Реляционные системы управления базами данных основные концепции особенности. Базы данных. основные объекты бд. субд

Реляционные СУБД обладают рядом особенностей, влияющих на организацию внешней памяти. К наиболее важным особенностям можно отнести следующие.

Наличие двух уровней системы:

уровня непосредственного управления данными во внешней памяти (а также обычно управления буферами оперативной памяти, управления транзакциями и журнализацией изменений БД),

языкового уровня (например уровня, реализующего язык SQL).

При такой организации подсистема нижнего уровня должна поддерживать во внешней памяти набор базовых структур, конкретная интерпретация которых входит в число функций подсистемы верхнего уровня.

Поддержка отношений-каталогов (справочников). Информация, связанная с именованием объектов базы данных и их конкретными свойствами (например, структура ключа индекса), поддерживается подсистемой языкового уровня. С точки зрения структур внешней памяти, отношение-каталог ничем не отличается от обычного отношения базы данных.

Регулярность структур данных . Поскольку основным объектом реляционной модели данных является плоская (в 1НФ) таблица, главный набор объектов внешней памяти может иметь очень простую регулярную структуру. При этом необходимо обеспечить возможность эффективного выполнения операторов языкового уровня как над одним отношением (простые операции селекции и проекции), так и над несколькими отношениями (наиболее распространена и трудоемка операция соединения нескольких отношений). Для этого во внешней памяти должны поддерживаться дополнительные индексы.

Для выполнения требования надежного хранения баз данных необходимо поддерживать избыточность хранения данных, что обычно реализуется в виде журнала изменений базы данных.



Соответственно, возникают следующие разновидности объектов во внешней памяти базы данных:

строки отношений - основная часть базы данных, большей частью непосредственно видимая пользователям;

управляющие структуры - индексы, создаваемые по инициативе пользователя (администратора) или верхнего уровня системы из соображений повышения эффективности выполнения запросов и обычно автоматически поддерживаемые нижним уровнем системы;

журнальная информация , поддерживаемая для удовлетворения потребности в надежном хранении данных;

служебная информация , поддерживаемая для удовлетворения внутренних потребностей нижнего уровня системы; набор структур служебной информации зависит от общей организации системы, но обычно требуется поддержание следующих служебных данных:

· внутренние каталоги (справочники), описывающие физические свойства объектов базы данных, например число атрибутов отношения, их размер и, возможно, типы данных;

· описание индексов, определенных для данного отношения;

· описатели свободной и занятой памяти в страницах внешней памяти, распределенных для хранения отношений; такая информация требуется для нахождения свободного места при занесении кортежей.

Базовые структуры памяти

Структура и типы страниц

Основной единицей хранения и манипулирования данными при бесфайловой организации является страница памяти (или блок данных ) - часть пространства памяти среды хранения базы данных, организованного таким образом, что оно состоит из последовательности таких частей (страниц), имеющих одинаковую длину.

Страницаявляется единицей обмена с внешней памятью. Размер страницы фиксирован для базы данных и устанавливается при ее (базы) создании. Страницы памяти имеют уникальные идентификаторы , в качестве которых обычно используются их последовательные номера. Содержимое страницы памяти может быть прочитано в буфер обмена или записано во внешнюю память из буфера за одно обращение к устройству внешней памяти. В некоторых системах страницы памяти могут иметь внутреннюю организацию, например, могут обладать индексом , обеспечивающим прямой доступ к содержащимся на странице хранимым записям. Страницы с простейшей организацией, предусматривающей последовательное размещение в них записей, в некоторых методах доступа называются блоками записей .

Выделяют четыре типа страниц:

· страницы данных,

· страницы индексов,

· страницы blob-объектов,

· битовые страницы.

Страница данных . Основная единица осуществления операций обмена. Структура страницы данных представлена на рис. 32.

Рис. 32. Структура страницы данных

Заголовок страницы включает внутрисистемную информацию, используемую СУБД в механизме управления страницами.

Данные на странице представляются в виде строк . Каждая строка соответствует некоторому кортежу отображаемого отношения.

Слоты характеризуют размещение строк данных на странице. В базе данных каждый кортеж имеет уникальный внутрисистемный идентификатор, включающий номер страницы и номер строки на странице, в которую отображается данный кортеж. Содержимое слота и составляет идентификатор соответствующей ему (по номеру на странице) строки. При упорядочивании кортежей отношения по значению какого-либо атрибута физического перемещения строк на соответствующих страницах не происходит. Вместо этого производится перестройка содержимого слотов.

Страница индексов. Страницы индексов предназначены для хранения индексных структур, используемых СУБД в реализации методов доступа, и организованы в виде В-деревьев.

Страница blob . Страницы blob (B inary L arge Ob ject) предназначены для хранения слабоструктурированной информации, содержащей тексты большого объема, графическую информацию, двоичные коды. Эти данные рассматриваются как потоки байтов произвольного размера, а в страницах данных формируются ссылки на эти страницы. Данные таких типов в ранних СУБД относились к типу MEMO.

Битовая страница . Битовые страницы содержат описатели других типов страниц. Описатель страницы включает две составляющих – тип страницы и ее состояние (свободна /занята ).

Табличные пространства

Общим для СУБД является понятие пространства (для некоторых СУБД табличное пространство ). В табличных пространствах размещены различные логические структуры данных, такие как таблицы и индексы, временные таблицы и словарь данных. Группировка хранимых данных по пространствам производится по ряду признаков: частота изменения данных, характер работы с данными (преимущественно чтение или запись и т.п.), скорость роста объема данных, важность и т.п. Таким образом, например, только читаемые таблицы помещаются в одно пространство, для которого установлены одни параметры хранения, таблицы транзакций размещаются в пространстве с другими параметрами и т.д. (рис. 33).

Рис.33. Физическое размещение данных по устройствам

Одна логическая единица данных (таблица или индекс) размещается точно в одном пространстве, которое может быть отображено на несколько физических устройств или файлов. При этом физически разнесены (располагаться на разных дисках) могут не только логические единицы данных (таблицы отдельно от индексов), но и данные одной логической структуры (таблица на нескольких дисках). Такой способ хранения называется горизонтальной фрагментацией (или секционированием ): таблица делится на фрагменты по строкам. Фрагментация - один из способов повышения производительности.

Могут применяться различные схемы записи данных во фрагментированные таблицы. Одна из них - круговая, когда некоторая часть вставляемых в таблицу строк записывается в первый фрагмент, другая часть - в следующий и так далее по кругу. В данном случае за счет распараллеливания может быть увеличена производительность операций модификации данных и запросов.

Существует и другая схема, включающая логическое разделение строк таблицы по ключу (кластеризация ). Данная схема позволяет избежать перерасхода процессорного времени и уменьшить общий объем операций ввода/вывода. Ее суть в том, что при создании таблицы все пространство значений ключа таблицы разбивается на несколько интервалов, а строкам с ключами, принадлежащими разным интервалам, назначаются различные месторасположения. Впоследствии, при обработке запроса, данная информация учитывается оптимизатором. Если производится поиск по ключу, то оптимизатор может удалять из рассмотрения фрагменты таблицы, не удовлетворяющие условию выборки.

Пусть, например, для таблицы Person создаются два раздела part1 и part2 , каждый из которых размещен в своем табличном пространстве (tblspace1 и tblspace2 ). Записи со значением поля Num от 1 до 499 будут располагаться в первом разделе, а записи с номерами от 500 до 1000 - во втором (рис. 34.).

Тогда при запросе:

SELECT FIO FROM person WHERE Num BETWEEN 10 AND 40

оптимизатор будет производить поиск только в разделе part1, что может дать ощутимый выигрыш в производительности в таблице с десятками тысяч строк.

Подобные механизмы фрагментации данных поддерживают практически все современные СУБД, что часто используется при создании систем высокой производительности.

Рис. 34. Пример кластеризации записей

Структура реляционной БД.

Типы БД.

Основные возможности СУБД.

Понятие базы данных, СУБД.

План

ТЕРМИНЫ : база данных, система управления базами данных (СУБД),

реляционная БД, запись БД, поле БД, ключевое поле БД, таблица БД, запрос БД, форма БД, отчёт БД, макрос БД, модуль БД.

Одной из основных сфер использования компьютера в современном информационном обществе является хранение и обработка больших объёмов информации.

База данных (БД )- это систематизированное хранилище информации определённой предметной области, к которому могут иметь доступ различные пользователи для решения своих задач.

Далее на примере одной из самых распространенных систем управления базами данных - Microsoft Access входит в состав популярного пакета Microsoft Office - мы познакомимся с основными типами данных, способами создания баз данных и с приемами работы с базами данных.

База данных - организованная совокупность данных, предназначенная для длительного хранения во внешней памяти ЭВМ и постоянного применения. Для хранения БД может использоваться как один компьютер, так и множество взаимосвязанных компьютеров.

Если различные части одной базы данных хранятся на множестве компьютеров, объединенных между собой сетью, то такая БД называется распределенной базой данных.

