передачи дискретной информации по каналам тональной частоты необходимы устройства преобразования сигналов, согласующие характеристики дискретных сигналов и аналоговых линий. Кроме того, в случае непосредственной передачи двоичных сигналов по телефонному каналу с полосой пропускания 0,3...3,4 кГц скорость передачи не превысит 3 кбит/с. Действительно, пусть на передачу одного бита требуются два перепада напряжения, а длительность одного перепада ТВ = (3...4)/(6,28*FВ), где FВ - верхняя частота полосы пропускания. Тогда скорость передачи есть В < 1/(2*ТВ).

Согласование параметров сигналов и среды при использовании аналоговых каналов осуществляется с помощью воплощения сигнала, выражающего передаваемое сообщение, в некотором процессе, называемом переносчиком и приспособленном к реализации в данной среде. Переносчик в системах связи представлен электромагнитными колебаниями U некоторой частоты, называемой несущей частотой:

U = U m *sin(v *t+y),

где U m - амплитуда, v - частота, y - фаза колебаний несущей. Изменение параметров несущей (переносчика) по закону передаваемого сообщения называется модуляцией . Если это изменение относится к амплитуде U m , то модуляцию называют амплитудной (АМ), если к частоте v - частотной (ЧМ), и если к фазе y - фазовой (ФМ). При приеме сообщения предусматривается обратная процедура извлечения полезного сигнала из переносчика, называемая демодуляцией . Модуляция и демодуляция выполняются в устройстве, называемом модемом.

4. Модемы . Модем - устройство преобразования кодов и представляющих их электрических сигналов при взаимодействии аппаратуры окончания канала данных и линий связи. Слово "модем" образовано из частей слов "модуляция" и "демодуляция", что подчеркивает способы согласования параметров сигналов и линий связи - сигнал, подаваемый в линию связи, модулируется, а при приеме данных из линии сигналы подвергаются обратному преобразованию (рис. 2.1).

Каналы связи

Д ля передачи данных образуют среду их распространения – совокупность линий или каналов передачи данных и приёмо-передающего оборудования. Линии или каналы связи являются общим, связующим звеном любой системы передачи данных и с точки зрения организации связи делятся на лини и каналы. Линия связи – это физические провода или кабели, соединяющие пункты (узлы) связи между собой, а абонентов – с ближайшими узлами.

Каналы связи образуется различным образом.

Они могут быть как физическими проводными каналами – образуемыми кабелями связи, так и волновыми каналами – формируемыми для организации в какой-либо среде (например, эфире) различных видов радиосвязи с помощью антенн и выделенной полосы частот. При этом электрические и оптические каналы связи (образуемые соответствующими сигналами) подразделяются на: проводные и беспроводные (радио-, инфракрасные и другие) каналы. Таким образом, оптический, как и электрический сигнал может распространяться, по проводам, в эфире и других средах.

В телефонной сети после набора номера, канал образуется на время соединения, например, двух абонентов и проведения между ними сеанса голосовой связи. В проводных системах передачи данных канал формируется путём применения оборудования уплотнения, позволяющего одновременно продолжительно или кратковременно передавать по линии связи данные большого (тысяч) количества источников. Такие линии состоят из одной или нескольких пар проводов (кабелей) и обеспечивают передачу данных на различные расстояния. Термин «канал » в радиосвязи означает среду передачи данных, организованную для одного или нескольких, одновременно проводимых сеансов связи. Во втором случае, например, может использоваться частотное разделение каналов.

Также, как и средства связи, линии или каналы связи делятся на: аналоговые, цифровые, а также аналогово-цифровые.

Цифровые коммуникации (каналы связи) надёжнее, чем аналоговые. Они обеспечивают высокое качество передачи информации, позволяют внедрять механизмы, гарантирующие целостность каналов, защиту данных и применение других сервисов. Для передачи аналоговой информации по цифровому каналу, она преобразуется в цифровую форму.

В конце 1980-х годов появилась цифровая сеть с интеграцией услуг (Integrated Serviced Digital Network – ISDN ). Предполагается, что она станет глобальной цифровой магистралью, соединяющей офисные и домашние компьютеры, обеспечивая им высокоскоростную передачу данных (до 2 Мбит/с и более). Стандартными четырёхпроводными абонентскими устройствами ISDN могут быть: телефон, факсимильный аппарат, устройства передачи данных, оборудование телеконференций и другие. Конкуренцию им могут составить современные технологии, применяемые в сетях кабельного телевидения.

