Система защиты информации от несанкционированного доступа. Защита от несанкционированного доступа. Защиты от несанкционированного доступа

Использование компьютеров и автоматизированных технологий приводит к появлению ряда проблем для руководства организацией. Компьютеры, часто объединенные в сети, могут предоставлять доступ к колоссальному количеству самых разнообразных данных. Поэтому люди беспокоятся о безопасности информации и наличии рисков, связанных с автоматизацией и предоставлением гораздо большего доступа к конфиденциальным, персональным или другим критическим данным. Электронные средства хранения даже более уязвимы, чем бумажные: размещаемые на них данные можно и уничтожить, и скопировать, и незаметно видоизменить.

Число компьютерных преступлений растет - также увеличиваются масштабы компьютерных злоупотреблений. По оценке специалистов США, ущерб от компьютерных преступлений увеличивается на 35 процентов в год. Одной из причин является сумма денег, получаемая в результате преступления: в то время как ущерб от среднего компьютерного преступления составляет 560 тысяч долларов, при ограблении банка - всего лишь 19 тысяч долларов.

По данным Миннесотского университета США, 93% компаний, лишившихся доступа к своим данным на срок более 10 дней, покинули свой бизнес, причем половина из них заявила о своей несостоятельности немедленно.

Число служащих в организации, имеющих доступ к компьютерному оборудованию и информационной технологии, постоянно растет. Доступ к информации больше не ограничивается только узким кругом лиц из верхнего руководства организации. Чем больше людей получает доступ к информационной технологии и компьютерному оборудованию, тем больше возникает возможностей для совершения компьютерных преступлений.

Компьютерным преступником может быть любой.

Типичный компьютерный преступник - это не молодой хакер, использующий телефон и домашний компьютер для получения доступа к большим компьютерам. Типичный компьютерный преступник - это служащий, которому разрешен доступ к системе, нетехническим пользователем которой он является. В США компьютерные преступления, совершенные служащими, составляют 70-80 процентов ежегодного ущерба, связанного с компьютерами.

Признаки компьютерных преступлений :

· кражи частей компьютеров;

· кражи программ;

· физическое разрушение оборудования;

· уничтожение данных или программ;

Это только самые очевидные признаки, на которые следует обратить внимание при выявлении компьютерных преступлений. Иногда эти признаки говорят о том, что преступление уже совершено, или что не выполняются меры защиты. Они также могут свидетельствовать о наличии уязвимых мест и указать, где находится брешь в защите. В то время как признаки могут помочь выявить преступление или злоупотребление, меры защиты могут помочь предотвратить его.

Защита информации – это деятельность по предотвращению утраты и утечки защищаемой информации.

Информационной безопасностью называют меры по защите информации от неавторизованного доступа, разрушения, модификации, раскрытия и задержек в доступе. Информационная безопасность включает в себя меры по защите процессов создания данных, их ввода, обработки и вывода.

Информационная безопасность дает гарантию того, что достигаются следующие цели :

· конфиденциальность критической информации;

· целостность информации и связанных с ней процессов (создания, ввода, обработки и вывода);

· доступность информации, когда она нужна;

· учет всех процессов, связанных с информацией.

Под критическими данными понимаются данные, которые требуют защиты из-за вероятности нанесения ущерба и его величины в том случае, если произойдет случайное или умышленное раскрытие, изменение, или разрушение данных. К критическим также относят данные, которые при неправильном использовании или раскрытии могут отрицательно воздействовать на способности организации решать свои задачи; персональные данные и другие данные, защита которых требуется указами Президента РФ, законами РФ и другими подзаконными документами.

Любая система безопасности, в принципе, может быть вскрыта. Эффективной считают такую защиту, стоимость взлома которой соизмерима с ценностью добываемой при этом информации.

Применительно к средствам защиты от несанкционированного доступа определены семь классов защищенности (1 - 7) средств вычислительной техники и девять классов (1А, 1Б, 1В, 1Г, 1Д, 2А, 2Б, 3А, 3Б) автоматизированных систем. Для средств вычислительной техники самым низким является класс 7, а для автоматизированных систем - 3Б.

Технические, организационные и программные средства обеспечения сохранности и защиты от несанкционированного доступа

Существует четыре уровня защиты компьютерных и информационных ресурсов:

Предотвращение предполагает, что только авторизованный персонал имеет доступ к защищаемой информации и технологии.

Обнаружение предполагает раннее раскрытие преступлений и злоупотреблений, даже если механизмы защиты были обойдены.

Ограничение уменьшает размер потерь, если преступление все-таки произошло, несмотря на меры по его предотвращению и обнаружению.

Восстановление обеспечивает эффективное воссоздание информации при наличии документированных и проверенных планов по восстановлению.

Меры защиты - это меры, вводимые руководством, для обеспечения безопасности информации. К мерам защиты относят разработку административных руководящих документов, установку аппаратных устройств или дополнительных программ, основной целью которых является предотвращение преступлений и злоупотреблений.

Формирование режима информационной безопасности - проблема комплексная. Меры по ее решению можно разделить на четыре уровня :

- законодательный: законы, нормативные акты, стандарты и т. п.;

- административный: действия общего характера, предпринимаемые руководством организации;

- процедурный: конкретные меры безопасности, имеющие дело с людьми;

- программно-технический: конкретные технические меры.

В настоящее время наиболее подробным законодательным документом России в области информационной безопасности является Уголовный кодекс. В разделе "Преступления против общественной безопасности" имеется глава "Преступления в сфере компьютерной информации". Она содержит три статьи - "Неправомерный доступ к компьютерной информации", "Создание, использование и распространение вредоносных программ для ЭВМ" и "Нарушение правил эксплуатации ЭВМ, системы ЭВМ или их сети". Уголовный кодекс стоит на страже всех аспектов информационной безопасности - доступности, целостности, конфиденциальности, предусматривая наказания за "уничтожение, блокирование, модификацию и копирование информации, нарушение работы ЭВМ, системы ЭВМ или их сети".

Рассмотрим некоторые меры защиты информационной безопасности компьютерных систем.

1. Аутентификация пользователей . Данная мера требует, чтобы пользователи выполняли процедуры входа в компьютер, используя это как средство для идентификации в начале работы. Для аутентификации личности каждого пользователя нужно использовать уникальные пароли, не являющиеся комбинациями личных данных пользователей, для пользователя. Необходимо внедрить меры защиты при администрировании паролей, и ознакомить пользователей с наиболее общими ошибками, позволяющими совершиться компьютерному преступлению. Если в компьютере имеется встроенный стандартный пароль, его нужно обязательно изменить.

Еще более надёжное решение состоит в организации контроля доступа в помещения или к конкретному компьютеру сети с помощью идентификационных пластиковых карточек с встроенной микросхемой - так называемых микропроцессорных карточек (smart - card). Их надёжность обусловлена в первую очередь невозможностью копирования или подделки кустарным способом. Установка специального считывающего устройства таких карточек возможна не только на входе в помещения, где расположены компьютеры, но и непосредственно на рабочих станциях и серверах сети.

Существуют также различные устройства для идентификации личности по биометрической информации - по радужной оболочке глаза, отпечаткам пальцев, размерам кисти руки и т.д.

2. Защита пароля.

Следующие правила полезны для защиты пароля:

· нельзя делится своим паролем ни с кем;

· пароль должен быть трудно угадываемым;

· для создания пароля нужно использовать строчные и прописные буквы, а еще лучше позволить компьютеру самому сгенерировать пароль;

· предпочтительно использовать длинные пароли, так как они более безопасны, лучше всего, чтобы пароль состоял из 6 и более символов;

· пароль не должен отображаться на экране компьютера при его вводе;

· пароли должны отсутствовать в распечатках;

· нельзя записывать пароли на столе, стене или терминале, его нужно держать в памяти;

· пароль нужно периодически менять и делать это не по графику;

· на должности администратора паролей должен быть самый надежный человек;

· когда сотрудник увольняется, необходимо сменить пароль;

· сотрудники должны расписываться за получение паролей.

В организации, имеющей дело с критическими данными, должны быть разработаны и внедрены процедуры авторизации, которые определяют, кто из пользователей должен иметь доступ к той или иной информации и приложениям.

В организации должен быть установлен такой порядок, при котором для использования компьютерных ресурсов, получения разрешения доступа к информации и приложениям, и получения пароля требуется разрешение тех или иных начальников.