Система управления базой данных (СУБД ) – это программное обеспечение, позволяющее создавать БД, обновлять хранимую в ней информацию и обеспечивающее удобный доступ к ней с целью просмотра и поиска.

В настоящее время наибольше распространение получили СУБД Microsoft Access, FoxPro , dBase . СУБД делятся по способу организации баз данных на сетевые, иерархические и реляционные СУБД.

Основные возможности СУБД:

ü Обновление, пополнение и расширение БД.

ü Высокая надёжность хранения информации.

ü Вывод полной и достоверной информации на запросы.

ü Средства защиты информации в БД.

БД бывают фактографическими и документальными .

В фактографических БД содержатся краткие сведения об описываемых объектах, представленные в строго определённом формате. В БД библиотеки хранятся библиографические сведения о каждой книге: год издания, автор, название и пр. В БД отдела кадров учреждения хранятся анкетные данные сотрудников: ф., и, о, год и место рождения и пр. БД законодательных актов в области уголовного права, к примеру, будет включать в себя тексты законов; БД современной музыки – тесты и ноты песен, справочную информацию о композиторах, поэтах, исполнителях, звуковые записи и видеоклипы. Следовательно, документальная БД содержит обширную информацию самого разного типа: текстовую, звуковую, мультимедийную.

Для хранения БД может использоваться как один компьютер, так и множество взаимосвязанных компьютеров.

Если различные части одной БД хранятся на множестве компьютеров, объединённых между собой сетью, то такая БД называется распределённой базой данных .

Известны три основных типа организации данных в БД и связей между ними:

· иерархический (в виде дерева),

· сетевой,

· реляционной .

В иерархической БД существует упорядоченность элементов в записи, один элемент считается главным, остальные – подчинёнными. Поиск какого-либо элемента данных в такой системе может оказаться трудоёмким из-за необходимости последовательно проходить несколько иерархических уровней.

Пример : иерархическую БД образует каталог файлов, хранимый на диске.

Такой же БД является родовое генеалогическое древо.

Сетевая БД отличается большей гибкостью, в ней существует возможность устанавливать дополнительно к вертикальным связям горизонтальные связи.

Реляционными БД (от англ. relation – «отношение») называются БД, содержащие информацию в виде прямоугольных таблиц. Согласно этому подходу, такая таблица называется отношением. Каждая строка таблицы содержит информацию об одном отдельном объекте описываемой в БД предметной области, а каждый столбец – определённые характеристики (свойства, атрибуты) этих объектов. Реляционная база данных, по сути, представляет собой двумерную таблицу . В реляционной БД используются четыре основных типов полей:

· Числовой,

· Символьный (слова, тексты, коды и т.д.),

· Дата (календарные даты в форме «день/месяц/год»),

· Логический (принимает два значения: «да» - «нет» или «истина» - «ложь»).

Окно базы данных содержит следующие элементы:

ü Кнопки : «СОЗДАТЬ» , «ОТКРЫТЬ» , «КОНСТРУКТОР» и т. д. Кнопки открывают объект в определенном окне или режиме.

ü Кнопки объектов . (Корешки выбора объектов, ярлычки.) «Таблица» , «Форма» и т. д. Кнопки объектов выводят список объектов, которые могут быть открыты или закрыты.

ü Список объектов. Выводит список объектов, выбираемых пользователем. В нашем варианте список пока пуст.

Основные объекты баз данных:

· Таблица – это объект, предназначенный для хранения данных в виде записей (строк) и полей (столбцов). Обычно каждая таблица используется для хранения сведений по одному конкретному вопросу.

· Форма – это объект Microsoft Access, предназначенный, в основном, для ввода данных. В форме можно разместить элементы управления, применяемые для ввода, изображения и изменения данных в полях таблицы.

· Запрос – объект, позволяющий получить нужные данные из одной или нескольких таблиц.

· Отчет – объект базы данных Microsoft Access, предназначенный для печати данных.

· Макросы – автоматизируют стандартные действия.

· Модули – автоматизируют сложные операции, которые нельзя описать макросами.

В последнее время слышны утверждения о возможной смене парадигмы – от реляционных к постреляционным СУБД. Однако по данным аналитиков, пока именно реляционные СУБД используются в абсолютном большинстве крупных проектов, связанных с внедрением систем управления базами данных. Рынок явно придерживается традиционных подходов в решении подобных задач.

Системы управления базами данных (СУБД) – одна из фундаментальных составляющих компьютерного обеспечения информационных процессов, являющаяся основой для построения большинства современных информационных систем. Главной функцией СУБД является эффективное хранение и предоставление данных в интересах конкретных прикладных задач.

Коммерческие СУБД ведут свою историю с середины 60-х годов, когда компанией IBM был выпущен первый продукт данного класса – иерархическая СУБД IMS. В начале 70-х годов Эдгаром Коддом были заложены основы реляционной модели данных, был разработан структурированный язык запросов SQL, а в 80-х годах были созданы промышленные СУБД, которые в скором времени заняли доминирующее положение. В настоящее время ведущая тройка игроков – Microsoft, Oracle и IBM – полностью контролируют рынок, а их флагманские продукты Microsoft SQL Server, Oracle Database и IBM DB2 вместе занимают долю рынка около 90%. Рынок СУБД активно растет и, по мнению аналитиков Forrester, к 2013 году его общий объем достигнет 32 млрд долл.

Главным недостатком реляционных СУБД считается присущая этим системам ограниченность использования в областях, в которых требуются достаточно сложные структуры данных. Одним из основных аспектов традиционной реляционной модели данных является атомарность (единственность и неделимость) данных, которые хранятся на пересечении строк и столбцов таблицы. Такое правило было заложено в основу реляционной алгебры при ее разработке как математической модели данных. Кроме того, специфика реализации реляционной модели не позволяет адекватно отражать реальные связи между объектами в описываемой предметной области. Данные ограничения существенно мешают эффективной реализации современных приложений, которые требуют уже несколько иных подходов к организации данных.

Основной принцип реляционной модели – устранять повторяющиеся поля и группы с помощью процесса, который называется нормализацией. Плоские нормализованные таблицы универсальны, просты в понимании и теоретически достаточны для представления данных любой предметной области. Они хорошо подходят для приложений, связанных с хранением и отображением данных в традиционных отраслях, таких как банковские или учетные системы, но их применение в системах, основанных на более сложных структурах данных, часто является затруднительным. В основном, это связано с примитивностью механизмов хранения данных, лежащих в основе реляционной модели.

Опыт разработки прикладных информационных систем показал, что отказ от атомарности значений ведет к качественно полезному расширению модели данных. Введение в реляционную модель возможности использовать многозначные поля как самостоятельные вложенные таблицы, при условии, что вложенная таблица удовлетворяет общим критериям, позволяет естественным образом расширить возможности реляционной алгебры. В классическом понимании именно такая модель данных называется постреляционной.

Поскольку постреляционная модель использует многомерные структуры, позволяющие хранить в полях таблицы другие таблицы, ее еще называют "не первой нормальной формой" или "многомерной базой данных". В качестве языка в данной модели запросов используется расширенный SQL, позволяющий извлекать сложные объекты из одной таблицы без операций соединения. Можно сказать, что реляционные и постреляционные СУБД различаются способами хранения и индексирования данных, во всем остальном они схожи. Первыми постреляционными СУБД, получившими достаточно большую известность, стали Universe компании Ardent (впоследствии купленной Informix, которую, в свою очередь, приобрела IBM) и ADABAS компании Software AG.

Объектно-реляционные СУБД

Кроме отказа от нормализации, постреляционные СУБД позволяют хранить в полях отношений данные абстрактных, определяемых пользователями типов. Это дает возможность решать задачи нового уровня, хранить объекты и массивы данных, ориентированные на конкретные предметные области, а также роднит постреляционные СУБД с еще одним классом – объектно-ориентированными СУБД. Внедрение объектного подхода в традиционную реляционную модель дало повод к появлению еще одного направления – объектно-реляционных СУБД. Первым представителем данного класса систем принято считать систему Informix Universal Server одноименной компании.

Как известно, в основе объектно-ориентированного подхода к моделированию предметных областей лежат такие понятия, как объект и свойства инкапсуляции, наследования и полиморфизма. В отличие от реляционных СУБД при проектировании объектно-ориентированных БД не требуется декомпозиция и нормализация объектов, выделенных на этапе концептуального проектирования. Объекты представляются в том же виде, в каком они существуют в реальности, что наделяет объектно-ориентированные структуры наглядностью и позволяет значительно сократить время на их проектирование и разработку.

Одной из наиболее известных постреляционных СУБД является система Postgres, созданная в середине 80-х годов прошлого века под руководством одного из ведущих разработчиков СУБД Майкла Стоунбрейкера. Стоунбрейкер оказал (и продолжает оказывать) огромное влияние на индустрию СУБД, приложив руку практически ко всем перспективным разработкам в данной сфере. В Postgres традиционная реляционная модель была расширена за счет внедрения механизмов управления объектами, которые позволяли хранить и эффективно управлять нетрадиционными типами данных. Также в Postgres поддерживалась многомерная темпоральная модель хранения и доступа к данным. Все основные идеи и разработки Postgers были продолжены и развиты в свободно распространяемой СУБД PostgreSQL, которая в настоящее время является наиболее развитой открытой СУБД.