По пропускной способности каналы связи делятся на:

● низкоскоростные (телеграфные, скорость передачи информации от 50 до 200 бод/с). Напомним, что 1 бод = 1 бит/сек,

● среднескоростные (аналоговые телефонные, от 300–9600 до 56000 бит/с для ЭВМ),

● высокоскоростные или широкополосные (скорость передачи информации свыше 56000 бит/с). Так как, 1 байт равен 8 битам, можно легко осуществить пересчёт, например, 56000 бит/с = 7 Кб/с.

В зависимости от возможностей организации направлений передачи информации каналы связи делятся на:

¨ симплексные , позволяющие осуществлять передачу информации только в одном направлении;

¨ полудуплексные , обеспечивающие попеременную передачу информации в прямом и обратном направлениях;

¨ дуплексные или полнодуплексные, допускающие передачу информации одновременно в прямом и обратном направлениях.

Проводные каналы связи представляют группу параллельных или скрученных (витая пара) медных проводов, коаксиальные кабели и волоконно-оптические линии связи (ВОЛС). В проводных каналах используют следующие виды кабелей:

1. Витая пара (скорость передачи данных – 1 Мбит/сек).

2. Коаксиальный кабель (типа TV, тонкий и толстый) – скорость передачи данных – 15 Мбит/сек.

3. Оптоволоконный кабель (скорость передачи данных – 400 Мбит/сек).

1. Витая пара (англ. « twisted pair ») – изолированные проводники, попарно свитые между собой для уменьшения наводок между проводниками и парами. Выделяют пять категорий витых пар. Первая и вторая категории используются при низкоскоростной передаче данных, причём первая – стандартный телефонный абонентский провод. Третью, четвёртую и пятую категории применяют при скоростях передачи до 16, 25 и 155 Мбит/с соответственно, причём третья (Token Ring ) и четвёртая (Ethernet ) для частоты до 10 МГц, а пятая – до 100 МГц. Наибольшее распространение получила третья категория. Ориентируясь на перспективные решения, связанные с потребностью увеличивать пропускную способность сети, следует использовать оборудование пятой категории, обеспечивающее передачу данных по обычным телефонным линиям и ЛВС со скоростью до 1 Мбит/с.

Такие провода содержат две или четыре пары и могут иметь экран из алюминиевой фольги. В последнем случае они называются – экранированная витая пара (англ. « shielded twisted pair », STP ). Неэкранированный провода называют UTP (англ. « unshielded twisted pair »).

2. Коаксиальный кабель – (Рис. 14-1) медный проводник (или алюминиевый провод, покрытый медью) внутри цилиндрической экранирующей защитной оболочки, свитой из тонких медных проводников, изолированной от проводника диэлектриком (заполняющим пространство между ними). От стандартного телевизионного кабеля он отличается волновым сопротивлением. У первого 75 Ом, а у второго – 50 Ом. По такому кабелю скорость передачи данных достигает 300 Мбит/с. Различают тонкий (Ø 0,2 дюйма/5 мм) и толстый (Ø 0,4 дюйма/10 мм) коаксиальный кабель. В ЛВС обычно применяют тонкий кабель, так как его легче прокладывать и монтировать. Значительная стоимость и сложность прокладки ограничивают его использование в сетях передачи данных.

Сети кабельного телевидения (CATV ) строились с использованием коаксиального кабеля, аналоговый сигнал по которому передавался на расстояние до нескольких десятков км. Типичная сеть кабельного TV имеет древовидную структуру, где головной узел получает сигналы со спутника связи или по ВОЛС. Ныне появляются такие сети, в которых используются коаксиальный и волоконно-оптический кабель, позволяющий обслуживать большие территории и передавать бóльшие объёмы информации, обеспечивая высокое качество сигналов даже без применения повторителей. Такие сети называются гибридными (HFC ).

При симметричной архитектуре прямой и обратный сигналы передаются по одному кабелю в различных диапазонах частот с разными скоростями (обратный медленнее).

В любом случае скорость загрузки данных в таких сетях многократно выше (до 1000 раз), чем в стандартных телефонных линиях. Данные, загружаемые по телефонной линии в течение 20 мин., могут быть загружены в кабельной сети за 1–2 с.

В организациях с собственными кабельными сетями предпочтительнее использовать симметричные схемы, так как в этом случае скорость прямой и обратной передачи одинакова и составляет примерно 10 Мбит/с. Ныне выпускаются модемы, способные передавать информацию со скоростью до 30 Мбит/с и более.

