Автономная "смарт" машина на Arduino. Сборка радиоуправляемой игрушечной машинки на основе Arduino. Как

Машинка на arduino и Bluetooth без редактирования кода. Мы будем использовать специализированный бесплатный софт для составления скетча. Кроме того не надо покупать шасси для нашей поделки, подойдет практически любая неисправная радиоуправляемая модель автомобиля или танка.

Предлагаю посмотреть обзорный видеоролик про блютуз-управляемую машинку и ее начинку.

Итак, давайте разберем на живом примере как сделать своими руками дистанционно управляемую по bluetooth c android планшета или смартфона машинку. Статья, как ни странно, рассчитана на начальный уровень знаний. Здесь нет руководства по редактированию кода в Arduino IDE, да и мы использовать его будем только для заливки нашего кода. А составлять алгоритм управления будем в программе под названием FLProg. Программа управления со смартфона — HmiKaskada_free. Но сначала о железе, которое нам понадобится.

Машинка на arduino и Bluetooth — аппаратная часть.

Первое что необходимо это шасси , то есть корпус с колесами и моторчиками, который и будет ездить на радость нам и окружающим. В моем случае был использован корпус от радиоуправляемой игрушки в которой выгорела силовая часть. Перспектива ремонта мне показалась унылой, да и хотелось чего то нового для своих детей. Так и родился этот проект. В корпусе стоят два двигателя которые приводят в движение колеса по бортам машинки, как у танка. Вся электронная начинка отправилась на запчасти.

Для управления электродвигателями нашего будущего творения понадобится Н-мост на микросхеме L298N Ссылка на Али, я брал у именно этот. Картинка кликабельна.

Н-мост для arduino

Может управлять двумя двигателями в диапазоне напряжений 5 — 35 вольт. Поддерживает ШИМ, то есть можно регулировать обороты двигателей. На плате есть вывод стабилизированного напряжения 5 вольт для питания ардуино.

Схема подключения проста и незатейлива:

Следующей неотъемлемой частью электронной начинки нашего проекта является bluetooth модуль HC-06 . Самый обычный модуль для ардуино, настолько популярен что в дополнительном описании не нуждается.

HC-06 bluetooth for arduino

Основным элементом и мозгом в моем случае выступает arduino nano , тут даже фото выкладывать не буду ибо все о ней знают и умеют с ней работать. Кстати подойдет любая плата ардуино, лишь бы в корпус поместилась 😀

Аккумуляторы и провода для пайки в определении спецификации не нуждаются. Выбор аккумуляторов зависит от рабочего напряжения электродвигателей.

Машинка на arduino и Bluetooth — составление скетча.

Повторюсь — никакого копания в коде тут не будет. Мы будем использовать популярную программу FLProg. Скачать ее последнюю версию можно на официальном сайте . Интерфейс проги прост и незатейлив, но имеется огромный функционал и поддержка практически всех популярных модулей. Как ей пользоваться писать не буду так как это потянет на пару статей. Скажу только что я не встречал более удобной и доступной программы для составления скетчей для arduino и ее клонов. Скрин интерфейса:

Интерфейс FLProg

На сайте полно текстовых и видео мануалов, думаю разберетесь.

Мой проект для дистанционно-управляемой машины можно скачать с яндекс-диска через сервис сокращения ссылок.

Машинка на arduino и Bluetooth — интерфейс управления на планшете android.

По многочисленным просьбам написал подробную инструкцию по разработке интерфейса управления на базе HmiKaskada android в статье . Ссылка кликабельна.

Для устройств под управлением android существует программа HmiKaskada (ссылка на ЯндексДиск) . Изначально она разрабатывалась как альтернатива дорогим промышленным HMI панелям. Но пытливые умы быстро смекнули что управлять она может чем угодно. В нашем случае машинкой. Поддерживает беспроводные интерфейсы Wi-Fi и Bluetooth, кроме того можно девайс подключить напрямую через USB.