Зачастую постреляционными называют также СУБД, которые позволяют представлять данные как в виде реляционных таблиц, так и классов объектов. Типичным представителем данного вида СУБД является система Cache компании InterSystems. По словам ее разработчиков, в данной системе наиболее эффективно совмещены реляционный и объектный подходы, основанные, соответственно, на стандартах SQL-92 и ODMG 2.0. Механизмы работы с объектами и реляционными таблицами находятся на одном логическом уровне, что обеспечивает более высокую скорость доступа и работы с данными и функциональную полноту. Также Cache использует многомерную модель хранения данных и оптимизирована для обработки транзакций в системах с большими и сверхбольшими БД (сотни гигабайт, терабайты) и большим количеством (тысячи, десятки тысяч) одновременно работающих пользователей, при этом позволяя получать очень высокую производительность.

Перспективы развития

Современные промышленные СУБД представляют собой сложные комплексы, состоящие из различных элементов, технологий и подходов. Данные составляющие объединяются и совершенствуются, исходя из потребностей обеспечения идеальных условий для решения проблем управления большими объемами данных в различных условиях. При этом все разработчики проводят масштабные исследовательские работы. Многолетний опыт разработки СУБД показал, что для обеспечения эффективной, надежной и безошибочной работы нового функционала требуется достаточно много времени. Жесткая конкуренция на рынке СУБД заставляет производителей тщательно следить за продуктами конкурентов, выявлять новые тенденции, а появление важных новых возможностей у одного из вендоров вынуждает остальных реализовывать аналогичный функционал в своих разработках.

В свою очередь, растут и потребности разработчиков современных баз данных. В первую очередь, это связано с бурным развитием интернета, активным использованием мультимедиа и необходимостью обрабатывать слабоструктурированные данные.

По результатам исследований компании IDC, опубликованных в конце 2009 года, традиционные реляционные СУБД используются в абсолютном большинстве крупных проектов, связанных с внедрением систем управления базами данных. Всего около 7% составляют проекты, в которых используются СУБД нереляционного типа. Такая расстановка сил на рынке реальных внедрений отражает общее состояние: разработчики все еще активно придерживаются традиционных подходов в решении задач, связанных с применением СУБД.

Все вышеперечисленное говорит о том, что стратегия развития, выбранная ведущими игроками рынка СУБД, позволит и в дальнейшем сохранять лидерские позиции. Их основные продукты будут совершенствоваться, будет реализовываться новый функционал, а разработчики и в дальнейшем будут выбирать универсальные и проверенные временем традиционные решения.

Максим Никитин

В начало

Базы данных и СУБД

Информационные системы

Одним из важнейших условий обеспечения эффективного функционирования любой организации является наличие развитой информационной системы. Информационная система реализует автоматизированный сбор, обработку и манипулирование данными, содержит технические средства обработки данных, программное обеспечение и обслуживающий персонал.

Современной формой информационных систем являются банки данных, которые включают в свой состав вычислительную систему, одну или несколько баз данных (БД), систему управления базами данных (СУБД) и набор прикладных программ (ПП). Основными функциями банков данных являются:

Хранение данных и их защита;

Изменение (обновление, добавление и удаление) хранимых данных;

Поиск и отбор данных по запросам пользователей;

Обработка данных и вывод результатов.

База данных обеспечивает хранение информации и представляет собой поименованную совокупность данных, организованных по определенным правилам, включающим общие принципы описания, хранения и манипулирования данными.

Система управления базами данных представляет собой пакет прикладных программ и совокупность языковых средств, предназначенных для создания, сопровождения и использования баз данных.

Прикладные программы (приложения) в составе банков данных служат для обработки данных, вычислений и формирования выходных документов по заданной форме.

Приложение представляет собой программу или комплекс программ, использующих БД и обеспечивающих автоматизацию обработки информации из некоторой предметной области. Приложения могут создаваться как в среде СУБД, так и вне СУБД - с помощью системы программирования, к примеру, Delphi или C++ Builder , использующей средства доступа к БД.

Для работы с базой данных во многих случаях можно обойтись только средствам СУБД, скажем, создавая запросы и отчеты. Приложения разрабатывают главным образом в случаях, когда требуется обеспечить удобство работы с БД неквалифицированным пользователям или интерфейс СУБД не устраивает пользователя.

Важнейшим достоинством применения БД в информационных системах является обеспечение независимости данных от прикладных программ. Нет необходимости заниматься вопросами размещения данных в памяти, методами доступа к ним и т. д.

Такая независимость достигается поддерживаемым СУБД многоуровневым представлением данных в БД на логическом (пользовательском) и физическом уровнях.

В качестве основного критерия оптимальности функционирования базы данных, как правило, используются временные характеристики реализации запросов пользователей прикладными программами.

Средства для создания баз данных

Файловые системы

Развитие основных понятий представления данных

Любой вычислительный процесс представляет собой отображение некоторых входных данных в выходные.

Соотношение сложности представления обрабатываемых данных и алгоритма вычислений определяет два класса задач:

- вычислительные задачи – достаточно простое представление данных и сложный процесс вычислений;

- задачи обработки данных (невычислительные задачи) – простой алгоритм обработки данных и сложное представление обрабатываемых данных.

В соответствии с этим приходится уделять внимание как разработке алгоритма решения задачи, так и способам представления обрабатываемых данных.

Начиная с конца 60-х годов компьютеры начинают интенсивно использоваться для решения так называемых невычислительных задач, связанных с обработкой различного рода документов. При использовании файловых систем данные хранятся в файле, предназначенном только для решения этой задачи. В этом случае описание данных включено в прикладную программу. При изменении формата записей файла необходимо изменение прикладной программы. Таким образом, программная система, решающая поставленную задачу, определяет свои собственные данные и управляет ими.

Недостатки файловых систем

1. Структура записи файла известна только программе, в которой он создан. Изменение структуры требует изменения программ, использующих этот файл с данными. Таким образом, программы зависят от данных .

2. Проблемы с авторизацией доступа. Можно использовать средства ОС по разграничению доступа. Такое решение возможно, но неудобно. Нужны централизованные методы доступа к информации.

3. Проблемы с организацией многопользовательского доступа. Системы управления файлами обеспечивают многопользовательский режим, но имеют особенности, затрудняющие применение для БД. При чтении данных несколькими пользователя проблем не возникает. Внесение же изменений требует синхронизации действий пользователей. Обычно при открытии файла указывается режим (чтение/запись). Если к этому моменту файл открыт другим процессом в режиме изменения, то ОС либо сообщает, что файл невозможно открыть, либо действие блокируется до закрытия другого процесса. В любом случае либо одновременно несколько пользователей не могут модифицировать БД, либо процесс выполняется медленно.

В прикладной программе, использующей при решении задачи один или несколько отдельных файлов, за сохранность и достоверность данных отвечал программист, работающий с этой задачей. Использование базы данных предполагает работу с ней нескольких прикладных программ, решающих задачи разных пользователей.

Естественно, что за сохранность и достоверность интегрированных данных программист, решающий одну из прикладных задач, отвечать уже не может. Кроме того, расширение круга решаемых с использованием базы данных задач может приводить к появлению новых типов записей и отношений между ними. Такое изменение структуры базы данных не должно вести к изменению множества ранее разработанных и успешно функционирующих прикладных программных систем, работающих с базой данных. С другой стороны, возможное изменение любой из прикладных программ, в свою очередь, не должно приводить к изменению структуры данных. Все вышесказанное обусловливает необходимость отделения данных от прикладных программ.

Системы управления базами данных

Роль интерфейса между прикладными программами и базой данных, обеспечивающего их независимость, играет программный комплекс – система управления базами данных (СУБД).

СУБД – программный комплекс поддержки интегрированной совокупности данных, предназначенный для создания, ведения и использования базы данных многими пользователями (прикладными программами).

Основные функции системы управления базами данных.

1. Определение структуры создаваемой базы данных, ее инициализация и проведение начальной загрузки

2. Предоставление пользователям возможности манипулирования данными (выборка необходимых данных, выполнение вычислений, разработка интерфейса ввода/вывода, визуализация).

3. Обеспечение независимости прикладных программ и (логической и физической независимости).

4. Защита логической целостности базы данных.

5. Защита физической целостности.

6. Управление полномочиями пользователей на доступ к базе данных.

7. Синхронизация работы нескольких пользователей.

8. Управление ресурсами среды хранения.

9. Поддержка деятельности системного персонала.

1. Определение структуры создаваемой базы данных, ее инициализация и проведение начальной загрузки . В большинстве современных СУБД база данных представляется в виде совокупности таблиц.

2. Предоставление пользователям возможности манипулирования данными (выборка необходимых данных, выполнение вычислений, разработка интерфейса ввода/вывода, визуализация). Такие возможности в СУБД представляются либо на основе использования специального языка программирования, входящего в состав СУБД, либо с помощью графического интерфейса.