Если информация обрабатывается на большом вычислительном центре, то необходимо контролировать физический доступ к вычислительной технике. Могут оказаться уместными такие методы, как журналы, замки и пропуска, а также охрана. Ответственный за информационную безопасность должен знать, кто имеет право доступа в помещения с компьютерным оборудованием и выгонять оттуда посторонних лиц.

4. Предосторожности при работе.

· отключать неиспользуемые терминалы;

· закрывать комнаты, где находятся терминалы;

· разворачивать экраны компьютеров так, чтобы они не были видны со стороны двери, окон и прочих мест, которые не контролируются;

· установить специальное оборудование, ограничивающее число неудачных попыток доступа, или делающее обратный звонок для проверки личности пользователей, использующих телефоны для доступа к компьютеру

· использовать программы отключения терминала после определенного периода неиспользования;

· выключать систему в нерабочие часы;

· использовать системы, позволяющие после входа пользователя в систему сообщать ему время его последнего сеанса и число неудачных попыток установления сеанса после этого. Это позволит сделать пользователя составной частью системы проверки журналов.

5. Физическая безопасность.

В защищаемых компьютерных системах необходимо принимать меры по предотвращению, обнаружению и минимизации ущерба от пожара, наводнения, загрязнения окружающей среды, высоких температур и скачков напряжения.

Пожарная сигнализация и системы пожаротушения должны регулярно проверяться. ПЭВМ можно защитить с помощью кожухов, чтобы они не были повреждены системой пожаротушения. Горючие материалы не должны храниться в этих помещениях с компьютерами.

Температура в помещении может контролироваться кондиционерами и вентиляторами, а также хорошей вентиляцией в помещении. Проблемы с чрезмерно высокой температурой могут возникнуть в стойках периферийного оборудования или из-за закрытия вентиляционного отверстия в терминалах или ПЭВМ, поэтому необходима их регулярная проверка.

Желательно применение воздушных фильтров, что поможет очистить воздух от веществ, которые могут нанести вред компьютерам и дискам. Следует запретить курить, принимать пищу и пить возле ПЭВМ.

Компьютеры должны размещаться как можно дальше источников большого количества воды, например трубопроводов.

6. Защита носителей информации (исходных документов, лент, картриджей, дисков, распечаток).

· вести, контролировать и проверять реестры носителей информации;

· обучать пользователей правильным методам очищения и уничтожения носителей информации;

· делать метки на носителях информации, отражающие уровень критичности содержащейся в них информации;

· уничтожать носители информации в соответствии с планом организации;

· доводить все руководящие документы до сотрудников;

· хранить диски в конвертах, коробках, металлических сейфах;

· не касаться поверхностей дисков, несущих информацию

· осторожно вставлять диски в компьютер и держать их подальше от источников магнитного поля и солнечного света;

· убирать диски и ленты, с которыми в настоящий момент не ведется работа;

· хранить диски разложенными по полкам в определенном порядке;

· не давать носители информации с критической информацией неавторизованным людям;

· выбрасывать или отдавать поврежденные диски с критической информацией только после их размагничивания или аналогичной процедуры;

· уничтожать критическую информацию на дисках с помощью их размагничивания или физического разрушения в соответствии с порядком в организации;

· уничтожать распечатки и красящие ленты от принтеров с критической информацией в соответствии с порядком организации;

· обеспечить безопасность распечаток паролей и другой информации, позволяющей получить доступ к компьютеру.

7. Выбор надежного оборудования.

Производительность и отказоустойчивость информационной системы во многом зависит от работоспособности серверов. При необходимости обеспечения круглосуточной бесперебойной работы информационной системы используются специальные отказоустойчивые компьютеры, т. е. такие, выход из строя отдельного компонента которых не приводит к отказу машины.

На надежности информационных систем отрицательно сказываются и наличие устройств, собранных из комплектующих низкого качества, и использование нелицензионного ПО. Чрезмерная экономия средств на обучение персонала, закупку лицензионного ПО и качественного оборудования приводит к уменьшению времени безотказной работы и значительным затратам на последующее восстановление системы.

8. Источники бесперебойного питания.

Компьютерная система энергоемка, и потому первое условие ее функционирования - бесперебойная подача электроэнергии. Необходимой частью информационной системы должны стать источники бесперебойного питания для серверов, а по возможности, и для всех локальных рабочих станций. Рекомендуется также дублировать электропитание, используя для этого различные городские подстанции. Для кардинального решения проблемы можно установить резервные силовые линии от собственного генератора организации.

9. Разработка адекватных планов обеспечения непрерывной работы и восстановления.

Целью планов обеспечения непрерывной работы и восстановления являются гарантии того, что пользователи смогут продолжать выполнять свои самые главные обязанности в случае невозможности работы по информационной технологии. Обслуживающий персонал должен знать, как им действовать по этим планам.

Планы обеспечения непрерывной работы и восстановления (ОНРВ) должны быть написаны, проверены и регулярно доводиться до сотрудников. Процедуры плана должны быть адекватны уровню безопасности и критичности информации. План ОНРВ может применяться в условиях неразберихи и паники, поэтому нужно регулярно проводить тренировки сотрудников.

10. Резервное копирование.

Одним из ключевых моментов, обеспечивающих восстановление системы при аварии, является резервное копирование рабочих программ и данных. В локальных сетях, где установлены несколько серверов, чаще всего система резервного копирования устанавливается непосредственно в свободные слоты серверов. В крупных корпоративных сетях предпочтение отдается выделенному специализированному архивационному серверу, который автоматически архивирует информацию с жестких дисков серверов и рабочих станций в определенное время, установленное администратором сети, выдавая отчет о проведенном резервном копировании.

Для архивной информации, представляющей особую ценность, рекомендуется предусматривать охранное помещение. Дубликаты наиболее ценных данных, лучше хранить в другом здании или даже в другом городе. Последняя мера делает данные неуязвимыми в случае пожара или другого стихийного бедствия.

11. Дублирование, мультиплексирование и резервирование офисов.

Помимо резервного копирования, которое производится при возникновении внештатной ситуации либо по заранее составленному расписанию, для большей сохранности данных на жестких дисках применяют специальные технологии - зеркалирование дисков и создание RAID-массивов, которые представляют собой объединение нескольких жестких дисков. При записи информация поровну распределяется между ними, так что при выходе из строя одного из дисков находящиеся на нем данные могут быть восстановлены по содержимому остальных.

Технология кластеризации предполагает, что несколько компьютеров функционируют как единое целое. Кластеризуют, как правило, серверы. Один из серверов кластера может функционировать в режиме горячего резерва в полной готовности начать выполнять функции основной машины в случае ее выхода из строя. Продолжением технологии кластеризации является распределенная кластеризация, при которой через глобальную сеть объединяются несколько кластерных серверов, разнесенных на большое расстояние.

Распределенные кластеры близки к понятию резервных офисов, ориентированных на обеспечение жизнедеятельности предприятия при уничтожении его центрального помещения. Резервные офисы делят на холодные, в которых проведена коммуникационная разводка, но отсутствует какое-либо оборудование и горячие, которыми могут быть дублирующий вычислительный центр, получающий всю информацию из центрального офиса, филиал, офис на колесах и т.д.

12. Резервирование каналов связи.

При отсутствии связи с внешним миром и своими подразделениями, офис оказывается парализованным, потому большое значение имеет резервирование внешних и внутренних каналов связи. При резервировании рекомендуется сочетать разные виды связи - кабельные линии и радиоканалы, воздушную и подземную прокладку коммуникаций и т.д.

По мере того, как компании все больше и больше обращаются к Internet, их бизнес оказывается в серьезной зависимости от функционирования Internet-провайдера. У поставщиков доступа к Сети иногда случаются достаточно серьезные аварии, поэтому важно хранить все важные приложения во внутренней сети компании и иметь договора с несколькими местными провайдерами. Следует также заранее продумать способ оповещения стратегических клиентов об изменении электронного адреса и требовать от провайдера проведения мероприятий, обеспечивающих оперативное восстановление его услуг после аварий.

12. Защита данных от перехвата.

Для любой из трех основных технологий передачи информации существует технология перехвата: для кабельных линий - подключение к кабелю, для спутниковой связи – использование антенны приема сигнала со спутника, для радиоволн - радиоперехват. Российские службы безопасности разделяют коммуникации на три класса. Первый охватывает локальные сети, расположенные в зоне безопасности, т. е. территории с ограниченным доступом и заэкранированным электронным оборудованием и коммуникационными линиями, и не имеющие выходов в каналы связи за ее пределами. Ко второму классу относятся каналы связи вне зоны безопасности, защищенные организационно-техническими мерами, а к третьему - незащищенные каналы связи общего пользования. Применение коммуникаций уже второго класса значительно снижает вероятность перехвата данных.