Есть платная и бесплатная версии программы. У меня есть обе но я принципиально сделал проект в бесплатной версии что бы показать вам и в очередной раз убедиться в абсолютной работоспособности free версии. Основное отличие free от PRO версий это работа только по блютуз.

На форуме FLProg есть гигантская ветка по вопросу совместимости с КаСкадой, да и разработчик активен и общителен. Скрин панели управления выкладывать не вижу смысла — он есть в видеоролике.

Сейчас снова хочу предоставить вам интересный вариант «Управляем Arduino-машинкой при помощи G-сенсора на Android смартфоне»

В данной статье я вам расскажу, как при помощи данного сервиса RemoteXY очень легко настроить дистанционное управление платформой или машинкой. Робомашинкой мы будем управлять при помощи элемента управления «Джойстик», который умеет работать от G-сенсора вашего смартфона. В конце статьи вы найдете видео и можете посмотреть, что же у нас получилось.

Мы собрали очень простую двухколесную тележку, что бы продемонстрировать вам, как построить систему дистанционного управления. В тележке использованы следующие компоненты (мы не претендуем на качество изготовления, тележка собрана для демонстрации возможностей ресурса RemoteXY):

  • Платформа — ее мы вырезали из листового материала. Для простоты использовали ДВП;
  • Переднее колесо — поворотное колесико от кресла;
  • Мотор-редукторы 2 шт.;
  • Колеса , с осью подходящей к мотор-редукторам 2 шт. Колеса мы приобретали совместно с мотор редукторами;
  • Батарейный отсек с выключателем, на 4-е пальчиковые батарейки (тип АА);
  • Arduino , мы использовали все тот же клон Seeeduino;
  • Модуль Bluetooth HC-06 ;
  • Драйвер моторов на чипе L298N;

Все детали можно заказать на китайском сайте за копейки. Правда придется ждать немного. но лучше сэкономить чем переплатить

Электрическая часть и схема подключения всех модулей машинки представлена на следующем рисунке.

Программа управления

Войдите в редактор на этом ресурсе и сконструируйте следующий интерфейс управления:

Установите по центру экрана «Джойстик». В свойствах джойстика выберите установку дополнительного элемента управления «Включить G сенсор». Выберите положение переключателя G-сенсора «Низ-лево». Так же в настройках можете изменить цвет на красный. В дальнейшем джойстиком мы будем управлять движением машинки.

Установите «Переключатель». Разместите его левее джойстика. Можете так же изменить его цвет. Переключателем мы будем управлять светодиодом на плате Arduino на пине 13.

Если вы все правильно сделали, у вас должен получиться примерно такой интерфейс управления:

В настройках проекта выберите целевую платформу, для которой мы получаем исходный код «Arduino (SoftwareSerial)». Нажимаем кнопку «Получить код» и загружаем исходный код на свой компьютер.

Откроем загруженный скетч в IDE Arduino. Скетч прекрасно компилируется без ошибок. Однако, в нем конечно же нет кода для управления нашей машинкой. Наша задача написать этот код. Для образца мы будем использовать загруженный пример.

Обратите внимание на определение структуры RemoteXY_TypeDef в файлеremotexy.h . Структура содержит поля, полностью соответствующие установленным на интерфейсе управления элементам управления. Мы видим переменные joystick_1_x иjoystick_1_y , отражающие координаты x и y нашего джойстика, а так же переменную switch_1 , отражающую переключатель.

/* структура определяет все переменные вашего интерфейса управления */ typedef struct {

/* input variable */ signed char joystick_1_x; /* =-100..100 координата x положения джойстика */ signed char joystick_1_y; /* =-100..100 координата y положения джойстика */ unsigned char switch_1; /* =1 если переключатель включен и =0 если отключен */

/* other variable */ unsigned char connect_flag; /* =1 if wire connected, else =0 */

} RemoteXY_TypeDef;

Далее приводится основной код программы, в который уже встроено управление моторами нашей машинки. Вы можете просто скопировать данный код в свой скетч, или же выборочно добавить необходимые куски кода в загруженный пример.

