Программные и аппаратные компоненты компьютерных сетей. Основные программные и аппаратные компоненты сети Программные и аппаратные компоненты сети

Объединение компьютеров в одну систему позволяет иметь доступ к общим ресурсам:

  • оборудованию, например, принтерам, дискам, что обеспечивает экономию материальных средств и время, выделяемых для обслуживания устройств;
  • программам и данным, что обеспечивает удобство обслуживания и снижает затраты на закупку программных средств;
  • информационным сервисам.

Объединение ресурсов компьютеров, участвующих в процессах обработки, передачи, хранения информации, позволяет увеличить скорость этих процессов, надежность, организовать взаимодействие участников совместной обработки данных.

При этом пользователь получает возможность работать с оборудованием, сетевыми службами и прикладными процессами, расположенными на других компьютерах.

Важным преимуществом объединения компьютеров является передача информации от одного компьютера к другому, находящихся на любом удаленном расстоянии друг от друга.

Оборудование сети работает под управлением системного и прикладного программного обеспечения.

Компьютеры в сети взаимодействуют друг с другом с помощью аппаратных средств и сетевого программного обеспечения. Основные аппаратные компоненты сети образуют узлы - рабочие станции и серверы . Рабочими станциями являются компьютеры, установленные на рабочих местах пользователей и оснащенные специализированным программным обеспечением для конкретной предметной области. Серверами, как правило, служат достаточно мощные компьютеры, функциями которых являются обеспечение всех процессов для управления работой сети.

Для соединения узлов используются коммуникационные системы, включающие в себя линии связи, передающую аппаратуру, различное коммуникационное оборудование.

7.1.2. Аппаратные компоненты сети

Основные аппаратные компоненты

Основными аппаратными компонентами компьютерной сети (рис. 1) являются:

  • Серверы;
  • Рабочие станции;
  • Каналы (линии) связи;
  • Аппаратура передачи данных.

Рис. 1. Основные аппаратные компоненты компьютерной сети

Серверы и рабочие станции

Серверы являются достаточно мощными компьютерами, так как должны обеспечить высокую скорость передачи данных и обработки запросов. Сервер - источник ресурсов сети, компьютер с большой емкостью оперативной памяти, жесткими дисками большой емкости и дополнительными накопителями информации. Серверов в сети может быть много.

Сервер работает под управлением сетевой операционной системы, которая обеспечивает одновременный доступ пользователей сети к расположенным на нем данным. Требования к серверу определяются задачами, которые на него возложены в конкретной сети. Успешность выполнения задач сервером зависит от установленного программного обеспечения. Серверы могут осуществлять хранение данных, пересылку почтовых сообщений, управление базами данных, удаленную обработку заданий, доступ к web-страницам, печать заданий и ряд других функций, потребность в которых может возникнуть у пользователей сети.

Компьютер, подключенный к сети и имеющий доступ к ее ресурсам, называется рабочей станцией .

Роли сервера и рабочей станции могут быть различными в сетях.

Например, файл-сервер выполняет следующие функции:

  • хранение данных;
  • архивирование данных;
  • синхронизацию изменений данных различными пользователями;
  • передачу данных.

Файл-сервер получает запрос на доступ к файлу от рабочей станции. Файл отсылается на рабочую станцию. Пользователь на рабочей станции обрабатывает данные. Затем файл возвращается серверу обратно.

Существует и другое разделение ролей между компьютерами в сети, Например, сеть типа Клиент/Сервер.

Клиентом называют рабочую станцию, на которой установлено программное обеспечение, обеспечивающее решение задач, сформированных в процессе работы пользователя.

В процессе обработки данных клиент формирует запрос серверу для выполнения различных задач: пересылки сообщения, просмотр web-страниц, и т. д.

Сервер, выполняет запрос, поступивший от клиента. Результаты выполнения запроса передаются клиенту. Часть задач может выполняться на стороне клиента. Обмен данными, обработка запросов и обработка данных продолжаются между сервером и клиентом, пока они не выполнят задачу. Обработка данных может выполняться как сервером, так и клиентом.