Количество проводов, используемых для домашних ПК и электроники, постоянно растёт. По оценке специалистов в 150-метровой квартире прокладывается до 3 км различных кабелей. В 1990-е годы решить эту проблему предложила британская компания United Utilities , разработав технологию Digital Power Line (DPL). Она предложила использовать обычные силовые электрические сети в качестве сетей или среды высокоскоростной передаче данных, осуществив передачу голоса и пакетов данных по простым электрическим сетям напряжением 120/220 В.

Наибольших успехов в данной области добилась израильская компания Main.net, разработавшая технологию Powerline Communications (PLC), обеспечивающую передачу данных и голоса (VoIP) со скоростью от 2 до 10 Мбит/с. При этом высокоскоростной поток данных разбивался на несколько низкоскоростных, передававшихся на отдельных поднесущих частотах с последующим их объединением в один сигнал (частотное разделение сигнала).

PLC-технология подходит для низкоскоростной передачи данных (домашняя автоматика, бытовые устройства и т.п.), доступа в Интернет со скоростью менее 1 Мбит/с, для приложений, требующих высокоскоростного соединения (видео по запросу, видеоконференц-связи и т.п.). При этом питающие здание электрические кабели служат «последней милей», а электропроводка внутри здания – «последним дюймом» для передачи данных.

При небольшом расстоянии между промежуточной приемопередающей точкой (трансформаторной подстанцией) и зданием скорость передачи доходи до 4,5 Мбит/с. PLC-технология может использоваться при создании локальной сети в небольшом офисе или жилом доме, так как минимальная скорость передачи позволяет покрывать расстояние до 200–300 м. Такая технология обеспечивает реализацию услуг дистанционного мониторинга, охраны жилища, управления его режимами, ресурсами и т.п., составляющих концепцию интеллектуального дома. Ожидается, что с её помощью станет возможным организовать прямой доступ в Интернет .

3. Оптоволоконный кабель состоит из кварцевого сердечника диаметром 10 мкм (микрон), окружённого отражающей защитной оболочкой с внешним диаметром 125–200 мкм (Рис. 14-2). Передача информации осуществляется преобразованием электрических сигналов в световые с помощью, например, светодиода. Кодирование информации производится изменением интенсивности светового потока. При передаче информации отражённый от стенок волокна луч приходит на приёмный конец с минимальным затуханием. Такой кабель обеспечивает полную защиту от воздействия внешних электромагнитных полей и высокую скорость передачи данных (до 1000 Мбит/с). Он позволяет одновременно организовать работу нескольких сотен тысяч телефонных, нескольких тысяч видеотелефонных и около тысячи телевизионных каналов. Волоконно-оптические кабели сложны для несанкционированного подключения, пожаробезопасны, но достаточно дороги и требуют устройств преобразования световых сигналов в электрические (лазеры) и наоборот. Такие кабели используются, как правило, при прокладке магистральных линий связи (ВОЛС). Уникальные свойства кабеля позволяют использовать его для организации сетей Интернет.

Каналы связи бывают коммутируемые (создаются лишь на время проведения сеанса передачи информации, например, телефонные) и некоммутируемые (выделяются абоненту на продолжительный период времени и не зависят от времени передачи данных – выделенные).

Линии и каналы связи

Линия связи и канал связи - это не одно и то же.

Линия связи (ЛС) - это физическая среда, по которой передаются информационные сигналы. В одной линии связи могут быть организованы несколько каналов связи путем временного, частотного кодового и других видов разделения - тогда говорят о логических (виртуальных) каналах. Если канал полностью монополизирует линию связи, то он может называться физическим каналом, и в этом случае совпадает с линией связи. Хотя допустимо, например, говорить об аналоговом или цифровом канале связи, но абсурдно заявлять об аналоговой или цифровой линии связи, раз линия - лишь физическая среда, в которой могут быть образованы каналы связи разного типа. Тем не менее, даже говоря о физической многоканальной линии, ее часто называют каналом связи. ЛС являются обязательным звеном любой системы передачи информации.

Рис. 24.2. Классификация каналов связи

Классификация каналов связи (КС) показана на рис. 24.2. По физической природе ЛС и КС на их основе делятся на:

l механические - используются для передачи материальных носителей информации;

l акустические - переносят звуковой сигнал;

l оптические - передают световой сигнал;

l электрические - передают электрический сигнал.