Для защиты информации во внешнем канале связи используются следующие устройства: скремблеры для защиты речевой информации, шифраторы для широковещательной связи и криптографические средства, обеспечивающие шифрование цифровых данных.

Защита от несанкционированного доступа (защита от НСД) - это предотвращение или существенное затруднение несанкционированного доступа .

Средство защиты информации от несанкционированного доступа (СЗИ от НСД) - это программное, техническое или программно-техническое средство, предназначенное для предотвращения или существенного затруднения несанкционированного доступа .

Назначение и общая классификация СЗИ.

СЗИ от НСД можно разделить на универсальные и специализированные (по области применения), на частные и комплексные решения (по совокупности решаемых задач), на встроенные системные средства и добавочные (по способу реализации).

Классификация крайне важна, так как при построении СЗИ каждого типа разработчики формулируют и решают совершенно разные задачи (подчас противоречащие друг другу). Так, в основу концепции защиты универсальных системных средств закладываются принципы «полного доверия к пользователю», их защита во многом бесполезна в корпоративных системах, например, при решении задач противодействия внутренним ИТ-угрозам. В подавляющей части сегодня СЗИ создаются для усиления встроенных в универсальные ОС механизмов защиты, применительно к использованию в корпоративной среде. Если речь заходит о совокупности решаемых задач, то здесь следует говорить о комплексировании механизмов как в части эффективного решения конкретной задачи защиты, так и в части решения комплекса задач.

Потребительские свойства (назначение) добавочного СЗИ от НСД определяются тем, в какой мере добавочным средством устраняются архитектурные недостатки встроенных в ОС механизмов защиты, применительно к решению требуемых задач в корпоративных приложениях, и насколько комплексно (эффективно) им решается эта совокупность задач защиты информации .

Вопросы оценки эффективности СЗИ от НСД

Эффективность СЗИ от НСД можно оценить, исследовав вопросы корректности реализации механизмов защиты и достаточности набора механизмов защиты применительно к практическим условиям использования.

Оценка корректности реализации механизмов защиты

На первый взгляд, такую оценку провести несложно, но на практике это не всегда так. Один пример: в NTFS файловый объект может быть идентифицирован различными способами: к файловым объектам, задаваемым длинными именами, можно обращаться по короткому имени (так, к каталогу «Program files» можно обратиться по короткому имени «Progra~1»), а некоторые программы обращаются к файловым объектам не по имени, а по ID. Если установленное в информационной системе СЗИ не перехватывает и не анализирует лишь один подобный способ обращения к файловому объекту, то, по большому счету, оно становится полностью бесполезным (рано или поздно злоумышленник выявит данный недостаток средства защиты и воспользуется им). Упомянем и о том, что файловые объекты, не разделяемые между пользователями системой и приложениями, могут служить «каналом» понижения категории документа, что сводит на нет защиту конфиденциальной информации. Подобных примеров можно привести много.

Требования к корректности реализации механизмов защиты определены в нормативном документе «Гостехкомиссия России. Руководящий документ. Средства вычислительной техники. Защита от несанкционированного доступа к информации. Показатели защищенности от НСД к информации» ; он используется при сертификации СЗИ от НСД.

Эти требования присутствуют в документе в необходимом объеме, они корректны, но сформулированы в общем виде (а как иначе, в противном случае потребовалось бы создавать свой нормативный документ под каждое семейство ОС, а возможно, и под каждую реализацию ОС одного семейства), и для выполнения одного требования может понадобиться реализация нескольких механизмов защиты. Следствием этого становится неоднозначность толкования данных требований (в части подходов к их реализации) и возможность принципиально разных подходов к реализации механизмов защиты в СЗИ от НСД разработчиками. Результат - разная эффективность СЗИ от НСД у производителей, реализующих одни и те же формализованные требования. А ведь невыполнение любого из этих требований может свести на нет все усилия по обеспечению информационной безопасности.

Оценка достаточности (полноты) набора механизмов защиты

Требования к достаточности (полноте, применительно к условиям использования) набора механизмов защиты определены документом «Гостехкомиссия России. Руководящий документ. Автоматизированные системы. Защита от несанкционированного доступа к информации. Показатели защищенности от НСД к информации» , который используется при аттестации объектов информатизации, в том числе и при использовании в АС СЗИ от НСД. Однако и здесь ситуация во многом схожа с описанной выше.

Так, формулировку требования к достаточности механизмов в СЗИ от НСД для защиты конфиденциальных данных в нормативных документах, при которой возникает неоднозначность определения того, что отнести к защищаемым ресурсам, целесообразно было бы расширить, например, следующим образом: «Должен осуществляться контроль подключения ресурсов, в частности устройств, в соответствии с условиями практического использования защищаемого вычислительного средства, и контроль доступа субъектов к защищаемым ресурсам, в частности к разрешенным для подключения устройствам» .

Заметим, что механизмы контроля доступа к ресурсам, всегда присутствующим в системе, - файловые объекты, объекты реестра ОС и т.д. - априори защищаемые, и они должны присутствовать в СЗИ от НСД в любом случае, а что касается внешних ресурсов, то с учетом назначения СЗИ. Если предназначение СЗИ - защита компьютеров в сети, то оно должно иметь механизмы контроля доступа к сетевым ресурсам; если оно служит для защиты автономных компьютеров, то должно обеспечивать контроль (запрет) подключения к компьютеру сетевых ресурсов. Это правило, на наш взгляд, подходит без исключения ко всем ресурсам и может быть использовано в качестве базового требования к набору механизмов защиты при аттестации объектов информатизации.

Вопросы достаточности механизмов защиты должны рассматриваться не только применительно к набору ресурсов, но и применительно к решаемым задачам защиты информации. Подобных задач при обеспечении компьютерной безопасности всего две - противодействие внутренним и внешним ИТ-угрозам.

Общая задача противодействия внутренним ИТ-угрозам - обеспечение разграничения доступа к ресурсам в соответствии с требованиями к обработке данных различных категорий конфиденциальности. Возможны разные подходы к заданию разграничений: по учетным записям, по процессам, на основе категории прочтенного документа. Каждый из них задает свои требования к достаточности. Так, в первом случае надо изолировать буфер обмена между пользователями; во втором - между процессами; для третьего случая вообще необходимо кардинально пересмотреть всю разграничительную политику доступа ко всем ресурсам, так как один и тот же пользователь одним и тем же приложением может обрабатывать данные различных категорий конфиденциальности.

Существуют десятки способов межпроцессного обмена (поименованные каналы, сектора памяти и т.д.), поэтому необходимо обеспечить замкнутость программной среды - предотвратить возможность запуска программы, реализующей подобный канал обмена. Встают и вопросы неразделяемых системой и приложениями ресурсов, контроля корректности идентификации субъекта доступа, защиты собственно СЗИ от НСД (список необходимых механизмов защиты для эффективного решения данной задачи весьма внушительный). Большая их часть в явном виде не прописана в нормативных документах.

Задача эффективного противодействия внешним ИТ-угрозам, на наш взгляд, может быть решена только при условии задания разграничительной политики для субъекта «процесс» (т.е. «процесс» следует рассматривать как самостоятельный субъект доступа к ресурсам). Это обусловлено тем, что именно он несет в себе угрозу внешней атаки. Подобного требования в явном виде нет в нормативных документах, но в этом случае решение задачи защиты информации требует кардинального пересмотра базовых принципов реализации разграничительной политики доступа к ресурсам.

Если вопросы достаточности механизмов защиты применительно к набору защищаемых ресурсов еще как-то поддаются формализации, то применительно к задачам защиты информации формализовать подобные требования не представляется возможным.

В данном случае СЗИ от НСД разных производителей, выполняющих формализованные требования нормативных документов, также могут иметь кардинальные отличия как в реализуемых подходах и технических решениях, так и в эффективности этих средств в целом.

В заключение отметим, что нельзя недооценивать важность задачи выбора СЗИ от НСД, так как это особый класс технических средств, эффективность которых не может быть высокой или низкой. С учетом сложности оценки реальной эффективности СЗИ от НСД рекомендуем потребителю привлекать специалистов (желательно из числа разработчиков, практически сталкивающихся с этими проблемами) на стадии выбора СЗИ от НСД.