3. Обеспечение независимости прикладных программ и данных (логической и физической независимости). Важнейшим свойством СУБД является возможность поддерживать два независимых взгляда на базу данных – «взгляд пользователя», воплощаемый в логическом представлении данных, и его отражения в прикладных программах; и «взгляд системы» – физическое представление данных в памяти ЭВМ. Обеспечение логической независимости данных предоставляет возможность изменения (в определенных пределах) логического представления базы данных без необходимости изменения физических структур хранения данных. Таким образом, изменение логического представления данных в прикладных программах не приводит к изменению структур хранения данных. Обеспечение физической независимости данных предоставляет возможность изменять (в определенных пределах) способы организации базы данных в памяти ЭВМ не вызывая необходимости изменения «логического» представления данных. Таким образом, изменение способов организации базы данных не приводит к изменению прикладных программ.

4. Защита логической целостности базы данных.

Основной целью реализации этой функции является повышение достоверности данных в базе данных. Достоверность данных может быть нарушена при их вводе в БД или при неправомерных действиях процедур обработки данных, получающих и заносящих в БД неправильные данные. Для повышения достоверности данных в системе объявляются так называемые ограничения целостности, которые в определенных случаях «отлавливают» неверные данные. Так, во всех современных СУБД проверяется соответствие вводимых данных их типу, описанному при создании структуры. Система не позволит ввести символ в поле числового типа, не позволит ввести недопустимую дату и т.п. В развитых системах ограничения целостности описывает программист, исходя из содержательного смысла задачи, и их проверка осуществляется при каждом обновлении данных. Более подробно

5. Защита физической целостности . При работе ЭВМ возможны сбои в работе (например, из-за отключения электропитания), повреждение машинных носителей данных. При этом могут быть нарушены связи между данными, что приводит к невозможности дальнейшей работы. Развитые СУБД имеют средства восстановления базы данных. Важнейшим используемым понятием является понятие «транзакции». Транзакция – это единица действий, производимых с базой данных. В состав транзакции может входить несколько операторов изменения базы данных, но либо выполняются все эти операторы, либо не выполняется ни один. СУБД, кроме ведения собственно базы данных, ведет также журнал транзакций.

Необходимость использования транзакций в базах данных проиллюстрируем на упрощенном примере. Предположим, что база данных используется в некотором банке и один из клиентов желает перевести деньги на счет другого клиента банка. В базе данных хранится информация о количестве денег у каждого из клиентов. Нам нужно сделать два изменения в базе данных – уменьшить сумму денег на счете одного из клиентов и, соответственно, увеличить сумму денег на другом счете. Конечно, реальный перевод денег в банке представляет собой гораздо более сложный процесс, затрагивающий много таблиц, а возможно, и много баз данных. Однако суть остается та же – нужно либо совершить все действия (увеличить счет одного клиента и уменьшить счет другого), либо не выполнить ни одно из этих действий. Нельзя уменьшить сумму денег на одном счете, но не увеличить сумму денег на другом.

Предположим также, что после выполнения первого из действий (уменьшения суммы денег на счете первого клиента) произошел сбой. Например, могла прерваться связь клиентского компьютера с базой данных или на клиентском компьютере мог произойти системный сбой, что привело к перезагрузке операционной системы. Что в этом случае стало с базой данных? Команда на уменьшение денег на счете первого клиента была выполнена, а вторая команда – на увеличение денег на другом счете – нет, что привело бы к противоречивому, неактуальному состоянию базы данных.

Использование механизма транзакций позволяет находить решение в этом и подобных случаях. Перед выполнением первого действия выдается команда начала транзакции. В транзакцию включается операция снятия денег на одном счете и увеличения суммы на другом счете. Оператор завершения транзакций обычно называется COMMIT. Поскольку после выполнения первого действия транзакция не была завершена, изменения не будут внесены в базу данных. Изменения вносятся (фиксируются) только после завершения транзакции. До выдачи данного оператора сохранения данных в базе не произойдет. В нашем примере, поскольку оператор фиксации транзакции не был выдан, база данных «откатится» в первоначальное состояние – иными словами, суммы на счетах клиентов останутся те же, что и были до начала транзакции. Администратор базы данных может отслеживать состояние транзакций и в необходимых случаях вручную «откатывать» транзакции.

Кроме того, в очевидных случаях СУБД самостоятельно принимает решение об «откате» транзакции.

Транзакции не обязательно могут быть короткими. Бывают транзакции, которые длятся несколько часов или даже несколько дней. Увеличение количества действий в рамках одной транзакции требует увеличения занимаемых системных ресурсов. Поэтому желательно делать транзакции по возможности короткими. В журнал транзакций заносятся все транзакции – и зафиксированные, и завершившиеся «откатом». Ведение журнала транзакций совместно с созданием резервных копий базы данных позволяет достичь высокой надежности базы данных.

Предположим, что база данных была испорчена в результате аппаратного сбоя компьютера, на котором был установлен сервер СУБД. В этом случае нужно использовать последнюю сделанную резервную копию базы данных и журнал транзакций. Причем применить к базе данных нужно только те транзакции, которые были зафиксированы после создания резервной копии. Большинство современных СУБД позволяют администратору воссоздать базу данных исходя из резервной копии и журнала транзакций. В таких системах в определенный момент БД копируется на резервные носители. Все обращения к БД записываются программно в журнал изменений. Если база данных разрушена, запускается процедура восстановления, в процессе которой в резервную копию из журнала изменений вносятся все произведенные изменения.

6. Управление полномочиями пользователей на доступ к базе данных .

Разные пользователи могут иметь разные полномочия по работе с данными (некоторые данные должны быть недоступны; определенным пользователям не разрешается обновлять данные и т.п.). В СУБД предусматриваются механизмы разграничения полномочий доступа, основанные либо на принципах паролей, либо на описании полномочий.

7. Синхронизация работы нескольких пользователей .

Достаточно часто может иметь место ситуация, когда несколько пользователей одновременно выполняют операцию обновления одних и тех же данных. Такие коллизии могут привести к нарушению логической целостности данных, поэтому система должна предусматривать меры, не допускающие обновление данных другим пользователям, пока работающий с этими данными пользователь полностью не закончит с ними работать. Основным используемым здесь понятием является «блокировка». Блокировки необходимы для того, чтобы запретить различным пользователям возможность одновременно работать с базой данных, поскольку это может привести к ошибкам.

Для реализации этого запрета СУБД устанавливает блокировку на объекты, которые использует транзакция. Существуют разные типы блокировок – табличные, страничные, строчные и другие, которые отличаются друг от друга количеством заблокированных записей.

Чаще других используется строчная блокировка – при обращении транзакции к одной строке блокируется только эта строка, остальные строки остаются доступными для изменения.

Таким образом, процесс внесения изменений в базу данных состоит из следующей последовательности действий: выдается оператор начала транзакции, выдается оператор изменения данных, СУБД анализирует оператор и пытается установить блокировки, необходимые для его выполнения, в случае успешной блокировки оператор выполняется, затем процесс повторяется для следующего оператора транзакции. После успешного выполнения всех операторов внутри транзакции выполняется оператор фиксации транзакции. СУБД фиксирует изменения, сделанные транзакцией, и снимает блокировки. В случае неуспеха выполнения какого-либо из операторов транзакция «откатывается», данные получают прежние значения, блокировки снимаются.

8. Управление ресурсами среды хранения .

БД располагается во внешней памяти ЭВМ. При работе в БД заносятся новые данные (занимается память) и удаляются данные (освобождается память). СУБД выделяет ресурсы памяти для новых данных, перераспределяет освободившуюся память, организует ведение очереди запросов к внешней памяти и т.п.

9. Поддержка деятельности системного персонала .

При эксплуатации базы данных может возникать необходимость изменения параметров СУБД, выбора новых методов доступа, изменения (в определенных пределах) структуры хранимых данных, а также выполнения ряда других общесистемных действий. СУБД предоставляет возможность выполнения этих и других действий для поддержки деятельности БД обслуживающему БД системному персоналу, называемому администратором БД.

Классификация СУБД

СУБД, как правило, разделяют по используемой модели данных (как и базы данных) на следующие типы: иерархические, сетевые, реляционные и объектно-ориентированные.

По характеру использования СУБД делят на персональные (СУБДП) и многопользовательские (СУБДМ).

К персональным СУБД относятся Visual FoxPro , Paradox , Clipper , dBase , Access и др. К многопользовательским СУБД относятся, например, СУБД Oracle и Informix . Многопользовательские СУБД включают в себя сервер БД и клиентскую часть, работают в неоднородной вычислительной среде - допускаются разные типы ЭВМ и различные операционные системы. Поэтому на базе СУБДМ можно создать информационную систему, функционирующую по технологии клиент-сервер. Универсальность многопользовательских СУБД отражается соответственно на высокой цене и компьютерных ресурсах, требуемых для их поддержки.

СУБДП представляет собой совокупность языковых и программных средств, предназначенных для создания, ведения и использования БД.