#include #include #include "remotexy.h"

/* определяем пины управления правым мотором */
#define PIN_MOTOR_RIGHT_UP 7
#define PIN_MOTOR_RIGHT_DN 6
#define PIN_MOTOR_RIGHT_SPEED 10

/* определяем пины управления левым мотором */
#define PIN_MOTOR_LEFT_UP 5
#define PIN_MOTOR_LEFT_DN 4
#define PIN_MOTOR_LEFT_SPEED 9

/* определяем пин управления светодиодом */
#define PIN_LED 13

/* определяем два массива с перечислением пинов для каждого мотора */
unsigned char RightMotor = {PIN_MOTOR_RIGHT_UP, PIN_MOTOR_RIGHT_DN, PIN_MOTOR_RIGHT_SPEED};
unsigned char LeftMotor = {PIN_MOTOR_LEFT_UP, PIN_MOTOR_LEFT_DN, PIN_MOTOR_LEFT_SPEED};

/*
управление скоростью мотора
motor — ссылка на массив пинов
v — скорость мотора, может принимать значения от -100 до 100
*/
void Wheel (unsigned char * motor, int v)
{
if (v>100) v=100;
if (v<-100) v=-100;
if (v>0) {
digitalWrite(motor, HIGH);
digitalWrite(motor, LOW);
analogWrite(motor, v*2.55);
}
else if (v<0) {
digitalWrite(motor, LOW);
digitalWrite(motor, HIGH);
analogWrite(motor, (-v)*2.55);
}
else {
digitalWrite(motor, LOW);
digitalWrite(motor, LOW);
analogWrite(motor, 0);
}
}

void setup()
{
/* инициализация пинов */
pinMode (PIN_MOTOR_RIGHT_UP, OUTPUT);
pinMode (PIN_MOTOR_RIGHT_DN, OUTPUT);
pinMode (PIN_MOTOR_LEFT_UP, OUTPUT);
pinMode (PIN_MOTOR_LEFT_DN, OUTPUT);
pinMode (PIN_LED, OUTPUT);

/* инициализация модуля RemoteXY */
RemoteXY_Init ();

void loop()
{
/* обработчик событий модуля RemoteXY */
RemoteXY_Handler ();

/* управляем пином светодиода */
digitalWrite (PIN_LED, (RemoteXY.switch_1==0)?LOW:HIGH);

/* управляем правым мотором */
Wheel (RightMotor, RemoteXY.joystick_1_y — RemoteXY.joystick_1_x);
/* управляем левым мотором */
Wheel (LeftMotor, RemoteXY.joystick_1_y + RemoteXY.joystick_1_x);
}

В самом начале определяются номера пинов, которые будут использованы для управления моторами. Далее номера пинов группируются в два массива, для правого и левого мотора соответственно. Для управления каждым мотором через драйвер на чипе L298N необходимо использовать 3 сигнала: два дискретных, указывающих направление вращения мотора, и один аналоговый, определяющий скорость вращения. Данными преобразованиями у нас занимается функция Wheel . На вход функции передаем ссылку на массив пинов выбранного мотора, и скорость вращения как знаковое число от -100 до 100. Если передали скорость 0, то мотор отключается.

В предопределенной функции setup настраиваются пины на работу как выходы. Для аналогового сигнала используются пины, которые могут работать как ШИМ преобразователи. Это пины 9 и 10. Они не требуют настройки в среде Arduino.

В предопределенной функции loop в каждой итерации работы программы вызывается обработчик модуля RemoteXY. Далее происходит управление зажиганием светодиода, далее управление моторами. Для управления моторами из структуры RemoteXY считываются поля по координатам джойстика X и Y, на основе координат выполняется математическая операция расчета скорости для каждого мотора, и вызывается функция Wheel , задающая скорость мотора. Данные вычисления выполняются в каждом цикле работы программы, обеспечивая непрерывность вычисления управляющих импульсов моторов на основе координат джойстика.