Наблюдаемые в последние годы тенденции к развитию информационных технологий могут привести к появлению качественно новых (информационных) форм борьбы, получивших название информационной войны. Устоявшегося, международного признанного определения информационной войны нет. Одним из компонентов ведения информационной войны является так называемое информационное оружие, которое эксперты определяют как совокупность средств и методов, позволяющих похищать, искажать или уничтожать информацию, ограничивать или прекращать доступ к ней законных покупателей, нарушать работу или выводить из строя телекоммуникационные сети и компьютерные системы, используемые в обеспечении жизнедеятельности общества и государства.

Классификация принципов защиты от НСД

Принцип обоснованности доступа. Данный принцип заключается в обязательном выполнении 2-х основных условий: пользователь должен иметь достаточную "форму допуска" для получения информации требуемого им уровня конфиденциальности, и эта информация необходима ему для выполнения его производственных функций.

Принцип достаточной глубины контроля доступа. Средства защиты информации должны включать механизмы контроля доступа ко всем видам информационных и программных ресурсов автоматизированных систем, которые в соответствии с принципом обоснованности доступа следует разделять между пользователями.

Принцип разграничения потоков информации. Для предупреждения нарушения безопасности информации, которое, например, может иметь место при записи секретной информации на несекретные носители и в несекретные файлы, ее передаче программам и процессам, не предназначенным для обработки секретной информации, а также при передаче секретной информации по незащищенным каналам и линиям связи, необходимо осуществлять соответствующее разграничение потоков информации.

Принцип чистоты повторно используемых ресурсов. Данный принцип заключается в очистке ресурсов, содержащих конфиденциальную информацию, при их удалении или освобождении пользователем до перераспределения этих ресурсов другим пользователям.

Принцип персональной ответственности. Каждый пользователь должен нести персональную ответственность за свою деятельность в системе, включая любые операции с конфиденциальной информацией и возможнее нарушения ее защиты, т.е. какие-либо случайные или умышленные действия, которые приводят или могут привести к несанкционированному ознакомлению с конфиденциальной информацией, ее искажению или уничтожению, или делают такую информацию недоступной для законных пользователей.

Принцип целостности средств защиты. Данный принцип подразумевает, что средства защиты информации в автоматизированных системах должны точно выполнять свои функции в соответствии с перечисленными принципами и быть изолированными от пользователей, а для своего сопровождения должна включать специальный защищенный интерфейс для средств контроля, сигнализации о попытках нарушения защиты информации и воздействия на процессы в системе.

Основные направления обеспечения защиты от НСД

Обеспечение защиты средств вычислительной техники (СВТ) и автоматизированных систем (АС) осуществляется: системой разграничения доступа (СРД) субъектов к объектам доступа; обеспечивающими средствами для СРД.

Основными функциями СРД являются:

  • - реализация правил разграничения доступа (ПРД) субъектов и их процессов к данным;
  • - реализация ПРД субъектов и их процессов к устройствам создания твердых копий;
  • - изоляция программ процесса, выполняемого в интересах субъекта, от других субъектов;
  • - управление потоками данных в целях предотвращения записи данных на носители несоответствующего грифа;
  • - реализация правил обмена данными между субъектами для АС и СВТ, построенных по сетевым принципам.

Обеспечивающие средства для СРД выполняют следующие функции:

  • - идентификацию и опознание (аутентификацию) субъектов и поддержание привязки субъекта к процессу, выполняемому для субъекта;
  • - регистрацию действий субъекта и его процесса;
  • - предоставление возможностей исключения и включения новых субъектов и объектов доступа, а также изменение полномочий субъектов; реакцию на попытки НСД, например, сигнализацию, блокировку, восстановление после НСД;
  • - тестирование;
  • - очистку оперативной памяти и рабочих областей на магнитных носителях после завершения работы пользователя с защищаемыми данными;
  • - учет выходных печатных и графических форм и твердых копий в АС;
  • - контроль целостности программной и информационной части как СРД, так и обеспечивающих ее средств.

Способы реализации СРД зависят от конкретных особенностей СВТ и АС. Возможно применение следующих способов защиты и любых их сочетаний:

  • - распределенная СРД и СРД, локализованная в программно-техническом комплексе (ядро защиты);
  • - СРД в рамках операционной системы, СУБД или прикладных программ;
  • - СРД в средствах реализации сетевых взаимодействий или на уровне приложений; использование криптографических преобразований или методов непосредственного контроля доступа; программная и (или) техническая реализация СРД.

Вывод: невозможно абсолютно защитить информацию от несанкционированного доступа. Для выбора принципа организации защиты от НСД необходим индивидуальный подход в каждом конкретном случае.

Сравнительный анализ наиболее распространенных средств защиты информации от несанкционированного доступа

Проведен сравнительный анализ наиболее распространенных средств защиты информации (СЗИ) от несанкционированного доступа (НСД), применяемых для защиты данных в информационных системах. Критерии сравнения выбраны исходя из характеристик СЗИ от НСД.

Для защиты информации в компьютерных системах от атак на уровне операционной системы, системы сетевого программного обеспечения и системы управления базами данных применяются средства защиты информации от несанкционированного доступа (СЗИ от НСД). Определяющим фактором выбора СЗИ от НСД в информационной системе является соответствие нормам и требованиям уполномоченных органов в сфере обработки данных. Наиболее распространенными средствами защиты информации от несанкционированного доступа в ИСПДн семейства MS Windows являются средства : "Secret Net LSP", "Dallas Lock 8.0?K", "Панцирь?К", "Аура 1.2.4".

Все вышеперечисленные СЗИ являются сертифицированными программными средствами защиты информации, поддерживающими автономный и сетевой режим работы. Кроме того, они выполняют схожие функции, такие как:

  • 1. Идентификация и аутентификация пользователей.
  • 2. Разграничение и контроль доступа пользователей к ресурсам системы, терминалам, ЭВМ, узлам сети ЭВМ, внешним устройствам, программам, томам, каталогам, файлам и т. д.
  • 3. Учет носителей информации.
  • 4. Контроль целостности защищаемых ресурсов.
  • 5. Контроль компонентов СЗИ.
  • 6. Контроль вывода на печать и маркировка документов.
  • 7. Уничтожение (затирание) содержимого файлов при их удалении.
  • 8. Регистрация событий безопасности в журнале.
  • 9. Теневое копирование выводимой информации.

В сетевом режиме СЗИ выполняют следующие функции:

Методика сравнительного анализа СЗИ от НСД "Secret Net LSP", "Dallas Lock 8.0?K", "Панцирь?К", "Аура 1.2.4" приводится ниже.

Критериями для сравнительного анализа в настоящей работе выбраны следующие технические характеристики СЗИ от НСД:

  • 1. Класс защищенности.
  • 2. Уровень контроля НДВ.
  • 3. .
  • 4. Дополнительные аппаратные требования: требуемый объем свободного места на жестком диске для размещения СЗИ.
  • 5. : есть или нет.

Указанные технические характеристики для выбранных СЗИ от НСД приводятся в таблице 1.

Таблица 1 - Технические характеристики СЗИ от НСД

Критерии сравнения

Dallas Lock 8.0-K

Панцирь-К

СЗИ Аура 1.2.4

Класс защищенности

По 3 классу защищенности

По 5 классу защищенности

По 5 классу защищенности

По 5 классу защищенности

Уровень контроля НДВ

По 2 уровню контроля

По 4 уровню контроля

По 4 уровню контроля

По 4 уровню контроля

Класс автоматизированных систем

До класса 1Б включительно

До класса 1Г включительно

До класса 1Г включительно

До класса 1Г включительно

Дополнительная аппаратная поддержка

есть (Secret Net Card, ПАК "Соболь")

есть (ПАК контроля активности КСЗИ)

Таблица 2 - Матрица показателей

В данной матрице каждому показателю Aij присваивается определенное числовое значение.

Поясним назначение числовых значений показателей Aij на примере СЗИ от НСД "Secret Net LSP". Класс защищенности, уровень контроля НДВ и класс автоматизированной системы выше, чем у остальных СЗИ, принятых для сравнительного анализа. С другой стороны, требуемый объем жесткого диска для реализации этого СЗИ значительно больше, что вводит ограничения на возможности аппаратных средств. Теперь необходимо ввести следующее правило для количественной оценки показателя Aij: показатель должен принимать тем большее значение, чем выше значимость выбранного критерия для принятия решения. В данном конкретном случае, количественную оценку показателей для принятых критериев сравнения будем выполнять следующим образом:

А 1J = 1 / (Класс защищенности: 3 или 5);

А 2J = 1 / (Уровень контроля НДВ: 2 или 4);

А 3J = 1 / (Класс автоматизированных систем: 2 - для класса 1Б или 4 - для класса 1Г);

А 4J = 1 / (Требуемый объем жесткого диска в Гб);

А 5J = 1 - дополнительная аппаратная поддержка есть; 0 - дополнительной аппаратной поддержки нет.