Персональные СУБД обеспечивают возможность создания персональных БД и недорогих приложений, работающих с ними, и при необходимости создания приложений, работающих с сервером БД.

Управляющим компонентом многих СУБД является ядро, выполняющее следующие функции:

- управление данными во внешней памяти;

- управление буферами оперативной памяти (рабочими областями, в которые осуществляется подкачка данных из базы для повышения скорости работы);

- управление транзакциями.

Транзакция - это последовательность операций над БД, рассматриваемая СУБД как единое целое. Под транзакцией понимается воздействие на БД, переводящее ее из одного целостного состояния в другое. Воздействие выражается в изменении данных в таблицах базы.

Если одно из изменений, вносимых в БД в рамках транзакции, завершается неуспешно, должен быть произведен откат к состоянию базы данных, имевшему место до начала транзакции. Следовательно, все изменения, внесенные в БД в рамках транзакции либо одновременно подтверждаются, либо не подтверждается ни одно из них.

При выполнении транзакция может быть либо успешно завершена, и СУБД зафиксирует произведенные изменения во внешней памяти. При сбое в аппаратной части ПК, ни одно из изменений не отразится в БД. Понятие транзакции необходимо для поддержания логической целостности БД.

Обеспечение целостности БД - необходимое условие успешного функционирования БД. Целостность БД - свойство БД, означающее, что база данных содержит полную и непротиворечивую информацию, необходимую и достаточную для корректного функционирования приложений. Для обеспечения целостности БД накладывают ограничения целостности в виде некоторых условий, которым должны удовлетворять хранимые в базе данные. Примером таких условий может служить ограничение диапазонов возможных значений атрибутов объектов, сведения о которых хранятся в БД, или отсутствие повторяющихся записей в таблицах реляционных БД.

Обеспечение безопасности достигается в СУБД шифрованием прикладных программ, данных, защиты паролем, поддержкой уровней доступа к базе данных, к отдельной таблице.

Расширение возможностей пользователя СУБДП достигается за счет подключения систем построения графиков и диаграмм, а также подключения модулей, написанных на языках программирования.

Поддержка функционирования в сети обеспечивается:

средствами управления доступом пользователей к совместно используемым данным, т. е. средствами блокировки файлов (таблиц), записей, полей, которые в разной степени реализованы в разных СУБДП;

средствами механизма транзакций, обеспечивающими целостность БД при функционировании в сети.

Поддержка взаимодействия с Windows-приложениями позволяет СУБДП внедрять в отчет сведения, хранящиеся в файлах, созданных с помощью других приложений, например, в документе Word или в рабочей книге Excel , включая графику и звук. Для этого в СУБДП поддерживаются механизмы, разработанные для среды Windows , такие как: DDE { Dynamic Data Exchange - динамический обмен данными) и OLE { Object Linking and Embedding - связывание и внедрение объектов).

Уровни представления данных

Современные подходы к созданию БД предполагают их трёхуровневую организацию. Этот способ организации БД был предложен American National Standards Institute (ANSI ) и используется повсеместно.

На самом верхнем (внешнем) уровне может быть множество моделей. Этот уровень определяет точку зрения на БД отдельных пользователей (приложений). Каждое приложение видит и обрабатывает только те данные, которые необходимы именно ему.

На концептуальном уровне БД представлена в наиболее общем виде, который объединяет все внешние представления предметной области. На концептуальном уровне имеем обобщённую модель предметной области, для которой создавалась БД. Концептуальное представление только одно. При разработке концептуальной модели усилия направлены на структуризацию данных и выявление взаимосвязей, без рассмотрения особенностей реализации и эффективности разработки.

Внутренний (физический) уровень – это собственно данные, расположенные на внешних носителях информации. Внутренняя модель определяет размещение данных, методы доступа, технику индексирования.

Трёхуровневая организация БД позволяет обеспечить логическую и физическую независимость при работе с данными. Логическая независимость предполагает возможность изменения одного приложения, без корректировки других приложений, работающих с этой же БД.

Физическая независимость предполагает возможность переноса хранимой информации с одних носителей на другие при сохранении работоспособности всех приложений, использующих эту БД.

Классификация моделей данных

Модель данных – это набор правил, по которым организуются данные.

Это очень простое определение можно уточнить. Модель данных – это некоторая абстракция, которая, будучи приложена к конкретным данным, позволяет пользователям и разработчикам трактовать их как информацию, то есть сведения, содержащие не только данные, но и взаимосвязи между ними.

Принято выделять три группы моделей данных: инфологические, даталогические и физические.

Рис.1 Модели данных

Инфологическая (семантическая) модель – это обобщённое, не привязанное к какой-либо ЭВМ и СУБД описание предметной области. Это описание, выполненное с использованием естественного языка, математических формул, таблиц, графиков и других средств объединяет частные представления о содержимом базы данных, полученные в результате опроса пользователей, и представления разработчиков о данных, которые могут потребоваться в будущих приложениях.

Такая человеко-ориентированная модель полностью независима от физических параметров среды хранения данных. Поэтому инфологическая модель не должна изменяться до тех пор, пока она адекватно отражает предметную область, то есть до тех пор, пока не произошли изменения в предметной области.

Даталогические модели являются компьютерно-ориентированными, они поддерживаются конкретными СУБД. С их помощью СУБД даёт возможность пользователям осуществлять доступ к хранимым данным не заботясь об их физическом расположении. Так как доступ к данным осуществляется с помощью конкретной СУБД, то даталогические модели описываются на языке описания данных используемой СУБД.

Нужные данные отыскиваются СУБД на внешних запоминающих устройствах по физической модели данных . Физическая модель оперирует категориями, относящимися к организации внешней памяти и структурам хранения данных, которые используются в данной операционной среде.

Даталогические модели

К этой группе относятся такие широко известные модели как иерархическая, сетевая, реляционная и объектно-ориентированная.

Классификация моделей, их описание появились после разработки реляционной модели. До этого разрабатывали БД, используя имеющиеся технологии. И значительно позднее проанализировали существующие базы данных и выполнили их теоретическое описание.

Теоретико-графовые модели отражают совокупность объектов реального мира в виде графа. В зависимости от типа графа различают иерархическую и сетевую модели. Иерархическая и сетевая модели данных стали применяться в СУБД в начале 60-х годов 20 века. В настоящее время они используются реже, чем реляционная модель данных.

Для работы со сложными наборами данных математики разработали иерархическую модель данных. Эта модель появилась раньше других даталогических моделей. Именно эта модель данных использована в первой официально признанной промышленной СУБД фирмы IBM.

Иерархическая модель предполагает хранение данных в виде, похожем на организацию каталогов в MS DOS: все каталоги начинаются с корневого и ветвятся подобно дереву. К каждому файлу есть только один путь, то есть файлу соответствует одно имя каталога.

В реальном мире некоторые объекты по своей сути составляют иерархические структуры: одни объекты являются родительскими, другие – дочерними. Иерархия проста и естественна для отображения взаимосвязей между объектами. Достаточно вспомнить многочисленные классификации, используемые в разных областях знаний, например, приведённую выше классификацию моделей данных. В качестве другого примера можно привести структуру данных предприятия.

В иерархической БД все записи ветвятся от одной корневой. Запись имеет всегда только одного родителя и сама тоже может быть родителем для другой записи.

Главное достоинство иерархической модели – скорость. Поскольку все отношения между таблицами предопределены и являются статическими, поисковые и другие операции над набором данных выполняются очень быстро.

Наиболее существенный недостаток – негибкость. Поскольку отношения хранятся внутри каждой записи, данные имеют смысл только в определённом контексте. Другой недостаток – трудность переноса данных с компьютера на компьютер. Третий недостаток заключается в том, что глобальные изменения данных практически невозможны. При изменении требуется, чтобы каждая запись, включая родительские и дочерние, была модифицирована индивидуально.

Работа с этой моделью данных предполагает значительный объём знаний. Большинство БД, использующих иерархическую модель, требует специально подготовленного персонала для обеспечения правильного функционирования.

Сетевая модель предложена для обеспечения гибкости в управлении данными. На разработку этой модели большое влияние оказал американский ученый Ч.Бахман.

Основные принципы сетевой модели данных были сформулированы в середине 60-х годов. Эталонный вариант сетевой модели данных описан в отчетах рабочей группы по языкам баз данных CODASYL (COnference on DAta SYstem Languages) в середине 70-х годов.

Сетевая модель отличается от иерархической тем, что позволяет определять для записи более чем одно групповое отношение. Эта модели состоит из множества записей, которые могут быть владельцами или членами групповых отношений. Сетевая модель позволяет производить поиск в различных структурах и поддерживает для записей отношение «одна ко многим».

Как и в иерархической БД, информация о связях хранится в записях и должна быть предопределена. Поэтому сетевая модель данных имеет те же ограничения, что и иерархическая.