Залейте получившейся скетч Arduino в контроллер. Загрузите и запустите Android мобильное приложение на ваш смартфон или планшет. Соединитесь с вашим устройством и можете им управлять. Джойстиком можно управлять в обычном режиме, перемещая движок пальцем. Можно включить G-сенсор, и движок джойстика будет перемещаться сам в зависимости от наклона вашего смартфона.

Если после сборки вашего устройства, один или оба мотора вращаются в противоположном направлении, поменяйте провода местами при подключении мотора.

Что нам понадобится:

1. Шасси для робота, =9,50$
2. Драйвер двигателя, =1,22$
3. Датчик, который будет определять препятствие, я остановился на самом популярном и дешевом варианте =0,94$
Однако, никто не мешает воспользоваться более дорогими или чем-то подобным
4. Крепление датчика, не самый лучший, но жизнеспособный вариант. =1,08$
В качестве аналогов: , еще существует неуловимый желтый, наиболее прошаренный, но ссылку так и не нашел. Кто будет искать на вид он похож на синий, но имеет нормальные отверстия под винт м3 и 4 шурупа для крепления дальномера.
5. Плата arduino, которая будет обрабатывать данные с датчика и выдавать решение, куда ехать дальше. Остановился на , как на самой удобной для моделирования на «лету» =5.88$
Эта плата выбрана из-за возможности заменить микроконтроллер в случае фатальной неудачи, так что можно купить версию

Итого я потратил примерно 19$ на самое основное

!!! терминалы, разъемы, клещи можно заменить

вышеперечисленное мне понадобится позже и не раз, не обязательно так разгоняться

Парочка фото на закуску

Провода и терминалы


Стойки, болты, гайки, шайбы

Сборка

Переходим к самому интересному - к созданию Франкенштейна!
Первым делом сверлим в синем кронштейне отверстие под болт м3, потому как иного варианта крепления я не нашел


на термоклей сажаем дальномер.


Собираем шасси и крепим наш датчик. Чтобы он располагался как можно ниже, пришлось закрепить его не сразу на шасси, а с помощью стойки опустить на несколько сантиметров вниз. Нижний край кронштейна получился на одном уровне с моторами.

Крепим драйвер двигателя, подключаем моторы.



Приспосабливаем повербанк вместо батарейного отсека.
Для этого делаем два отверстия под винты м3 для крепления на шасси, припаиваем два проводка "+" и "-" к USB на плате и выводим провода через еще одно просверленное отверстие. К сожалению у меня не было под руками подходящего выключателя, так что эту функцию будет выполнять отключение проводков от ардуины. Далее крепим это дело на шасси.





Ставим ардуину, подключаем провода




Удобно, что заряжается аккумулятор через повербанк.

Вставляем аккумулятор прошиваем (воспользовался средой atmel studio 6), переворачиваем, чтобы не убежала, и тестируем, что получилось.

На первый взгляд все норм, если появляется препятствие машинка отворачивает в сторону, проверяет наличие препятствия и в случае повторного обнаружения поворачивает в другую сторону. Что получилось на практике: препятствия обнаруживает на ура, поворачивает неплохо, опытным путем поставил нужные задержки, но практически не способна ехать по прямой из-за заднего направляющего колеса. Скорее всего это мне попался такой «тугой» вариант, но из-за этого машинка всегда едет по диагонали, мелочь, а неприятно.