Электрические и оптические КС могут быть:

l проводными, где для передачи сигналов служат проводниковые линии связи (электрические провода, кабели, световоды и т. д.);

l беспроводными (радиоканалы, инфракрасные каналы и т. д.), использующими для передачи сигналов электромагнитные волны, распространяющиеся по эфиру.

По форме представления передаваемой информации КС делятся на:

l аналоговые - по аналоговым каналам передается информация, представленная в непрерывной форме, то есть в виде непрерывного ряда значений какой либо физической величины;

l цифровые - по цифровым каналам пересылается информация, представленная в виде цифровых (дискретных, импульсных) сигналов той или иной физической природы.

В зависимости от возможных направлений передачи информации различают:

l симплексные КС, позволяющие передавать информацию только в одном направлении;

l полудуплексные КС, обеспечивающие попеременную передачу информации в прямом и в обратном направлениях;

l дуплексные КС, позволяющие вести передачу информации одновременно и в прямом и в обратном направлениях.

Каналы связи могут быть, наконец:

l коммутируемыми;

l некоммутируемыми.

Коммутируемые каналы создаются из отдельных участков (сегментов) только на время передачи по ним информации; по окончании сеанса связи такой канал ликвидируется (разрывается).

Некоммутируемые (выделенные) каналы организуются на длительное время и имеют постоянные характеристики по длине, пропускной способности, помехозащищенности.

По пропускной способности их можно разделить на:

l низкоскоростные КС, скорость передачи информации в которых составляет от 50 до 200 битов/с; это телеграфные КС, как коммутируемые (абонентский телеграф), так и некоммутируемые;

l среднескоростные КС, например аналоговые (телефонные) КС; скорость передачи в них от 300 до 9600 битов/с, а в новых стандартах v90–v.92 Международного консультативного комитета по телеграфии и телефонии (МККТТ) и до 56 000 битов/с;

l высокоскоростные (широкополосные) КС, обеспечивающие скорость передачи информации выше 56 000 битов/с.

Следует особо отметить, что телефонный КС является более узкополосным, чем телеграфный, но скорость передачи данных по нему выше благодаря обязательному наличию модема, существенно снижающего F c передаваемого сигнала. При простом кодировании максимально достижимая скорость передачи данных по аналоговым каналам не превосходит 9600 бод = 9600 битов/с. Применяемые в настоящее время сложные протоколы кодирования передаваемых данных используют не два, а несколько значений параметра сигнала для отображения элемента данных, и позволяют достичь скорости передачи данных по аналоговым телефонным линиям связи 56 Кбит/с = 9600 бод.

По цифровым КС, организованным на базе телефонных линий, скорость передачи данных благодаря уменьшению F c и увеличению H c оцифрованного сигнала также может быть выше (до 64 Кбит/с), а при мультиплексировании нескольких цифровых каналов в один в таком составном КС скорость передачи способна удваиваться, утраиваться и т. д.; существуют подобные каналы со скоростями в десятки и сотни мегабитов в секунду.

Физической средой передачи информации в низкоскоростных и среднескоростных КС обычно являются проводные линии связи: группы либо параллельных, либо скрученных («витая пара») проводов.

Для организации широкополосных КС используются различные кабели, в частности:

l неэкранированные с витыми парами из медных проводов (Unshielded Twisted Pair - UTP);

l экранированные с витыми парами из медных проводов (Shielded Twisted Pair - STP);

l волоконно-оптические (Fiber Optic Cable - FOC);

l коаксиальные (Coaxial Cable - CC);

l беспроводные радиоканалы.

Витая пара - это изолированные проводники, попарно свитые между собой для уменьшения перекрестных наводок между проводниками. Такой кабель, состоящий обычно из небольшого количества витых пар (иногда даже двух), характеризуется меньшим затуханием сигнала при передаче на высоких частотах и меньшей чувствительностью к электромагнитным наводкам, чем параллельная пара проводов.

UTP-кабели чаще других используются в системах передачи данных, в частности в вычислительных сетях. Выделяют пять категорий витых пар UTP: первая и вторая категории используются при низкоскоростной передаче данных; третья, четвертая и пятая при скоростях передачи, соответственно, до 16, 25 и 155 Мбит/с (а при использовании стандарта технологии Gigabit Ethernet на витой паре, введенного в 1999 году, и до 1000 Мбит/с). При хороших технических характеристиках эти кабели сравнительно недороги, они удобны в работе, не нуждаются в заземлении.