Таким образом, нетрудно получить числовые значения матрицы показателей (таблица 3).

Таблица 3 - Матрица показателей. Числовые значения

Критерии сравнения

Dallas Lock 8.0-K

Панцирь-К

СЗИ Аура 1.2.4

Класс защищенности

Уровень контроля НДВ

Класс автоматизированных систем

Дополнительные аппаратные требования: свободное место на жестком диске

1/0,030 = 33,333

1/0,020 = 50,000

Дополнительная аппаратная поддержка

Дальнейший сравнительный анализ проводится с помощью расчета рейтинга по критериям сравнения.

где Aij - текущее значение показателя;

Aimin - минимальное значение показателя для указанного критерия;

Aimax - максимальное значение показателя для указанного критерия;

где m - количество критериев средства защиты информации.

Пример расчета по предложенной методике приводится ниже в таблицах 4 и 5. Весовые коэффициенты назначены из условия приоритетных требований по первым трем критериям сравнения.

Таблица 4 - Исходные данные для расчета итогового рейтинга СЗИ от НСД

Вывод: проанализировав основные критерии выбранных СЗИ от НСД, предложена методика их сравнительного анализа. С точки зрения технического уровня, из числа рассмотренных средств защиты информации, бесспорным преимуществом обладает СЗИ от НСД "Secret Net LSP". Однако необходимо учитывать, что данное СЗИ может применяться не только для защиты конфиденциальной информации, но и для защиты секретной (сертифицирован по 3 классу защищенности СВТ и по 2 уровню контроля НДВ), поэтому для защиты ИСПДн "Secret Net LSP", в данном случае, избыточен. Далее приоритеты распределяются следующим образом: "Панцирь?К", "Dallas Lock 8.0?K" и СЗИ "Аура 1.2.4".

Хакеры и вирусы на AS/400? Это невозможно. Они пиратствуют только на Unix и ПК.

Я вспоминаю фильм "Парк юрского периода", в конце которого девочка подходит к компьютеру, на котором была совершена диверсия, приведшая к выходу динозавров на свободу. "Это Unix!" - восклицает она, вскрывает его защиту и немедленно устраняет неполадки. Тут я сказал про себя: "Конечно, чего же Вы хотели от Unix". А в фильме "День независимости" вирус был запущен в компьютер космического корабля пришельцев. Большинство зрителей до этого и не подозревали, что инопланетяне используют компьютеры Apple Macintosh. Но, слава Богу, это оказалось именно так, вирус сработал, и наш мир был спасен.

Вообще, в фильмах часто злодеи проникают в чужие компьютеры, или недовольный сотрудник внедряет вирус в компьютерную сеть фирмы. Приятно сознавать, что ничего подобного на AS/400 произойти не может. Или всетаки может?

Как и многие другие функции, в AS/400, в отличие от большинства иных систем, защита была встроена с самого начала, а не добавлена уже после создания. Однако никакие средства защиты не помогут, если их не использовать, а многие пользователи AS/400 так и делают. Например, в среде клиент/ сервер необходимо принимать специальные меры для защиты данных AS/400 от незащищенных клиентов, таких как Windows 95 и Windows NT. Более того, в современном сетевом мире многие AS/400 подключены к Интернету, в этом случае также следует применять определенные средства защиты информационных ресурсов. По счастью, интегрированные средства защиты AS/400 обеспечивают крепкий фундамент безопасности всей системы. В этой лекции мы рассмотрим средства защиты AS/400 и обсудим, как лучше использовать их.

Интегрированная защита

В прошлом защитить вычислительную систему было относительно легко. Обычно, было достаточно вставить замок в дверь машинного зала и заставить конечных пользователей вводить при входе в систему пароль . Современный мир уже не так прост. Наибольшей степени опасности подвергаются AS/400, включенные в вычислительную сеть : во внутрифирменную ЛВС или в глобальную сеть , например в Интернет . В любом случае, AS/400 предоставляет средства для минимизации или полного устранения риска несанкционированного доступа. Проблемы защиты вычислительной системы очень похожи на те, что возникают при защите дома или автомобиля: Вы должны правильно рассчитать соотношение цены и допустимой степени риска.

Очевидно, что в разных ситуациях AS/400 нужен разный уровень защиты. У пользователя должна быть возможность самостоятельного выбрать этот уровень. Хорошая система защиты разработана так, чтобы компьютер мог работать вообще без защиты, с ограниченной защитой или с полной защитой, но во всех случаях система защиты должна быть активна.

И сейчас есть системы, запертые в помещениях, куда доступ строго ограничен. Понятно, что им не нужен такой уровень защиты, как компьютеру, подключенному к Интернету. Но с течением времени требования к защите и этих систем могут повыситься. Интегрированная защита AS/400 достаточно гибка, чтобы перестроиться по мере изменения требований к ней.

Защита AS/400 представляет собой комбинацию средств защиты в OS/400 и в SLIC . В OS/400 реализованы уровни общесистемной защиты, при этом OS/400 полагается на функции защиты объектов на уровне MI. Например, как упоминалось в "Объекты" , MI выполняет проверку прав доступа при каждом обращении к объекту. За действия MI по защите объектов ответственен SLIC . Реализуемый им тип защиты называется авторизацией и предназначен для предохранения объекта от несанкционированного доступа или изменения.

Некоторые компоненты защиты AS/400 расположены полностью поверх MI в OS/400, например, задание системных параметров защиты. Другие, такие как контроль за доступом к объектам, полностью реализованы ниже MI в SLIC . Третьи компоненты защиты реализованы частично над, а частично под MI. Пример - поддержка привилегированных команд и специальных прав доступа. Давайте подробнее рассмотрим компоненты, лежащие и выше и ниже MI.

Уровни защиты

AS/400 предназначены для широкого применения в различных областях человеческой деятельности. Соответственно, и требования к их защищенности варьируются от уровня ее полного отсутствия до уровня защиты, сертифицированной правительством. Задавая соответствующие системные параметры, можно выбрать одну из пяти степеней: отсутствие защиты, парольная защита, защита ресурсов, защита ОС и сертифицированная защита. При конфигурировании AS/400 должны быть заданы четыре системных параметра, относящихся к защите: QAUDJRL, QMAXSIGN, QRETSVRSEC и QSECURITY.

Системным параметром, определяющим уровень защиты, является QSECURITY. В System/38 и первых AS/400 было только три уровня системной защиты, в версии V1R3 OS/400 к ним добавился четвертый, а в V2R3 - пятый, высший уровень защиты. Допустимые значения QSECURITY - 10, 20, 30, 40 и 50.

AS/400 поддерживает также дополнительную функцию аудита. Если эта функция задействована, то определенные события, связанные с защитой, заносятся в журнал. То, какие конкретно события протоколировать в журнале аудита защиты, определяет значение системного параметра QAUDJRL и текущий уровень защиты. Могут протоколироваться такие события, как попытки несанкционированного доступа, удаление объектов, идентификация программ, использующих привилегированные команды и др. Содержимое журнала защиты анализирует администратор защиты.

Максимальное количество неудачных попыток входа в систему задает системный параметр QMAXSIGN. Если число таких попыток превысит значение этого параметра, то терминал или устройство, с которого они были предприняты, отключаются от системы и связь между ними и системой разрывается. Такой метод позволяет предотвратить попытки подобрать пароль для входа в систему. Значение параметра QMAXSIGN для каждого устройства сбрасывается после успешного входа в систему.

Системный параметр QRETSVRSEC (Retain Server Security Data ) определяет, может ли информация , необходимая AS/400 для аутентификации пользователя на другой системе через интерфейсы клиент/ сервер , запоминаться сервером. Если информация запоминается, то сервер ее использует. Если нет, то сервер будет запрашивать идентификатор и пароль пользователя для другой системы. Системный параметр FFQRETSVRSEC используется для клиент/серверных интерфейсов TCP/IP , Novell NetWare и Lotus Notes.

Теперь давайте рассмотрим каждый из пяти уровней защиты, начиная с самого низкого.