Сервер обеспечивает хранение данных общего пользования, организует доступ к этим данным и передает данные клиенту.

Клиент обрабатывает полученные данные и представляет результаты обработки в виде, удобном для пользователя.

Каналы связи

Канал связи (или линия связи ) - физическая среда, по которой передаются информационные сигналы аппаратуры передачи данных.

Среда передачи данных может базироваться на различных физических принципах действия. Например, это может быть кабель и соединительные разъемы. Физической средой передачи данных может служить земная атмосфера или космическое пространство, через которые распространяются информационные сигналы.

В телекоммуникационных системах данные передаются с помощью электрического тока, радиосигналов или световых сигналов. Все эти физические процессы представляют собой колебания электромагнитного поля различной частоты и природы. Основной характеристикой физических каналов служит скорость передачи данных , измеряемая в количестве бит (Кбит, Мбит) в секунду.

В зависимости от физической среды линии связи могут быть классифицированы в виде следующих групп: проводные линии, кабельные линии, радиоканалы наземной и спутниковой связи.

Проводные линии - это неэкранированные провода, проложенные над землей по воздуху. По ним, в основном, передаются телефонные или телеграфные сигналы, но их можно использовать и для передачи данных, посылаемых от одного компьютера к другому. Скорость передачи данных по таким линиям измеряется десятками Кбит/сек.

Кабельные линии - это совокупность изолированных разными слоями проводников. В основном, используются волоконно-оптические кабели и кабели на основе медных проводов: витая пара (скорость от 100 Мбит/сек до 1Гбит/сек) и коаксиальный кабель (скорость – десятки Мбит/сек). Кабели используются для внутренней и внешней проводки. Внешние кабели подразделяются на подземные, подводные и кабели воздушной проводки.

Наиболее качественным кабелем является волоконно-оптический кабель. Он состоит из гибких стеклянных волокон, по которым распространяются световые сигналы. Он обеспечивает передачу сигнала с очень высокой скоростью (до 10 Гбит/сек и выше). Этот тип кабеля является надежным, так как хорошо защищает данные от внешних помех.

Радиоканалы наземной и спутниковой связи , представляют собой канал, образованные между передатчиком и приемником радиоволн. Радиоканалы различаются используемыми частотными диапазонами и дальностью канала. Они обеспечивают различную скорость передачи данных. Спутниковые каналы и радиосвязь используются в случаях, когда нельзя использовать кабельный канал, например, в малонаселенных местностях, для связи с пользователями мобильной радиосети.

В компьютерных сетях применяются все описанные типы физических сред передачи данных, но волоконно-оптический кабель представляется наиболее перспективным. Его уже начали широко использовать в качестве магистралей территориальных, городских сетей, а также используют на высокоскоростных участках локальных сетей.

Аппаратура передачи данных

Аппаратура передачи данных служит для непосредственного присоединения компьютеров к линии связи. К ней относятся устройства передачи данных, которые отвечают за передачу информации в физическую среду (линию связи) и прием из нее данных: сетевая карта (адаптер), модемы, устройства подключения к цифровым каналам, терминальные адаптеры сетей ISBN, мосты, маршрутизаторы, шлюзы и пр.

Сетевая карта (адаптер) указывает адрес компьютера. Компьютер, работающий в сети, должен быть правильно опознан, то есть, его адрес должен быть уникальным. Поэтому, производителям сетевых карт выделяют некоторое количество разных адресов, которые не совпадают между собой.

Рис. 2. Сетевой адаптер (карта)

Модемы - устройства для преобразования цифровых сигналов компьютера в аналоговые сигналы телефонной линии и обратно. Распространенная скорость передачи данных – 56 Кбит/сек.

Терминальные адаптеры сетей ISBN (Integrated Services Digital Network) – телефонная сеть с интеграцией услуг. Основой такой сети является цифровая обработка сигналов. Абоненту предоставляется два канала для голосовой связи и передачи данных со скоростью 64 Кбит/сек.