STP-кабели обладают хорошими техническими характеристиками, но имеют высокую стоимость, жестки и неудобны в работе и требуют заземления экрана. Они делятся на типы: Type 1A, Type 2A, Type 3A, Type 5A, Type 9A. Из них Type 3A определяет характеристики неэкранированного телефонного кабеля, а Type 5A - волоконно-оптического кабеля. Наиболее популярен кабель Type 1A стандарта IBM, состоящий из двух пар скрученных проводов, экранированных проводящей оплеткой, которую положено заземлять. Его характеристики примерно соответствуют характеристикам UTP-кабеля категории 5.



Коаксиальный кабель представляет собой медный проводник, покрытый диэлектриком и окруженный свитой из тонких медных проводников экранирующей защитной оплеткой. Коаксиальные кабели для телекоммуникаций делятся на две группы:

l «толстые» коаксиалы;

l «тонкие» коаксиалы.

Толстый коаксиальный кабельимеет наружный диаметр 12,5 мм и достаточно толстый проводник (2,17 мм), обеспечивающий хорошие электрические и механические характеристики. Скорость передачи данных по толстому коаксиальному кабелю достаточно высокая (до 50 Мбит/с), но, учитывая определенное неудобство работы с ним и его значительную стоимость, рекомендовать его для использования в сетях передачи данных можно далеко не всегда. Тонкий коаксиальный кабель имеет наружный диаметр 5–6 мм, он дешевле и удобнее в работе, но тонкий проводник в нем (0,9 мм) обусловливает худшие электрические (передает сигнал с допустимым затуханием на меньшее расстояние) и механические характеристики. Рекомендуемые скорости передачи данных по «тонкому» коаксиалу не превышают 10 Мбит/с.

Основуволоконно-оптического кабеля составляют «внутренние подкабели» - стеклянные или пластиковые волокна диаметром 8–10 (одномодовые - однолучевые) и 50–60 (многомодовые - многолучевые) микрон, окруженные твердым заполнителем и помещенные в защитную оболочку диаметром 125 мкм. В одном кабеле может содержаться от одного до нескольких сотен таких «внутренних подкабелей». Кабель, в свою очередь, окружен заполнителем и покрыт более толстой защитной оболочкой, между которыми которой проложены кевларовые волокна, принимающие на себя обеспечение механической прочности кабеля.

По одномодовому волокну (диаметр их 8–10 мкм) оптический сигнал распространяется, почти не отражаясь от стенок волокна (входит в волокно параллельно его стенкам), чем обеспечивается очень широкая полоса пропускания(до сотен гигагерц на километр). По многомодовому волокну (его диаметр 40–100 мкм) распространяются сразу много волн различной длины, каждая из которых входит в волокно под своим углом и, соответственно, отражается от стенок волокна в разных местах (полоса пропускания многомодового волокна 500–800 Мгц на километр).

Источником распространяемого по оптоволоконному кабелю светового луча является преобразователь электрических сигналов в оптические, например, светодиод или полупроводниковый лазер. Кодирование информации осуществляется изменением интенсивности светового луча. Физической основой передачи светового луча по волокну является принцип полного внутреннего отражения луча от стенок волокна, обеспечивающий минимальное затухание сигнала, наивысшую защиту от внешних электромагнитных полей и высокую скорость передачи. По оптоволоконному кабелю, имеющему большое число волокон, можно передавать огромное количество сообщений. На другом конце кабеля принимающий прибор преобразует световые сигналы в электрические. Скорость передачи данных по оптоволоконному кабелю очень высока и достигает величины 1000 Мбит/с, но он очень дорог и используется обычно лишь для прокладки ответственных магистральных каналов связи. Такой кабель связывает столицы и крупные города большинства стран мира, а по дну Атлантического океана проложен кабель между Европой и Америкой. Оптоволоконный кабель соединяет Санкт-Петербург с Москвой, прибалтийскими и скандинавскими странами, кроме того, он проложен в тоннелях метро и проникает во все районы Санкт-Петербурга. В вычислительных сетях, и в частности, в сети Интернет оптоволоконный кабельиспользуется на наиболее ответственных их участках. Возможности оптоволоконных каналов поистине безграничны: по одному толстому магистральному оптоволоконному кабелю можно одновременно организовать несколько сот тысяч телефонных каналов, несколько тысяч видеотелефонных каналов и около тысячи телевизионных каналов.