Реляционная модель данных

Основные понятия и определения реляционной модели

Реляционная модель

В 1970 году Е.Ф. Кодд (E . F . Codd ) представил реляционную модель БД. Концепция этой модели основана на том, что организация данных в базе должна быть гибкой, динамичной, легко используемой. Пользователь должен работать только с логическим представлением данных, а уж система управления БД позаботится о физической структуре данных. Кодд сформулировал основные положения реляционных баз данных.

Реляционная модель использует таблицы и базируется на двух утверждениях:

· база данных должна состоять из таблиц и только из таблиц. Только содержимое таблиц определяет операции БД;

· описание данных и манипуляции над ними должны быть независимыми от способа хранения данных на нижнем уровне. Другими словами, системы управления реляционными базами данных (СУРБД) должны обеспечивать свою собственную систему управления, основанную только на логическом представлении данных.

В своём документе Кодд описал язык для оперирования с реляционными структурами. Со временем этот язык превратился в то, что сейчас называют структурированным языком запросов SQL (Structured Query Language ).

Кодд вывел набор базовых правил, которым должна соответствовать СУБД реляционной модели. Всего их 12. Реально существующие базы данных не удовлетворяют полностью всем правилам Кодда. Каждый разработчик реализует реляционную модель по-своему. В результате свойства реляционных БД сильно варьируются.

В правилах Кодда можно выделить 4 категории:

1) базовые возможности – описание данных и язык программирования;

2) доступ к данным – правила доступа, хранения и поиска,

3) гибкость – правила изменения (модификации) данных;

4) целостность – правила для обеспечения качества и защищённости данных.

При использовании реляционной модели СУБД пользователь работает с логической структурой данных. Для перехода на низший (физический) уровень Кодд предложил концепцию словаря данных.

Словарь данных – это центральная таблица и хранилище информации о базе данных, содержит сведения о расположении данных, имена полей, типы данных, карты отношений. Словарь данных работает с операционной системой и осуществляет связь таблиц (логических данных) с файлами (физическими данными).

Будучи математиком по образованию Э.Кодд предложил использовать для обработки данных аппарат теории множеств (объединение, пересечение, разность, декартово произведение). Он показал, что любое представление данных сводится к совокупности двумерных таблиц особого вида, известного в математике как отношение – relation (англ.) Наименьшая единица данных реляционной модели – это отдельное атомарное (неразложимое) для данной модели значение данных. Так, в одной предметной области фамилия, имя и отчество могут рассматриваться как единое значение, а в другой – как три различных значения.

Доменом называется множество атомарных значений одного и того же типа. Смысл доменов состоит в следующем. Если значения двух атрибутов берутся из одного и того же домена, то, вероятно, имеют смысл сравнения, использующие эти два атрибута Если же значения двух атрибутов берутся из различных доменов, то их сравнение, вероятно, лишено смысла.

Отношение на доменах D1, D2, ..., Dn (не обязательно, чтобы все они были различны) состоит из заголовка и тела.

Заголовок состоит из такого фиксированного множества атрибутов A1, A2, ..., An, что существует взаимно однозначное соответствие между этими атрибутами Ai и определяющими их доменами Di (i=1,2,...,n).

Тело состоит из меняющегося во времени множества кортежей , где каждый кортеж состоит в свою очередь из множества пар атрибут-значение (Ai:Vi), (i=1,2,...,n), по одной такой паре для каждого атрибута Ai в заголовке. Для любой заданной пары атрибут-значение (Ai:Vi) Vi является значением из единственного домена Di, который связан с атрибутом Ai.

Степень отношения – это число его атрибутов. Отношение степени один называют унарным, степени два – бинарным, степени три – тернарным, ..., а степени n – n-арным. Степень отношения

Кардинальное число или мощность отношения – это число его кортежей. Кардинальное число отношения изменяется во времени в отличие от его степени.

Поскольку отношение – это множество, а множества по определению не содержат совпадающих элементов, то никакие два кортежа отношения не могут быть дубликатами друг друга в любой произвольно-заданный момент времени. Пусть R – отношение с атрибутами A1, A2, ..., An. Говорят, что множество атрибутов K=(Ai, Aj, ..., Ak) отношения R является возможным ключом R тогда и только тогда, когда удовлетворяются два независимых от времени условия:

  1. Уникальность: в произвольный заданный момент времени никакие два различных кортежа R не имеют одного и того же значения для Ai, Aj, ..., Ak.
  2. Минимальность: ни один из атрибутов Ai, Aj, ..., Ak не может быть исключен из K без нарушения уникальности.

Каждое отношение обладает хотя бы одним возможным ключом, поскольку по меньшей мере комбинация всех его атрибутов удовлетворяет условию уникальности. Один из возможных ключей (выбранный произвольным образом) принимается за его первичный ключ. Остальные возможные ключи, если они есть, называются альтернативными ключами.

Вышеупомянутые и некоторые другие математические понятия явились теоретической базой для создания реляционных СУБД, разработки соответствующих языковых средств и программных систем, обеспечивающих их высокую производительность, и создания основ теории проектирования баз данных. Однако для массового пользователя реляционных СУБД можно с успехом использовать неформальные эквиваленты этих понятий:

Отношение – Таблица (иногда Файл),
Кортеж – Строка (иногда Запись),
Атрибут – Столбец, Поле.

При этом принимается, что «запись» означает «экземпляр записи», а «поле» означает «имя и тип поля».

1. Каждая таблица состоит из однотипных строк и имеет уникальное имя.

2. Строки имеют фиксированное число полей (столбцов) и значений (множественные поля и повторяющиеся группы недопустимы). Иначе говоря, в каждой позиции таблицы на пересечении строки и столбца всегда имеется в точности одно значение или ничего.

3. Строки таблицы обязательно отличаются друг от друга хотя бы единственным значением, что позволяет однозначно идентифицировать любую строку такой таблицы.

4. Столбцам таблицы однозначно присваиваются имена, и в каждом из них размещаются однородные значения данных (даты, фамилии, целые числа или денежные суммы).

5. Полное информационное содержание базы данных представляется в виде явных значений данных и такой метод представления является единственным. В частности, не существует каких-либо специальных "связей" или указателей, соединяющих одну таблицу с другой.

6. При выполнении операций с таблицей ее строки и столбцы можно обрабатывать в любом порядке безотносительно к их информационному содержанию. Этому способствует наличие имен таблиц и их столбцов, а также возможность выделения любой их строки или любого набора строк с указанными признаками

Ключи

Реляционная теория требует, чтобы данные унифицировались уникально по трём критериям:

· таблицей, где хранится этот элемент данных;

· названием поля в этой таблице;

· значением первичного ключа для записи.

Первичный ключ – это поле или группа полей, которые гарантируют уникальность записи.

При разработке таблицы в качестве первичного ключа следует выбирать столько полей, сколько требуется для того, чтобы каждая запись таблицы была уникальной. Одни таблицы содержат одно поле, уникально идентифицирующее каждую запись. Другие таблицы могут потребовать составного ключа (composite key ), то есть первичного ключа, состоящего из комбинации полей. Даже если таблица имеет составной первичный ключ, он может быть только один.

Построение первичного ключа является обязательным. Данные часто имеют естественный ключ (natural key ). Например, номер социального страхования идентифицирует любого налогоплательщика США; банки выдают номера счетов своим клиентам; больницы присваивают пациентам номера в картотеке. Всё это – номер социального страхования, счёт в банке, номер в картотеке – лучшие кандидаты на роль первичного ключа, поскольку они уникально идентифицируют налогоплательщиков, клиентов и пациентов соответственно.

При выборе ключа надо проявлять осторожность, так как некоторые данные только кажутся уникальными. Например, фамилия и имя, наименование фирмы и дата заказа.

Если данные не содержат естественного первичного ключа, то он должен быть создан. Существуют две школы, которые предлагают разные способы создания искусственного ключа (artifical key ).

Первая школа утверждает, что ключ должен быть максимально приближен к данным. Например, записи в таблицах Paradox по умолчанию автоматически сортируют и отображаются в порядке, определённом первичным ключом. Если построить ключ по четырём буквам от фамилии плюс две буквы имени, плюс последовательно присвоенное число, то сортировка будет показывать записи в алфавитном порядке. Но у такого ключа есть и неудобства, например, при изменении фамилии придётся обновлять ссылки.

Вторая школа считает, что ключ не должен иметь ничего общего с данными, так называемый суррогатный ключ (surrogate key ).

Первичный ключ следует формировать настолько коротким, насколько это возможно. Длинный ключ приводит к большему числу ошибок при вводе данных. Поскольку реляционная БД использует первичные ключи для организации связей между таблицами, то появление ошибочных связей ухудшает защищённость данных. Если естественный первичный ключ получается слишком длинным, то рекомендуется перейти к использованию суррогатного ключа. Этот подход часто применяется на практике и известен как генерация уникальных идентификаторов.

Ключевым элементом данных называется такой элемент, по которому можно определить значения других элементов данных. Однозначно идентифицировать объект могут два и более элементов данных. Выбирать ключевые элементы данных следует тщательно, поскольку правильный выбор способствует созданию достоверной концептуальной модели данных.