Подведем итоги

Для начала, тем, кто решит делать что-то подобное, стоит обратить внимание на шасси с четырьмя моторами. Такой шаг, в теории, исключит вероятность движения по дуге, но может добавить головной боли при подборе драйвера двигателя. Но не спешите ломать голову, можно оставить этот, все должно отлично работать, по токам проходит впритык - два мотора на канал. А вот однобаночного повербанка не хватит точно. На мой взгляд это уже повод рискнуть. Так же придется покупать шайбы, т.к. при креплении к пластмассе могут быть неприятные вещи. Еще было бы отлично разделить питание ардуины и моторов, либо воспользоваться стабилизатором, на худой конец впаять конденсатор большой емкости, но это для истинных ценителей, у меня работает и так. На практике я уложился в цену примерно 2000 руб, можно было и дешевле, но это была моя зарядка для ума и первый опыт в программировании (для чего собственно все и затевалось), особо экономить не стал. Появится время прикручу радиоуправление и выключатель.

P.S. Проблему движения по дуге решала замена моторов, спасибо за совет. При покупке шасси не спешите подтверждать, сначала испытайте его в деле. Больше косяков нет, все работает.

Подробная история того, как из трех двигателей была собрана машина на Arduino, управляемая Android-устройством по Bluetooth. В нескольких десятках абзацев постараюсь максимально пошагово изложить, куда подключить каждый из проводов, как написать фирменное приложение и на каких детских граблях пришлось попрыгать больше недели.

Немного об уровне, авторе и предостережения

Я, автор, пацан 16-17 лет с подмосковной деревни, специализируюсь на написании android-приложений (а там сложнее что-то сжечь), поэтому ответственность за оптимальный подход к решению задач с себя снимаю.

Задача

Задача легчайшая – заставить ездить машинку, управляемую Arduino, а пульт заменить андроидом. Но в большинстве моментов пришлось изобретать колесо, потому что в интернетах подходящего решения найдено не было.

Понадобится

  1. Arduino
  2. Motor Shield (в моем случае две)
  3. Bluetooth
  4. Android
  5. Провода обычные

Основа конструкции

За основу была взята машина Lego Outdoor Challenger (в реальности выглядит менее пафосно). Все, что от нее осталось: корпус (все элементы украшения сняты) и три двигателя.

У машинки была своя плата, но одна из задач подразумевала универсальность: это сделал я, это смогут повторить другие. Мозги вынул, поставил Arduino Uno.

Установка Arduino

Создатели почему-то не предусмотрели места для Arduino, потому крепил на шурупы, просверлив пластик. Под плату подложил фанеру, чтобы ничего не закоротило. Под шурупы лучше подсунуть что-то пластиковое (кусочек бутылки), ибо плата от железный болтов не защищена.

Поверх платы сразу поставил две motor shiled, так надо. Чтобы управлять второй, придется прокинуть один провод с любого digital порта на H1 (направление) и второй с пина с поддержкой шима (помечены знаком «~», обычно 10, 11) на E1 (скорость).

Определение угла поворота

За поворот машинки отвечает на удивление не сервопривод, а обычный двигатель. Встает проблема: хорошо бы было его не сжечь, ведь угол поворота ограничен, а крутиться двигатель может сколько угодно.

Вариант с методом тыка отпадает, так как при разном уровне батареи количество тока, подаваемое на двигатель, будет изменяться, что приведет к постоянно меняющемуся углу. Крутить до упора тоже нельзя, рано или поздно рассыплются шестеренки.

Решение проблемы: отслеживать угол через замыкание. На фото продемонстрирована небольшая штучка, которая крепится недалеко от поворотного механизма. На часть, которая крутится вместе с колесами влево/вправо двигателем, прикрепляется гребешок с железными контактами.

Принцип работы: к каждой линии припаивается провод (всего их четыре), нижний подключается к плюсу (он зажат гребешком всегда, см. картинку), остальные провода уходят на минус. Когда зубик гребешка попадает и на нижний ряд, и на, допустим, третий, происходит замыкание, ток течет, это замечает Arduino.

Благодаря различным комбинациям трех полос, можно определить до семи углов. Например, когда ток есть на всех линиях, колеса повернуты в крайнее правое положение, когда ток есть только на верхней, колеса повернуты максимально влево. В таблице предоставлены все варианты.