Радиоканал - это беспроводный канал связи, прокладываемый через эфир. Система передачи данных (СПД) по радиоканалу включает в себя радиопередатчик и радиоприемник, настроенные на один и тот же радиоволновой диапазон, который определяется частотной полосой электромагнитного спектра, используемой для передачи данных. Часто такую СПД называют просто радиоканалом. Скорости передачи данных по радиоканалу практически не ограничены (они ограничиваются полосой пропускания приемо-передающей аппаратуры). Высокоскоростной радиодоступ предоставляет пользователям каналы со скоростью передачи 2 Мбит/с и выше. В ближайшем будущем ожидаются радиоканалы со скоростями 20–50 Мбит/с. В табл. 24.1 представлены названия радиоволн и соответствующие им частотные участки.

Таблица 24.1. Диапазоны радиоволн

Для коммерческих телекоммуникационных систем чаще всего выделяются частотные диапазоны 902–928 МГц и 2,4–2,48 ГГц (в некоторых странах, например США, при малых уровнях мощности излучения - до 1 Вт - разрешено использовать эти диапазоны без государственного лицензирования).

Беспроводные каналы связиобладают плохой помехозащищенностью, но обеспечивают пользователю максимальную мобильность и оперативность связи. передачу видеосигнала.

Телефонные линии связи являются наиболее разветвленными и широко используемыми. По ним осуществляется передача звуковых (тональных) и факсимильных сообщений, они являются основой построения информационно-справочных систем, систем электронной почты и вычислительных сетей.

По телефонным линиям могут быть организованы и аналоговые, и цифровые каналы передачи информации. Рассмотрим этот вопрос, ввиду его высокой актуальности, несколько подробнее.

«Простая старая телефонная система», в англоязычной аббревиатуре POTS (Primitive Old Telephone System), состоит из двух частей: магистральной системы связи и сети доступа абонентов к ней. Самый обычный вариант доступа абонентов к магистральной системе - через абонентский аналоговый канал связи. Большинство телефонных аппаратов подключаются к автоматической телефонной станции (АТС), являющейся уже элементом магистральной системы.

Телефонный микрофон преобразует звуковые колебания в аналоговый электрический сигнал, который и передается по абонентской линии в АТС. Требуемая для передачи человеческого голоса полоса частот составляет примерно 3 КГц, в диапазоне от 300 Гц до 3,3 КГц. При снятии телефонной трубки формируется сигнал off-hook, сообщающий АТС о вызове, и, если телефонная станция не занята, набирается нужный телефонный номер, который передается в АТС в виде последовательности импульсов (при импульсном наборе) или в виде комбинации сигналов звуковой частоты (при тональном наборе). Завершается разговор сигналом on-hook, формируемым при опускании трубки. Такой тип процедуры вызова называется in band, поскольку передача сигналов вызова производится по тому же каналу, что и передача речи.

Компьютерными телекоммуникационными системами называют обмен информацией на расстоянии между несколькими компьютерами.

Компьютерные каналы связи можно классифицировать по следующим признакам:

  • по способу кодирования информации можно разделить на цифровые и аналоговые;
  • по способу коммуникации можно разделить на выделенные и коммутируемые;
  • по способу передачи информации разделяют на проводные и беспроводные, оптические.

Аналоговые - по аналоговым каналам информация, которая передается, представляется в непрерывной форме, то есть в виде непрерывного ряда значений какой-либо физической величины.

Цифровые - это каналы, по которым пересылаемая информация передается в виде цифровых (дискретных, импульсных) сигналов той или иной физической природы.

Коммутируемые - это каналы, созданные из отдельных участков только на время передачи по ним информации, после окончания сеанса связи такой канал разрывается.

Выделенные каналы - это каналы, которые организуются на длительное время и имеют постоянные характеристики по длине и пропускной способности.

К основным характеристикам каналов связи относят скорость передачи информации, надежность, стоимость, резервы развития.

Скорость передачи информации измеряется в бит/с и в бодах. Количество изменений информационного параметра сигнала в секунду измеряется в бодах.

Бод - это такая скорость, когда передается один сигнал (например, импульс) в секунду независимо от величины его изменения. Единица измерения бит/с соответствует единичному изменению сигнала в канале связи и при простых методах кодирования сигнала; когда любое изменение бывает только единичным, можно принять, что: 1 бод = 1 бит/с; 1 Кбод = 103 бит/с; 1 Мбод = 106 бит/с и т. д.

В случае если элемент данных может быть представлен не двумя, а большим количеством значений какого-либо параметра сигнала, значение 1 бод будет больше 1 бит в секунду.