Отсутствие защиты (уровень 10)

Уровень 10 означает самую низкую степень защищенности - отсутствие таковой. Для доступа к системе не требуется пароля и любому пользователю разрешен доступ ко всем системным ресурсам и объектам без ограничений. Единственное условие - нельзя влиять на задания других пользователей системы.

Системный уровень защиты 10 обычно применяется тогда, когда достаточно только физической защиты системы, например, замка на двери машинного зала. Любой пользователь, имеющий физический доступ к машине, может войти в систему. При этом он не обязан регистрироваться . Регистрация пользователя предполагает наличие где-либо в системе профиля пользователя. Такой профиль при использовании уровня защиты 10 создается автоматически, если еще не существует.

Парольная защита (уровень 20)

Если Вам нужна только защита при входе в систему, используйте уровень 20. При этой степени защиты требуется, чтобы пользователь AS/400 был зарегистрирован и знал правильный пароль. После того, как разрешение на вход в систему получено, пользователь имеет доступ ко всем ее ресурсам без ограничений. Как видите отличие от уровня 10 незначительно.

Только в одном особом случае доступ пользователя к системе при уровне 20 ограничивается: если в профиле пользователя это специально оговорено. Пользователь с ограниченными возможностями может только выбирать пункты меню. Большинство системных меню имеют строку ввода команд, и упомянутое средство ограничивает использование системных команд.

Предположим, что в организации есть группа работников, в чьи обязанности входит прием заказов на товары и ввод соответствующих данных в систему. Для таких пользователей целесообразно создать специальное меню и разрешить им действовать только в этих рамках, для чего их следует зарегистрировать как пользователей с ограниченными возможностями и задать в их профилях меню, доступ к которому им разрешен.

Но даже пользователю с ограниченными возможностями разрешено исполнять четыре необходимых команды: для отправки сообщений, для отображения сообщений, для отображения состояния задания и для выхода из системы. То, какие именно команды открыты для пользователя с ограниченными возможностями, можно задать индивидуально. Ограничение возможностей также определяет, какие поля пользователь может изменять при входе в систему.

Уровни 20 и 10, не обеспечивают системе защищенность, так как после регистрации пользователя в системе, он может производить там любые операции. Я бы не рекомендовал ограничиваться столь низкими степенями защиты за исключением особых случаев, когда сама система практически недоступна извне.

Защита ресурсов (уровень 30)

Минимальным рекомендуемым уровнем защиты является уровень 30. На этом уровне, так же как и на уровне 20, для входа в систему пользователь должен быть зарегистрирован и знать правильный пароль. После входа в систему проверяется, обладает ли пользователь правами доступа к системным ресурсам; несанкционированный доступ не разрешается. На уровне 30 пользователь также может быть зарегистрирован с ограниченными возможностями.

Отдельным пользователям могут быть предоставлены права доступа к системным объектам, таким как файлы, программы и устройства. Обеспечивают такую возможность профили пользователя, и вскоре мы поговорим подробнее о том, каким образом они это делают. Мы также рассмотрим другие варианты наделения пользователя правами доступа к системным объектам: с помощью групповых или общих прав.

Уровень защиты 30 был наивысшим в System/38. Но на нем не различаются пользовательские объекты и объекты, используемые только ОС. В связи с доступностью на System/38 ассемблера MI и наличия определенной информации о внутренней структуре объектов возникла серьезная проблема. ISV стали писать прикладные пакеты, зависящие от внутренней структуры объектов, что нарушало технологическую независимость MI.

В первых моделях AS/400 использовались те же самые уровни защиты. Хотя в AS/400 не было ассемблера MI, и мы не публиковали информацию о внутренних структурах, специалисты довольно скоро поняли, что AS/400 - это System/38. Поэтому программы, зависимые от внутренней структуры объектов, работали и на AS/400.

Мы понимали, что при переходе к клиент/серверным вычислениям, AS/400 нужна более надежная защита, блокирующая доступ к большинству внутренних объектов. В связи с переходом на RISC-процессоры изменениям подверглась и внутренняя структура. Но если бы мы просто реализовали новый, повышенный, уровень зашиты, то программы, зависимые от внутренней структуры объектов, перестали бы работать, что вызвало бы недовольство заказчиков.

Мы объявили о том, что собираемся встроить в V1R3 новый уровень защиты, и что на этом уровне доступа к внутренним объектам не будет. Мы также начали искать тех ISV , кто использовал внутренние объекты, чтобы предоставить им стандартные системные API, с информацией, необходимой для их программ.

Большая часть таких программ были утилитами, использовавшими информацию некоторых полей внутри системного объекта. Например, системе управления магнитной лентой могли понадобиться некоторые данные о заголовке ленты. Такую информацию можно было получить единственным способом - проникнув в системный объект. Мы создали сотни API для предоставления подобной информации через MI (по сути дела, эти API были новыми командами MI) и гарантировали, что они будут работать во всех последующих версиях ОС. Таким образом мы развязали себе руки и начали вносить изменения во внутренние структуры.

С защитой связана еще одна серьезная тема: тема открытости AS/400. Довольно долго многие ISV не только использовали внутренние объекты, но и настаивали, что бы IBM сделала внутреннее устройство ОС открытым и дала тем самым "зеленый свет" разработчикам ПО. В ответ IBM утверждала, что при неправильном использовании команд MI велика вероятность программных сбоев, за которые она не может нести ответственность. Компромисс (управляемая открытость через API) был достигнут, частично в результате серии заседаний группы COMMON, начатых по инициативе ISV и других пользователей. Работу с ISV и определение новых API возглавил Рон Фесс (Ron Fess) - один из основных разработчиков ПО с большим опытом работ по CPF и OS/400. Результат это работы - реализация на AS/400 Single UNIX Specification и других стандартных API. AS/400 стала более открытой для пользователей.

Защита ОС (уровень 40)

Уровень 40 появился в версии V1R3 OS/400. Сегодня все новые AS/400 поставляют ся именно с этим уровнем защиты, а не 10, как ранее. Но старые версии OS/400 и при модернизации сохраняют текущий уровень, установленный заказчиком. Теперь пароль начальника защиты (пользователь, обладающий правами доступа наивысшего уровня) становится недействительным после первого ввода в систему и он должен его изменить. Ранее заказчики AS/400 часто не утруждали себя изменением пароля, установленного в системе по умолчанию, что создавало явную "дыру" в защите.

При уровне 40 пользователь AS/400 также должен быть зарегистрирован, должен знать правильный пароль для входа в систему и иметь права на доступ к системным ресурсам. Впрочем, пользователи с ограниченными возможностями при этом уровне защиты тоже поддерживаются.

В отличие от уровней 10–30, при уровне защиты 40 доступ к нестандартным интерфейсам блокирован. Пользователю теперь доступны далеко не все команды MI, а лишь их разрешенный набор, включая сотни API, разработанных для ISV . Остальные же команды блокированы, то есть система не будет исполнять их в пользовательской программе.

Тем не менее, команды из блокированного набора попрежнему доступны OS/400. Для различия программ OS/400 и пользовательских, были введены понятия системного и пользовательского состояния , к которым можно отнести любой процесс на AS/400. Использование заблокированных команд и доступ, таким образом, к некоторым объектам системы разрешены только в системном состоянии.

Для большей надежности защиты в V1R3 была также устранена адресация на базе возможностей, а из системных указателей, предоставляемых пользователям, убраны все права доступа.

Защита C2 (уровень 50)

Уровень 40 обеспечивает системе достаточную степень защищенности в большинстве случаев. Однако, некоторым фирмам, выполняющим государственные заказы, необходим уровень защиты, сертифицированный правительством США. Таких сертификатов несколько, включая, так называемый, уровень С2. Они включают такие положения, как защита ресурсов пользователя от других пользователей и предотвращение захвата одним пользователем всех системных ресурсов, например, памяти. Кстати, подобные требования сейчас применяются и во многих неправительственных организациях.

Для заказчиков, нуждающихся в правительственных сертификатах, мы дополнили уровень защиты 40 на AS/400 до соответствия упомянутому уровню С2. Так в версии V2R3 появилась защита уровня 50.

Но прежде чем система будет признана соответствующей стандарту С2, она должна пройти всеобъемлющую проверку. В настоящее время такая проверка идет.