Подключение угла и код

Для каждого уровня был выбран свой цвет: нижний – зеленый, первый снизу – красный, второй – черный, третий – белый. На начальном этапе использовались breadboard и светодиоды для визуальной отладки.

Схема подключения показана на рисунке. Плюс тянем к зеленому, остальные протягиваем к минусу. Через резистор, установленный для устранения помех и отсутствия КЗ, подключаем провода к выходам A0-A2. Выбраны они просто из экономии остальных портов.

Код дан с комментариями. Подключаем пины и опрашиваем их через digitarRead(). Если напряжение есть, вернется значение true. Далее смотрим, если результат означает, что колеса в крайних положениях, запрещаем дальнейший поворот в эту сторону.

Небольшая хитрость: поскольку выходы на 5В и 3.3В понадобятся в будущем, можно поставить плюс на один из digital-пинов. Перед каждой проверкой угла выдавать ток через digitalWrite(whitePin), потом проверять угол и убирать ток.

Int speedTurn = 180; //скорость поворота, от 0 до 255 //пины для определения поворота int pinRed = A0; int pinWhite = A1; int pinBlack = A2; int pinAngleStop = 12; //выводит ток на светодиод, если достигнут максимальный угол, нужен //только для отладки void setup() { //пины поворота на считывание pinMode(pinRed, INPUT); pinMode(pinBlack, INPUT); pinMode(pinWhite, INPUT); //светодиод pinMode(pinAngleStop, OUTPUT); //пины драйвера двигателя, направление и скорость pinMode(angleDirection, OUTPUT); pinMode(angleSpeed, OUTPUT); Serial.begin(9600); } //функция вызывается из loop(), когда приходит команда с андроида void turn(int angle) { digitalWrite(pinAngleStop, HIGH); //выдаем ток на провод, подключенный к плюсу delay(5); //немного ждем, чтобы ток "успел" дойти if(angle > 149) { if(digitalRead(pinWhite) == HIGH && digitalRead(pinBlack) == LOW && digitalRead(pinBlack) == LOW) { //если достигнуто крайне правое положение, выйти из функции не подавая ток, чтобы не //сжечь мотор return; } //если угол не максимальный, поворачиваем digitalWrite(angleDirection, HIGH); analogWrite(angleSpeed, speedTurn); } else if (angle < 31) { if(digitalRead(pinRed) == HIGH && digitalRead(pinBlack) == HIGH && digitalRead(pinWhite) == HIGH) { //если достигнуто крайне левого положение, выйти из функции не подавая ток, чтобы не //сжечь мотор return; } //если угол не максимальный, поворачиваем digitalWrite(angleDirection, LOW); analogWrite(angleSpeed, speedTurn); } digitalWrite(pinAngleStop, LOW); //убираем ток с определителя угла delay(5); }

Распараллеливание ходовых колес

Изначально два ходовых двигателя соединены вместе. Их рассоединил по двум причинам: поворот эффективней, если колеса крутятся в разные стороны, и два мощных двигателя одна плата не вытянет.

Проблема: у motor shield два выхода, каждый из которых выдает до 2 ампер. Каждый двигатель ест по 0,7А. Вроде меньше, но не при максимальных нагрузках. Допустим, машинка застряла в песке или уперлась, ток возрастает выше ампера. Не критично, но потенциально опасно.

А вот критичным оказалось то, что плата греется. Через минуты полторы после заезда, motor shield нагревалась и начинала работать безобразно: токи подаются не те, колеса не крутятся и прочее.

Решение обоих проблем: один двигатель подключил к одной motor shield, второй – к другой. Как ни странно, помогло. Температура упала, перегрев отсутствует. Можно было поставить радиатор, но крепить тяжело.