Первичный ключ - это атрибут или группа атрибутов, которые единственным образом идентифицируют каждую строку таблицы.

Альтернативный (вторичный) ключ - это атрибут или группа атрибутов, не совпадающих с первичным ключом и уникально идентифицирующих экземпляр объекта.

Индексы

Индексы являются составной частью структуры базы данных и предназначены для ускорения поиска информации в таблице.

Индекс – структура, связанная с таблицей или представлением и предназначенная для ускорения поиска информации в них. Индекс определяется для одного или нескольких столбцов, называемых индексированными столбцами. Он содержит отсортированные значения индексированного столбца или столбцов со ссылками на соответствующую строку исходной таблицы или представления. Повышение производительности достигается за счет сортировки данных . Использование индексов может существенно повысить производительность поиска, однако для хранения индексов необходимо дополнительное пространство в базе данных .

В качестве примера поиска в таблице представим себе телефонный справочник, где все абоненты расположены по алфавиту. Очевидно, что в таком справочнике очень легко найти номер телефона, если известна фамилия абонента. С другой стороны, найти фамилию абонента по номеру его телефона чрезвычайно сложно, т.к. справочник не упорядочен по номерам телефона, придется искать нужный телефон методом простого перебора. Таким образом, упорядоченность информации значительно облегчает поиск. Этот принцип положен в основу системы индексов.

На рисунке показан телефонный справочник с записями, не упорядоченными по номеру телефона, и индекс, сформированный для этого справочника. Из рисунка видно, что индекс представляет собой массив целых чисел, куда помещены номера записей справочника в порядке возрастания номера телефона. Благодаря этому, записи становятся упорядоченными по номеру телефона, и вместо поиска методом полного перебора можно применить метод половинного деления или метод двоичного дерева.


Рис. 3. Пример индекса по полю «номер телефона».

Связи

Связь – это функциональная зависимость между сущностями. Если между некоторыми сущностями существует связь, то факты из одной сущности ссылаются или некоторым образом связаны с фактами из другой сущности. Поддержание непротиворечивости функциональных зависимостей между сущностями называется ссылочной целостностью. Поскольку связи находятся «внутри» реляционной модели, реализация ссылочной целостности может выполняться как приложением, так и самой СУБД (с помощью механизмов декларативной ссылочной целостности и триггеров).

При описании отношений подразумевается связь между записями разных таблиц. Например, если упоминается связь типа одна-ко-многим, то имеется в виду, что одна запись некоторой таблицы связана со многими записями другой таблицы. Ни в коем случае не имеется в виду связь одной таблицы со многими таблицами.

Простейшая связь между записями таблиц – это одна-к-одной. Связь такого типа осуществляется, когда связываемые таблицы имеют одинаковый первичный ключ. Чаще всего этот тип связи используется при наличии таблицы с большим числом полей, некоторые из которых являются второстепенными (не столь значимыми). Например, запись о человеке в отделе кадров может состоять из фамилии, имени, отчества, паспортных данных, автобиографии и т.п. Автобиография может быть отнесена к второстепенным сведениям и вынесена в дополнительную таблицу с типом связи одна-к-одной.

Наиболее распространён тип связи одна-ко-многим . Например, клиент и заказы: один клиент может сделать много заказов. Поля, по которым осуществляются связи, не являются свободными, то есть не могут иметь произвольные значения. Например, в заказе должен быть упомянут клиент, который есть в таблице «Клиенты». С точки зрения таблицы «Клиенты» поле «ФИО клиента» может быть произвольным, так как не зависит от полей других таблиц.

Если связаны все ключевые поля одной таблицы и часть ключевых полей другой таблицы, то тип связи может быть только одна-ко-многим.

Тип связи много-ко-многим возникает, если связаны поля, частично входящие в первичный ключ одной и другой таблицы. Например, поле «Наименование продукта» в таблице «Заказы» и поле «Наименование продукта» в таблице «Отчисления». Продукт может быть заказан несколькими клиентами, а отчисления по продукту идут разным специалистам за каждую продажу продукта (если таблица «Отчисления» имеет два поля в первичном ключе – название продукта и специалист или название продута и менеджер).

Выше рассмотрены способы связывания таблиц при помощи полей, входящих в первичный ключ. Однако существует другой способ связывания таблиц, в связи с одной стороны могут участвовать поля, не входящие в первичный ключ, а с другой стороны – поля входящие в первичный ключ. Это делается при помощи вторичных или внешних ключей (foreign key ). Вторичный ключ строится по полям, не входящим в первичный ключ.

Таким образом, при определении отношения, одна таблица осуществляет связь используя поля, входящие в первичный ключ, а другая – может использовать все поля первичного ключа, их часть, или поля, не входящие в первичный ключ.

В отличие от отношений, основанных только на первичном ключе, отношения, построенные на использовании вторичного ключа, называются потенциальными. Разработчик БД сам решает, использовать такое связывание или нет.

Отношение много-к-одной по сути является перевёрнутым отношением одна-ко-многим. Значения в полях связи должна определять таблица, в которой используемые поля являются уникальными, то есть только одна запись может определять множество других.

Ссылочная целостность – это обеспечение соответствия значения внешнего ключа экземпляра дочерней сущности значениям первичного ключа в родительской сущности. Ссылочная целостность может контролироваться при всех операциях, изменяющих данные.

Хранимая процедура - это программа, объединяющая запросы, процедурную логику (операторы присваивания, ветвления и т.д.) и хранящиеся в базе данные. Этот механизм позволяет содержать вместе с данными достаточно сложные программы, выполняющие большой объём работ по обработке данных без передачи данных по сети и без взаимодействия с клиентом. В этом случае база данных может представлять собой функционально самостоятельный уровень приложения, который взаимодействует с другими уровнями для получения запросов и обновления данных.

Правила позволяют вызывать выполнение заданных действий при изменении или добавлении данных в БД и тем самым контролировать истинность помещаемых в неё данных. Обычно действие - это вызов определённой процедуры или функции. Правила могут ассоциироваться с полем или записью и, соответственно, срабатывать при изменении данных в конкретном поле или записи таблицы. Нельзя использовать правила при удалении данных. В отличие от ограничений, которые являются лишь средством контроля относительно простых условий корректности ввода данных, правила позволяют проверять и поддерживать сколь угодно сложные соотношения между элементами данных в БД.

Триггер – это предварительно определённое действие или последовательность действий, автоматически осуществляемых при выполнении операций обновления, добавления или удаления данных. Триггер является мощным инструментом контроля за изменением данных в БД, помогает программисту автоматизировать операции, которые должны выполняться в этом случае. Триггер выполняется после проверки правил обновления данных. Ни пользователь, ни приложение не могут активизировать триггер, он запускается автоматически, когда пользователь или приложение выполняют с БД определённые действия. Триггер включает в себя следующие компоненты:

* ограничения, для реализации которых созда1тся триггер;

* событие, которое будет характеризовать возникновение ситуации, требующей проверки ограничений. События чаще всего связаны с изменением состояния БД (например, добавление записи в таблицу), но могут учитываться и дополнительные условия (например, добавление записи только с отрицательным значением);

Использование триггеров при проектировании БД даёт следующие преимущества:

* триггеры всегда выполняются при совершении соответствующих действий. Разработчик продумывает использование триггеров при проектировании БД и может больше не вспоминать о них при разработке приложения для доступа к данным;

* при необходимости триггеры можно изменять централизованно непосредственно в БД. Пользовательские программы, работающие с этой БД не потребуют модернизации;

* система обработки данных, использующая триггеры, обладает лучшей переносимостью в архитектуру клиент-сервер за счёт меньшего объёма требуемых модификаций.

Нормализация отношений - это процесс построения оптимальной структуры таблиц и связей в реляционной БД. В процессе нормализации элементы данных группируются в таблицы, представляющие объекты и их взаимосвязи. Теория нормализации основана на том, что определённый набор таблиц обладает лучшими свойствами при включении, модификации и удалении данных, чем все остальные наборы таблиц, с помощью которых могут быть представлены те же данные.

логической модели реляционной базы данных в объекты реляционной базы данных. Для решения этой задачи проектировщику базы данных необходимо знать: а) какими объектами располагает реляционная база данных в принципе; б) какие объекты поддерживает конкретная СУБД, которая выбрана для реализации базы данных.

Таким образом, мы предполагаем, что решение о выборе СУБД уже принято руководителем ИТ-проекта, и согласовано с заказчиком базы данных, т.е. СУБД задана. Проектировщик базы данных должен ознакомиться с документацией, в которой описан диалект SQL, поддерживаемый выбранной СУБД. В настоящей лекции предполагается, что была выбрана СУБД Oracle 9i, хотя подавляющая часть материала охватывает объекты в любой промышленной реляционной СУБД.