Надежность - передача информации без ее потерь и изменений. Передатчик и приемник - это аппаратура передачи данных, связывают источник и приемник информации с каналом связи. Примерами аппаратуры передачи данных могут служить модемы, терминальные адаптеры, сетевые карты и т. д.

Для улучшения качества сигнала, передаваемого на большие расстояния, используется дополнительная аппаратура: повторители, коммутаторы, концентраторы, маршрутизаторы, мультиплексоры.

На этих принципах основана классификация, учитывающая пропускную способность канала связи:

  • низкоскоростные каналы связи, скорость передачи информации в них составляет от 50 до 200 бит/с;
  • среднескоростные каналы связи, скорость передачи в них от 300 до 9600 бит/с, а в новых стандартах до 56 000 бит/с;
  • высокоскоростные (широкополосные) каналы связи, обеспечивающие скорость передачи информации выше 56 000 бит/с.

Скоростные характеристики канала во многом зависят от используемых кабелей.

Витая пара - это изолированные медные провода, обычный диаметр которых составляет 1 мм, попарно свитые один вокруг другого в виде спирали. Это позволяет уменьшить электромагнитное взаимодействие нескольких расположенных рядом витых пар.

Самым распространенным применением витой пары является телефонная линия. Витые пары, тянущиеся на большие расстояния, объединяются в кабель, на который надевается защитное покрытие. Если бы пары проводов, находящиеся внутри таких кабелей, не были свиты, то сигналы, проходящие по ним, накладывались бы друг на друга. Телефонные кабели диаметром несколько сантиметров можно видеть протянутыми на столбах.

Витые пары используются для передачи аналоговых и цифровых сигналов. Полоса пропускания зависит от диаметра и длины провода, но на больших расстояниях может достигнуть несколько мегабит в секунду.

Существуют два вида витой пары:

  • Неэкранированные витые пары имеют довольно высокую пропускную способность, удобны в работе, не нуждаются в заземлении и благодаря невысокой цене широко распространены. Неэкранированная витая пара не применяется в локальной сети, в которой обрабатывается информация с ограниченным доступом, потому что она может усилить напряженность поля.
  • Экранированные витые пары обладают хорошими техническими характеристиками, но имеют высокую стоимость, жестки и неудобны в работе и требуют заземления. Данный вид кабеля применяется в основном в сетях с ограниченным доступом к информации.

Коаксиальный кабель - средство передачи данных. Он лучше экранирован, чем витая пара, поэтому может обеспечить передачу данных на более дальние расстояния с более высокими скоростями. Широко применяются два типа кабелей. Один используется для передачи только цифрового сигнала, а другой тип кабеля - аналогового сигнала.

Коаксиальный кабель состоит из покрытого изоляцией твердого медного провода, расположенного в центре кабеля. Поверх изоляции натянут цилиндрический проводник, обычно выполненный в виде мелкой медной сетки. Он покрыт наружным защитным слоем изоляции (пластиковой оболочкой). Конструкция и специальный тип экранирования коаксиального кабеля обеспечивают высокую пропускную способность и отличную помехозащищенность.

Коаксиальные кабели для телекоммуникаций делятся на две группы:

  • «толстые» коаксиалы;
  • «тонкие» коаксиалы.

Толстый коаксиальный кабель имеет наружный диаметр 12,5 мм и достаточно толстый проводник (2,17 мм), обеспечивающий хорошие электрические и механические характеристики.

Скорость передачи данных по толстому коаксиальному кабелю до 50 Мбит/с, но, учитывая определенное неудобство работы с ним и его значительную стоимость, использовать его в сетях передачи данных можно не всегда.

Тонкий коаксиальный кабель имеет наружный диаметр 5-6 мм, он дешевле и удобнее в работе, но тонкий проводник в нем (0,9 мм) обусловливает худшие электрические и механические характеристики. Скорость передачи данных по «тонкому» коаксиалу не превышает 10 Мбит/с.

Коаксиальные кабели широко применялись в телефонных системах, но на линиях большой протяженности их заменяют оптоволоконными кабелями. Однако коаксиальные кабели широко используются для кабельного телевидения.

Оптоволоконные кабели по своей структуре напоминает витую пару. Основу волоконно-оптического кабеля составляет стеклянная сердцевина, по которой распространяется свет, окруженная твердым заполнителем и помещенная в защитную оболочку диаметром 125 мкм.