Правительством США определены уровни защиты от А до D, где А - наивысший уровень защиты, а D – самый низкий. Классы B и С имеют несколько подуровней. Уровень защиты С2 - уровень, наивысший из обычно используемых в бизнесе. В будущем, если возникнет такая необходимость, мы сможем включить в AS/400 поддержку и более высоких уровней защиты.

Несанкционированный доступ к информации (НСД) — это доступ к данным, который нарушает правила разграничения доступа с реализацией определенных средств которые являются средствами вычислительной техники или автоматизированными системами. По мнению экспертов способами несанкционированного доступа есть:

  • Склонение к сотрудничеству
  • Инициативное сотрудничество
  • Выпытывание, выведывание
  • Подслушивание
  • Хищение
  • Наблюдение
  • Подделка (изменение)
  • Копирование
  • Уничтожение
  • Перехват
  • Незаконное подключение
  • Фотографирование
  • Негласное ознакомление

Инициативное сотрудничество часто проявляется в определенных ситуациях, когда неудовлетворенные лица готовы ради наживы пойти на противоправные действия. Причины могут очень разные, это и финансовые, моральные, политические и тд. Такого человека легко убедить в сотрудничестве по предоставлении конфиденциальной информации предприятия, если конечно он имеет доступ.

Склонение к сотрудничеству — обычно это насильные методы со стороны злоумышленников. Такие методы основаны на запугивании, подкупе или шантаже. Склонение сотрудников проводится путем реальных угроз с преследованием шантажа. Это самый агрессивный способ из существующих, так как мирный визит может превратится в жестокие действия с целью устрашения.

Выпытывание,выведывание — это вид деятельности который основан на задавании сотруднику наивных вопросов, для получение определенной информации. Также выпытывать данные можно и ложными трудоустройствами или же другими действиями.

Подслушивание — это метод для промышленного шпионажа или разведки, который применяется специальными людьми (наблюдатели, информаторы) специальными средствами подслушиваниями. Подслушивание может реализовываться непосредственно восприятием акустических волн или же специальными средствами на расстоянии.

Наблюдение — это метод из разведки о статусе деятельности наблюдаемого. Такой метод ведется с помощью оптических приборов. Такой процесс занимает много времени и средств, по этому такой метод обычно реализуется целенаправленно, в определенное время с квалифицированными людьми.

Хищение — Это умышленное завладение чужими ресурсами, документами и тд. Грубо говоря, похищают все что плохо лежит, по этому нужно тщательно относится к конфиденциальным носителям данных.

Копирование — Обычно копируются документы которые содержат ценную информацию. Доступ получается нелегальным путем, зачастую из-за плохой СЗИ.

Подделка — это изменение данных которая в реалиях конкуренции имеет большие масштабы. Подделывают все, что бы получить ценные данные.

Уничтожение — Удаление данных на технических носителях информации. Если взять более абстрагировано, уничтожаются и люди, и документы и другие элементы информационной системы которые имеют некий смысл.

Незаконное подключение — понимают бесконтактное или контактное подключение к разным проводам разного назначения.

Перехват — это получение разведывательной информации за счет приема сигналов электромагнитной энергии пассивными методами приема. Перехвату подлежат любые сигналы в радиосвязи или же проводной связи.

Негласное ознакомление — это метод получения данных, к которым субъект не имеет доступа, но при определенных стечения обстоятельств может кое-что узнать. К примеру смотреть в экран ПЭВМ или же открыть документ лежащий на столе.

Фотографирование — метод получения изображения объектов на фотоматериале. Особенностью метода является получения детальных данных при дешифрировании снимка.

По мнению экспертов такой перечень есть не пересекаемым и независимым на определенном уровне абстракции. Он позволяет рассмотреть определенное множество выборок таких методов вместе. На рис.1 показана обобщенная модель способов НСД к источникам конфиденциальной информации.

Не секрет, что спецслужбы пристально следят за своими подопечными, при этом используя разные контрразведывательные . При этом нужно понимать, через какой способ получения информации есть несанкционированное получение доступа. Способ — это прием или порядок действий, которые приводят к реализации цели. Способ несанкционированного доступа (способ НСД) — это набор действий и приемов, с целью добывания данных незаконным путем с дополнительным воздействием на эту информацию.

В наше время способы НСД к данным разные: реализация специальных технических средств, использование прогрехов а системах, или другие как показано на рис.1. Кроме того, способы НСД напрямую связанны с особенностями источника конфиденциальных данных.
Имея набор источников информации и набор способов НСД к ним, можно просчитать вероятность и построить модель их связи. Многие способы применимы к источникам — технические средства обработки и люди. Хоть и другие способы не к примеру не влияют на такие распространенные источники, их опасность может быть даже больше.

Степень опасности способа НСД смотрится по нанесенному ущербу. По сколько информация сегодня имеет свою цену, то сам факт приобретения информация приравнивается к получению денег. Злоумышленник преследует три цели:

  • получить данные для конкурентов и продать.
  • изменить данные в информационной сети. Дезинформация.
  • Уничтожить данные.

Рисунок — 1 (для просмотра нажмите на картинку)

Главная цель — добыть информацию о состоянии, составе и деятельности объектов конфиденциальных интересов для своих целей или обогащения. Другая цель — изменение информации, которая существует в информационной сети. Такой способ может привести к дезинформации в определенных областях деятельности, изменить результат поставленных задач. При этом очень сложно реализовать такую схему дезинформации, нужно провести целый комплекс действий и предусмотреть очень много событий. Самая опасная цель — это уничтожение данных. От задач зависит как и выбор действий, так и их качественный или количественные характеристики.

Способы НСД к информации с помощью технических средств

Любая электронная система, которая содержит совокупность узлов, элементов и проводников и обладает при этом источниками информационного сигнала — есть каналами утечки конфиденциальной информации. Способы НСД и каналы утечки объективно связанны. Варианты связей показаны В табл. 1.

Таблица — 1

От каждого источника образуется канал утечки данных при этом его конкретные параметры изучаются и испытываются способы атак в лабораториях. Действия могут быть активными и пассивными. К пассивным относят реализацию технических каналов утечки информации без прямого контакта или подключения. Способы обычно ориентированны на получение данных. Активные методы подключаются к линиям связи. Линии связи могут быть:

  • Проводные (волоконно-оптические).
  • Беспроводные (Wi-Fi).

Способы НСД к линиям связи

Зачастую в качестве линий связи используют телефонные линии или оптоволоконные линии. Способы прослушивания телефонных линий показаны на рис.2.

Рисунок — 2

Также есть системы прослушивания линий, которые не требуют прямого контакта с телефонной линией. Такие системы используют индуктивные методы съема данных. Такие системы не имеют широкого применения, так как они сильно большие из-за содержания несколько каскадов усиления слабого НЧ-сигнала и в добавок внешний источник питания.

Но на сегодня линии оптоколокна имеют более широкий спектр реализации. Информация по такому каналу передается в виде пульсирующего светового потока, на который не влияют магнитные и электрические помехи. Также по такому каналу тяжелее перехватить данные, что повышает безопасность передачи. При этом скорость передачи достигает Гигабайт/секунду. Для подключении к такому каналу связи, удаляют защитные слои кабеля. Потом стравливают светоотражающую оболочку и изгибают кабель по специальным углом, что бы снимать информацию. При этом сразу будет заметно падать мощность сигнала. Также можно бесконтактно подключатся к каналу связи, но для этого нужно иметь определенный уровень знаний и подготовки.

Способы НСД к беспроводным линиям связи

Транспортировка данных с помощью высокочастотных СЧВ и УКВ диапазонах дает возможность реализовать передачу информацию и компьютерную сеть там, где положить обычный проводные каналы есть сложно. В таких каналах связи передача информации возможно со скорость до 2 Мбит/с. При этом есть вероятность помех и перехвата информации. Перехват данных работает на основе перехвата электромагнитных излучений с дальнейшем анализом и расшифровывания. Перехват информации по таким каналам имеет свои особенности:

  • данные можно получить без прямого контакта с источником;
  • на сигнал не влияет ни время года/суток;
  • прием данных проходит в реальном времени;
  • перехват реализуется скрытно.
  • дальность перехвата ограничена только характеристикой волн распространения.