Подключение Bluetooth

Я использовал модель HC-05, что сыграло роковую шутку. Подключаются все блютузы одинаково: один провод на 3.3В (иногда начинал работать только от 5В), второй на минус, еще два на порт 0 и 1 (чтение и отправка соответственно). Провод, подписанный RXD на bluetooth, втыкается в TXD ардуино, а TXD в RXD (если перепутаете, то данных не увидите).

Есть оговорка: порты 0 и 1 по умолчанию используются Serial, через который заливает скетч. То есть, пока воткнут блютуз, скетч не зальется. Есть два выхода: вынимать блютуз на время заливки или переназначить входы и выходы блютуза. Второй вариант осуществляется двумя строчками

#include \\подключение библиотеки SoftwareSerial BTSerial(8, 9); \\установка 8 и 9 пина заместо 0 и 1
Подводный камень, съевший у меня трое суток работы – скорость общения. По привычке установил 9600 и пошел пробовать. То данные не приходили, то была каша символов. И в конце концов ответ – модель HC-05 общается на 38400! Очень сильно обратите внимание на то, что в Setup() я выполню BTSerial.begin(39400), хотя Serial.begin(9600).

Система отправки команд

Статья становится слишком длинной, поэтому рассмотрение кода Arduino и Android вынесу в отдельную вторую часть, а сейчас опишу принцип.

На андроид устройстве есть джойстик (круг, о реализации которого также во второй части). Андроид считывает показания с него и конвертирует их в подходящие для ардуино числа: скорость из пикселей превращает в значение от -255 до 255 (отрицательные – задний ход), а также определяет угол. Я сознательно отдал эту задачу телефону, так как он куда мощнее и спокойно справится с подсчетом нескольких сотен значений в секунду.

После установки сокета данные отправляются в следующем формате: @скорость#*угол#. @ - говорит о том, что следующие цифры содержат скорость, # - извещает об окончании значения скорости, * - начало значения угла, # - закончить запись угла. Цикл бесконечен, команды отправляются каждые 100 миллисекунд (цифра подобрана оптимальная). Если ничего не нажато на андроиде, то ничего и не отправляется.

Алгоритм приема данных подробно описан в коде скетча. Он не раз переписывался и, как по мне, работает идеально.

Заключение первой части

В этой статье я попытался раскрыть все, что касается физической части машинки. Вероятнее всего, что-то упустил, так что обязательно спрашивайте.

Но самое интересное, как по мне, осталось на второе – программа Arduino и приложение на Android, там творится настоящая магия, по крайней мере, для молодого меня.

Если вы не найдете ответа на какую-то часть и захотите потыкать меня в недостатки лично, жду – [email protected], .

UPD: вторая часть уже вышла -

Основная идея проекта - создать недорогую автономную четырехколесную подвижную платформу.

В проекте используется логика на базе Arduino, недорогая радиоуправляемая машина, источник питания 9 вольт. В качестве датчиков обратной связи используется инфракрасный передатчик.

Так как оборудование недорогое, можно расценивать эту статью исключительно как общую инструкцию и первый шаг для дальнейших модификаций вашей автономной четырехколесной платформы.

Необходимое оборудование и материалы


*Обратите внимание: если в вашей машине установлена большая плата контроллера, то это, скорее всего, чип TX2 или RX2. Если это так, то вы можете сэкономить немного денег и использовать для двигателей встроенные контроллеры. Хороший пример (на английском языке!) есть .

Разбираем машинку

Ваш первый шаг - разобрать машинку. Снимите корпус и извлеките все платы из машинки. Моторы не трогаем. В проекте нам понадобятся родные шасси, колеса и моторы.


Подготавливаем сенсоры

Подготавливаем электронику. Для начала припаяйте резистор на 100 Ом к одному из контактов на вашем ИК передатчике. Припаиваем провода к другой ноге резистора и ноге датчика. После этого припаиваем два провода к ногам вашего ИК приемника.