В одном кабеле может содержаться от одного до нескольких сотен таких сердечников. Сердечник покрыт слоем стекла с более низким, чем у сердечника, коэффициентом преломления. Он предназначен для более надежного предотвращения выхода света за пределы сердечника.

Внешним слоем служит пластиковая оболочка, защищающая остекление. Источником распространяемого по оптоволоконному кабелю светового луча является преобразователь электрических сигналов в оптические, например светодиод или полупроводниковый лазер.

Кодирование информации осуществляется изменением интенсивности светового луча. Физической основой передачи светового луча по волокну является принцип полного внутреннего отражения луча от стенок волокна, обеспечивающий минимальное затухание сигнала, наивысшую защиту от внешних электромагнитных полей и высокую скорость передачи. По оптоволоконному кабелю, имеющему большое число волокон, можно передавать огромное количество сообщений. На другом конце кабеля принимающий прибор преобразует световые сигналы в электрические.

Скорость передачи данных по оптоволоконному кабелю достигает 1000 Мбит/с, но он очень дорог и используется лишь для прокладки ответственных магистральных каналов связи. Такой кабель связывает столицы и крупные города большинства стран мира, а также материки.

В вычислительных сетях и в сети Интернет оптоволоконный кабель используется на наиболее ответственных их участках. Возможности оптоволоконных каналов поистине безграничны: по одному толстому магистральному оптоволоконному кабелю можно одновременно организовать несколько сот тысяч телефонных каналов, несколько тысяч видеотелефонных каналов и около тысячи телевизионных каналов.

В настоящее время широкое распространение получают беспроводные виды связи: радиоканалы, инфракрасные и миллиметровые излучения.

Радиоканал - это беспроводный канал связи, прокладываемый через эфир. Система передачи данных по радиоканалу включает в себя радиопередатчик и радиоприемник, настроенные на один и тот же радиоволновой диапазон, который определяется частотной полосой электромагнитного спектра, используемой для передачи данных.

Такую систему передачи данных называют просто радиоканалом. Скорости передачи данных по радиоканалу практически не ограничены (они ограничиваются полосой пропускания приемопередающей аппаратуры). Высокоскоростной радиодоступ предоставляет пользователям каналы со скоростью передачи 2 Мбит/с и выше. В ближайшем будущем ожидаются радиоканалы со скоростями 20-50 Мбит/с.

Инфракрасное и миллиметровое излучение без использования кабеля широко применяется для связи на небольших расстояниях. Дистанционные пульты управления для телевизоров и видео-магнитофонов используют инфракрасное излучение. Они относительно направленные, дешевые и легко устанавливаемые, но имеют один важный недостаток: инфракрасное излучение не проходит сквозь твердые объекты. С другой стороны, тот факт, что инфракрасные волны не проходят сквозь стены, является также и положительным. Ведь это повышает защищенность инфракрасной системы от прослушивания по сравнению с радиосистемой.

По этой причине для использования инфракрасной системы связи не требуется государственная лицензия в отличие от радиосвязи (кроме диапазонов ISM). Связь в инфракрасном диапазоне применяется в настольных вычислительных системах (например, для связи ноутбуков с принтерами), но все же не играет значимой роли в телекоммуникации.

Беспроводные каналы связи обладают плохой помехозащищенностью, но обеспечивают пользователю максимальную мобильность и оперативность связи. В вычислительных сетях беспроводные каналы связи для передачи данных используются чаще всего там, где применение традиционных кабельных технологий затруднено или просто невозможно.

Но в ближайшем будущем ситуация может измениться - активно ведется разработка новой технологии беспроводной связи Bluetooth. Bluetooth - это технология передачи данных по радио-каналам на короткие расстояния, позволяющая осуществлять связь беспроводных телефонов, компьютеров и различной периферии даже в тех случаях, когда нарушается требование прямой видимости.

Первоначально Bluetooth рассматривалась исключительно как альтернатива инфракрасным соединениям между различными портативными устройствами. Но сейчас специалисты предсказывают уже два направления широкого использования Bluetooth.

Первое - это домашние сети, включающие в себя различную электронную технику, в частности компьютеры, телевизоры и т.п. Второе, гораздо более важное, направление - локальные сети офисов небольших фирм, где стандарт Bluetooth позиционируется как замена традиционных проводных технологий. Недостатком Bluetooth является сравнительно низкая скорость передачи данных - она не превышает 720 Кбит/с, поэтому эта технология не способна обеспечить передачу видеосигнала.