Защиты от несанкционированного доступа

Существует байка о том, как нужно хранить информацию. Она должна быть в одном экземпляре на компьютере, который расположен в бронированном сейфе, отключенный от всех сетей и обесточенный. Такой метод мягко говоря, очень жестокий, однако и такие бывали случаи. Что бы защитить данные от НСД, нужно понять какой доступ считается санкционированным, а какой нет. Для этого нужно:

  • разбить информацию на классы, которая обрабатывается или хранится на ПК
  • разбить пользователей на классы по доступу к данным
  • расставить эти классы в определенные связи обмена данным между собой

Системы защиты данных от НСД должно поддерживать реализацию следующих функций:

  • аутентификация
  • идентификация
  • разграничение доступа пользователей к ЭВМ
  • разграничение доступа пользователей к возможностями над информацией
  • администрирование:
    • обработка регистрационных журналов
    • определение прав доступа к ресурсам
    • запуск системы защиты на ЭВМ
    • демонтированные системы защиты с ЭВМ
  • Вывод на попытки НСД
  • регистрация событий:
    • нарушения прав доступа
    • вход/выход пользователя из системы
  • контроль работоспособности и целостности систем защиты
  • поддержание информационной безопасности при ремонтно-профилактических работах и аварийных ситуациях

Права пользователей доступа к ресурсам описывают таблицы, на основе которых проводится проверка аутентификации пользователя по доступу. Если Пользователь не может получить запрашиваемые права доступа, значит регистрируется факт НСД и проводятся определенные действия.

Аутентификация и идентификация пользователя

Для доступа пользователю к ресурсам системы, он должен пройти процесс:

  • Идентификации — процесс предоставления системы пользователем свое имя или другой идентификатор
  • Аутентификация — процесс подтверждения системой пользователя на основе идентификатора и пароля или другой информации (см. , )

Исходя из этого, для проведения этих процедур, нужно что бы:

  • была программа аутентификации
  • у пользователя была в наличии уникальная информация

Есть две формы хранения идентификационных данных о пользователе, это внутренняя (запись в базе) или внешняя (карточка). Любому носителю информации, который нуждается в опознании системой, существует соответствие в системе аутентификации:

  • ID i — неизменный идентификатор i-го пользователя, который для системы является аналогом имени пользователя
  • K i — аутентифицирующие данные пользователя

Существует две типовые схема аутентификации и идентификации. Первая схема:

В такой схеме E i = F (ID i , K i), где невосстановимость K i считается как некий порог трудоемкость Т 0 для восстановления K i по E i и ID i . Для пары K i и K j возможное совпадение значений E. В связи с такой ситуацией, вероятность ложной аутентификации пользователей системы не должна превышать некий порог P 0 . На практике дают такие значения: T 0 = 10 20 ….10 30 , P 0 = 10 -7 ….10 -9 .

Для такой схемы существует протокол аутентификации и идентификации:

  • Пользователь предоставляет свой идентификатор ID
  • Вычисляется значение E = F(ID, K)

В другой схеме E i = F(S i , K i), где S — случайный вектор, который задается при создании идентификатора пользователя. F — функция, которая имеет аспект невосстановимости значения K i по E i и S i .

Протокол для второй схемы аутентификации и идентификации:

  • Пользователь показывает системе свой идентификатор ID
  • Если существует такой ID i , где ID=ID i , то идентификация пользователем пройдена успешно, иначе нет.
  • По идентификатору ID выделяется вектор S
  • Алгоритм аутентификации просит ввести пользователя его аутентификатор К
  • Вычисляется значение E = F(S, K)
  • Если E = E 1 то аутентификация пройдена, иначе нет.

Вторая схема используется в ОС UNIX. Пользователь в качестве идентификатора вводит свое имя (Login), а пароль в качестве аутентификатора. Функция F является алгоритмом шифрования DES. (см. )

В последнее время набирают обороты биометрические методы идентификации и аутентификации, этому способствует:

  • Высокая степень доверенности по признакам из-за их уникальности
  • Трудная фальсификация этих признаков

В качестве признаков пользователя может использоваться:

  • отпечатки пальцев
  • сетчатка глаз и узор радужной оболочки
  • форма руки
  • форма ушей
  • форма лица
  • особенности голоса
  • рукописный почерк

При прохождении регистрации пользователь должен показать свои биометрические признаки. Сканированный образ сравнивается с образом который существует в базе данных. Системы идентификации по глазу имеют вероятность повторения данных характеристик — 10 -78 . Таким системы наиболее надежные среди остальных биометрических систем. Такие системы применяются в зонах оборонительных и военных объектов. Системы идентификации по отпечаткам пальцев самые распространенные. Причиной массовости заключается в том, что существует большая база по отпечаткам пальцев. Спасибо полиции. Системы идентификации по лицу и голосу самые доступные из-за их дешевизны. Такие системы применяются при удаленной идентификации, к примеру в сетях.

Нужно отметить, что использование биометрических характеристик для идентификации субъектов пока не получило надлежащего нормативно-правового обеспечения, в виде стандартов. Поэтому применение таких систем допускается только там, где идет обработка данных которые составляют коммерческую или служебную тайну.

Взаимная проверка подлинности пользователей

Стороны, которые вступают в информационный обмен нуждаются в взаимной аутентификации. Такой процесс обычно реализуется в начале сеанса обмена. Для проверки подлинности, существуют способы:

  • механизм отметки-времени (временной штепмель )
  • механизм запроса-ответа

Механизм запроса-ответа подразумевает ситуацию, когда пользователь А хочет быть уверен, данные которые подсылает пользователь В не фальшивые. Для этого пользователь А отправляет непредсказуемый элемент — запрос Х , над которым пользователь В должен выполнить заранее оговоренную операцию, и отправить результат пользователю А. Пользователь А проверяет результат с тем, что должен был выйти. Недостаток такого метода заключается в том, что можно восстановить закономерность между запросом и ответом.

Механизм отметки времени подразумевает регистрацию времени для каждого отправленного сообщения. В таком случае пользователь сети может определить насколько устарело сообщение. В обоих случая дополнительно нужно применять шифрование.

Также есть механизм рукопожатия , который основан на предыдущих двух механизмах и заключается в взаимной проверке ключей, который используют стороны обмена. Такой принцип используют для создания соединения между хостом-компьютером и тд в сетях.

В качестве примера, рассмотрим двух пользователей А и В, которые разделяют один и тот же секретный ключ K AB .

  • Пользователь А инициирует механизм, и отправляет пользователю В свой идентификатор ID A в открытой форме
  • Пользователь В получает идентификатор ID A , находит ключ K AB для дальнейшего использования
  • Пользователь А генерирует последовательность S с помощью генератора PG и отправляет пользователю В в виде криптограммы E K AB S
  • Пользователь В расшифровывает эту криптограмму
  • Оба пользователя изменяют последовательность S, с помощью односторонней функцией f
  • Пользователь В шифрует сообщение f(S), и отправляет криптограмму E K AB (f(S)) пользователю А
  • Пользователь А расшифровывает такую криптограмму, и сравнивает f(S) исходное и расшифрованное. Если они равны, то подлинность пользователя В для пользователя А доказана.

Пользователь В доказывает подлинность А таким же способом. Плюсом такого механизма это то, участники связи не получают никакой секретной информации во время механизма.

Также можно использовать DLP системы. Такие системы основаны на анализе потоков данных, которые пересекаются с данными защищаемой информационной системы. При срабатывании сигнатуры, срабатывает активный элемент системы, и передача пакета, потока, сессии блокируется. Такие системы базируются на двух методах. Первым анализирует формальные признаки информации. К примеру метки, значение хеш-функций и др. Такой способ разрешает избежать ложных срабатываний (ошибки 1го рода), но для этого документы нужно обработать дополнительной классификацией. Другом способ — анализ контента. Он допускает ложные срабатывания, но разрешает выявить пересылку конфиденциальных данных не только среди обработанных документов. Основной задачей таких систем это предотвращения передачи конфиденциальных данных за пределы информационной системы. Такая утечка может быть намеренной или ненамеренной. Практика показывает, что 75% инцидентов происходит не специально, а из-за ошибок, небрежности или невнимательности самих сотрудников. Такие утечки выявить не сложно, сложнее выявить специальные атаки. Исход борьбы зависит от многих параметров, и гарантировать 100% успех невозможно.

Делая итог, нужно отметить, что НСД является намеренной угрозой с доступом к . Существует множество способов как это сделать. Службе информационной безопасности нужно тщательно следить за информационными потоками а так же за пользователями информационной системы. С развитием технологий появляются новые методы НСД и их реализации. Нужно начальству выделять ресурсы для обновления и улучшения системы защиты информационной системы, так как со временем она устаревает и теряет возможность препятствовать новым атакам. Нужно помнить, что абсолютной защиты нету, но нужно стремится к ней.