Устанавливаем Arduino и датчик

В корпусной части машинки надо сделать отверстия под крепеж вашего контроллера Arduino . Отверстия под крепеж зависят от габаритов подвижной платформы машинки. В данном конкретном случае плата была расположена "перпендикулярно" несущей системе. Подобное расположение удобно еще и тем, что расстояния от двигателей передней и задней подвески до пинов платы примерно одинаковое.

Над передней подвеской устанавливаем наши эмиттер и детектор. Их желательно установить повыше относительно земли. В дальнейшем можно предусмотреть сзади светодиоды, которые будут включаться во время заднего хода машинки.



Переходим к следующему шагу.

Питание

В проекте используется одна батарейка на 9 В (крона). В данном случае ее получилось установить под несущей системой платформы на колесах. Крепим пластиковыми стяжками. В принципе, для увеличения времени автономной работы нашего автомобиля, можно установить две кроны параллельно.



Подключение к Arduino

С подключением можно разобраться и на основании фото. Но на всякий случай, ниже приведена схема подключения в текстовой форме.



ИК светодиод

Позитивный контакт - 5v

Отрицательный контакт - Ground

Позитивный контакт - Analog pin 5

Негативный контакт - Ground

Двигатель

Негативный контакт - Мотор шилд Channel A -

Двигатель для поворота

Позитивный контакт - Мотор шилд Channel B +

Негативный контакт - Мотор шилд Channel B -

Позитивный контакт - Мотор шилд Vin

Негативный контакт - Мотор шилд Gnd

Программа Arduino

Учитывая специфику проекта, вам надо внести в приведенный ниже базовый скетч достаточно много изменений, которые зависят от размера машинки и колес, скорости вращения колес, веса авто, освещения окружающей среды.

int irsensor = A5;

int measure = 1;

int ambientir = 0;

//настройка канала A (Channel A)

pinMode(12, OUTPUT); //инициализация контакта Motor Channel A

pinMode(9, OUTPUT); //Инициализация контакта тормоза - Brake Channel A

pinMode(irsensor, INPUT);

digitalWrite(irsensor, HIGH);

Serial.begin(9600);

ambientir = ambientir + analogRead(irsensor);

measure = measure + 1;

ambientir = ambientir / 10;

distance = analogRead(irsensor);

digitalWrite(12, HIGH); //Обечпечиваем обратное направление вращения ротора на Channel A

digitalWrite(9, LOW); //Отключаем тормоз на Channel A

analogWrite(3, 100); //Вращаем ротор мотора на Channel A на половине максимальных оборотов

if(distance > ambientir - 50){

digitalWrite(12, LOW);

digitalWrite(9, LOW);

analogWrite(3, 100);

Serial.println(distance);

Приведенный выше костяк программы для Arduino можно (и даже нужно!) дорабатывать под вашу конкретную конструкцию, но общий концепт вы должны были уловить.

Результат, тестирование и дальнейшие варианты модификаций

Как видите на фото, оригинальный корпус машинки был окрашен в бежевый цвет и установлен на стойках на подвижную четырехколесную платформу.



После тестирования разработанной конструкции можно выделить следующие проблемы :

  • Ограниченный диапазон чувствительности сенсора;
  • Проблемы, связанные со скоростью машины, а именно - невозможность быстрой остановки;
  • Необходимость подстраивать датчик под разные условия освещения;
  • Ну и конечно же, дешевый китайский пластик никоим образом не придает автономной машинке на Arduino хорошей жесткости и надежности конструкции.

В принципе, внести компенсацию в зависимости от уровня освещения можно, но это отдельная история и модификация, которые не входили в задачи базового проекта.

Машинка не врезается в стены, но с 90% вероятностью соберет бампером все ножки стульев и столов в комнате. То есть, с обнаружением более мелких препятствий есть явные проблемы. Соответственно, надо либо увеличивать количество эмиттеров, либо использовать более дорогостоящие модели с большей чувствительностью.

Оставляйте Ваши комментарии, вопросы и делитесь личным опытом ниже. В дискуссии часто рождаются новые идеи и проекты!