Замечание. О выборе СУБД. Выбор СУБД относится к многокритериальной задаче выбора и в настоящем курсе не рассматривается. Следует помнить о том, что СУБД обычно поддерживает только одну модель данных: реляционную, иерархическую, сетевую, многомерную, объектно-ориентированную, объектно-реляционную. Исключение составляют небольшое число СУБД. Например, ADABAS, Software AG (сетевая и реляционная модели), или Oracle 9i, Oracle Inc. (реляционная и объектно-реляционная модели). Обычно при выборе СУБД при всех прочих равных возможностях стараются создать базу данных на СУБД, претендующей на промышленный стандарт.

Иерархия объектов реляционной базы данных прописана в стандартах по SQL, в частности, в стандарте SQL-92 , на который мы будем ориентироваться при изложении материала настоящей лекции. Этот стандарт поддерживается практически всеми современными СУБД, вплоть до настольных. Иерархия объектов реляционной базы данных показана на рисунке ниже.

На самом нижнем уровне находятся наименьшие объекты, с которыми работает реляционная база данных, - столбцы (колонки) и строки. Они, в свою очередь, группируются в таблицы и представления.

Замечание. В контексте лекции атрибуты, колонки, столбцы и поля считаются синонимами. То же относится и к терминам "строка", "запись" и "кортеж".

Таблицы и представления, которые представляют физическое отражение логической структуры базы данных, собираются в схему. Несколько схем собираются в каталоги, которые затем могут быть сгруппированы в кластеры. Следует отметить, что ни одна из групп объектов стандарта SQL-92 не связана со структурами физического хранения информации в памяти компьютеров.


Рис. 8.1.

Помимо указанных на рисунке объектов, в реляционной базе данных могут быть созданы индексы, триггеры, события, хранимые команды, хранимые процедуры и ряд других. Теперь перейдем к определению объектов реляционной базы данных.

Основные объекты реляционной базы данных

Кластеры, каталоги и схемы не являются обязательными элементами стандарта и, следовательно, программной среды реляционных баз данных.

Под кластером понимается группа каталогов, к которым можно обращаться через одно соединение с сервером базы данных (программная компонента СУБД).

На практике процедура создания каталога определяется реализацией СУБД на конкретной операционной платформе. Под каталогом понимается группа схем. На практике каталог часто ассоциируется с физической базой данных как набором физических файлов операционной системы, которые идентифицируются ее именем.

Для проектировщика базы данных схема - это общее логическое представление отношений законченной базы данных. С точки зрения SQL, схема - это контейнер для таблиц, представлений и других структурных элементов реляционной базы данных. Принцип размещения элементов базы данных в каждой схеме полностью определяется проектировщиком базы данных.

Для создания таблиц и представлений наличие схемы не обязательно. Если у вас планируется инсталляция только одной логической базы данных, то ясно, что можно обойтись и без схемы. Но если планируется, что одна и та же СУБД будет использоваться для поддержки нескольких баз данных, то надлежащая организация объектов баз данных в схемы может значительно облегчить сопровождение этих баз данных. На практике схема часто ассоциируется с объектами определенного пользователя физической базы данных.

Далее объекты реляционной базы данных будут вводиться в контексте реляционной СУБД Oracle 9i. Такой подход принят потому, что проектирование физической модели реляционной базы данных выполняется для конкретной среды ее реализации.

В Oracle 9i термин схема (Schema) используется для описания всех объектов базы данных, которые созданы некоторым пользователем. Для каждого нового пользователя автоматически создается новая схема.

К числу основных объектов реляционных баз данных относятся таблица, представление и пользователь.

Таблица (Table) является базовой структурой реляционной базы данных. Она представляет собой единицу хранения данных - отношение. Таблица идентифицируется в базе данных своим уникальным именем, которое включает в себя идентификацию пользователя. Таблица может быть пустой или состоять из набора строк.

Представление (View) - это поименованная динамически поддерживаемая СУБД выборка из одной или нескольких таблиц базы данных. Оператор выборки ограничивает видимые пользователем данные. Обычно СУБД гарантирует актуальность представления - его формирование производится каждый раз, когда представление используется. Иногда представления называют виртуальными таблицами .

Пользователь (User) - это объект, обладающий возможностью создавать или использовать другие объекты базы данных и запрашивать выполнение функций СУБД , таких как организация сеанса работы, изменение состояние базы данных и т. д.

Для упрощения идентификации и именования объектов в базе данных поддерживается такие объекты, как синоним, последовательность и .

Синоним ( Synonym ) - это альтернативное имя объекта (псевдоним) реляционной базы данных, которое позволяет иметь доступ к данному объекту. Синоним может быть общим и частным. Общий синоним позволяет всем пользователям базы данных обращаться к соответствующему объекту по его псевдониму. Синоним позволяет скрыть от конечных пользователей полную квалификацию объекта в базе данных.

Последовательность (Sequence) - это объект базы данных, который позволяет генерировать последовательность уникальных чисел (номеров) в условиях многопользовательского асинхронного доступа. Обычно элементы последовательности используются для уникальной нумерации элементов таблиц (строк) в операциях модификации данных.

Определенные пользователем типы данных ( User-defined data types ) представляют собой определенные пользователем типы атрибутов (домены), которые отличаются от поддерживаемых (встроенных) СУБД типов. Они определяются на основе встроенных типов. Определенные пользователем типы данных образуют ту часть среды СУБД, которая организована в соответствии с объектно-ориентированной парадигмой.

Для обеспечения эффективного доступа к данным в реляционных СУБД поддерживаются ряд других объектов: индекс, табличная область, кластер, секция.

Индекс (Index) - это объект базы данных, создаваемый для повышения производительности выборки данных и контроля уникальности первичного ключа (если он задан для таблицы). Полностью индексные таблицы (index-organized tables) исполняют роль таблицы и индекса одновременно.

Табличное пространство или область ( Tablespace ) - это именованная часть базы данных, используемая для распределения памяти для таблиц и индексов. В Oracle 9i - это логическое имя физических файлов операционной системы. Все объекты базы данных, в которых хранятся данные, соответствуют некоторым табличным пространствам . Большинство объектов базы данных, в которых данные не хранятся, находятся в словаре данных, расположенном в табличном пространстве SYSTEM .

Кластер (Cluster) - это объект, задающий способ совместного хранения данных в нескольких или одной таблице. Одним из критериев использования кластера является наличие общих ключевых полей в нескольких таблицах, которые используются в одной и той же команде SQL. Обычно кластеризованные столбцы или таблицы хранятся в базе данных в виде таблиц хэширования (т.е. специальным образом).

Секция (Partition) - это объект базы данных, который позволяет представить объект с данными в виде совокупности подобъектов, отнесенных к различным табличным пространствам . Таким образом, секционирование позволяет распределять очень большие таблицы на нескольких жестких дисках.

Для обработки данных специальным образом или для реализации поддержки ссылочной целостности базы данных используются объекты: хранимая процедура, функция, команда, триггер, таймер и пакет (Oracle). С помощью этих объектов базы данных можно выполнять так называемую построчную обработку (record processing) данных. С точки зрения приложений баз данных построчная обработка - это последовательная выборка данных по одной строке, ее обработка и переход к обработке следующей строки.

Данные объекты реляционной базы данных представляют собой программы, т.е. исполняемый код. Этого код обычно называют серверным кодом (server-side code) , поскольку он выполняется компьютером, на котором установлено ядро реляционной СУБД. Планирование и разработка такого кода является одной из задач проектировщика реляционной базы данных.

Хранимая процедура ( Stored procedure ) - это объект базы данных, представляющий поименованный набор команд SQL и/или операторов специализированных языков обработки программирования базы данных (например, SQLWindows или PL/SQL).

Функция (Function) - это объект базы данных, представляющий поименованный набор команд SQL и/или операторов специализированных языков обработки программирования базы данных, который при выполнении возвращает значение - результат вычислений.

Команда (Command) - это поименованный оператор SQL, который заранее откомпилирован и сохраняется в базе данных. Скорость обработки команды выше, чем у соответствующего ему оператора SQL, т.к. при этом не выполняются фазы синтаксического разбора и компиляции.

Триггер (Trigger) - это объект базы данных, который представляет собой специальную хранимую процедуру. Эта процедура запускается автоматически, когда происходит связанное с триггером событие (например, до вставки строки в таблицу).

Таймер (Timer) отличается от триггера тем, что запускающим событием для хранимой процедуры является событие таймера.

Пакет (Package) - это объект базы данных, который состоит из поименованного структурированного набора переменных, процедур и функций.

В распределенных реляционных СУБД имеются специальные объекты: снимок и связь базы данных.

Снимок (Snapshop) - локальная копия таблицы удаленной базы данных, которая используется для тиражирования (репликации) таблицы или результата запроса. Снимки могут быть модифицируемыми или предназначенными только для чтения.

Связь базы данных (Database Link) или связь с удаленной базой данных - это объект базы данных, который позволяет обратиться к объектам удаленной базы данных. Имя связи базы данных, грубо говоря, можно представить как ссылку на параметры доступа к удаленной базы данных.

Для эффективного управления разграничением доступа к данным в Oracle поддерживает объект роль.

Роль (Role) - объект базы данных, представляющий собой поименованную совокупность привилегий, которые могут назначаться пользователям, категориям пользователей или другим ролям.