Устройства подключения к цифровым каналам предназначены для улучшения качества сигналов и создания постоянного составного канала между двумя абонентами сети. Используются, в основном, на линиях связи большой протяженности.

Мосты - устройства, соединяющие две сети и использующие одинаковые методы передачи данных.

Маршрутизаторы или роутеры - устройства, соединяющие сети разного типа, но использующие одну операционную систему.

Шлюзы - устройства, позволяющие организовать обмен данными между двумя сетями, использующими различные правила взаимодействия, например, подключить локальную вычислительную сеть к глобальной.

Мосты, маршрутизаторы, шлюзы могут работать как в режиме полного выделения функций, так и в режиме совмещения их с функциями рабочей станции вычислительной сети.

К аппаратуре передачи данных относятся также:

  • Усилители - устройства, повышающие мощность сигналов;
  • Регенераторы, восстанавливающие форму импульсных сигналов, искаженных при передаче на большие расстояния;
  • Коммутаторы – аппаратура для создания между двумя абонентами сети долговременного непрерывного составного канала из отрезков физической среды с усилителями.

Невидимая пользователям сеть с промежуточной аппаратурой канала связи образует сложную сеть, которая называется первичной сетью. Она не поддерживает никаких служб для пользователя, а лишь служит основой для построения других сетей.

7.1.3. Виды сетей

Компьютерные сети принято классифицировать по разным признакам. Наиболее распространенной является классификация по размеру в зависимости от занимаемой территории (рис.3):

  • локальная компьютерная сеть – LAN (Local Area Network);
  • региональная компьютерная сеть - MAN (M е tropolitan Area Network);
  • глобальная компьютерная сеть - WAN (Wide Area Network).

Локальная вычислительная сеть объединяет абонентов, расположенных на небольших расстояниях. Обычно локальная сеть используется для решения задач отдельных предприятий, например, локальная сеть поликлиники, магазина или учебного заведения. Ресурсы локальной сети недоступны пользователям других сетей.

Региональные компьютерные сети объединяют узлы на значительных расстояниях друг от друга. Они могут включать в себя локальные сети и других абонентов внутри большого города, экономического региона, отдельной страны. Обычно, расстояния между абонентами региональной вычислительной сети составляют десятки - сотни километров. Пример такой сети – региональная сеть библиотек области.

Глобальные компьютерные сети объединяют ресурсы компьютеров, удаленных на большие расстояния. Глобальная вычислительная сеть объединяет абонентов, расположенных в различных странах на различных континентах. Взаимодействие между абонентами такой сети может осуществляться на базе телефонных линий связи, радиосвязи и систем спутниковой связи.

Рис. 3. Объединение компьютерных сетей различных видов

Глобальные вычислительные сети позволят решить проблему объединения информационных ресурсов всего человечества и организации доступа к этим ресурсам.

Сети имеют иерархическую организацию (рис. 3). Они могут входить одна в другую, объединяя локальные сети в региональные, а региональные в глобальные. Глобальные вычислительные сети включают региональные сети и могут объединять другие глобальные сети. Примером такого объединения сетей является сеть Интернет, где пользователи сети имеют единый интерфейс для доступа к ресурсам глобальных сетей. В настоящее время широко распространены корпоративные сети , которые с одной стороны решают задачи локальных сетей, соединяя компьютеры для обмена внутрикорпоративной информацией, с другой стороны они используют технологии глобальных сетей. Корпоративная сеть - сеть смешанной топологии, в которую входят несколько локальных вычислительных сетей. Она объединяет филиалы корпорации и является собственностью предприятия. Корпоративная сеть, использующая единые сетевые технологии, единые способы взаимодействия и приложения для выхода в глобальные сети и для решения внутренних задач называется Интранет (Intranet) .

7.1.4. Топологии компьютерных сетей

Под топологией сетей понимают конфигурацию физических связей сети. Существует несколько видов топологий: полносвязная, кольцевая, звездообразная, шинная, смешанная.

Полносвязная топология предполагает взаимосвязь каждого компьютера (рис.4). Полносвязная топология применяется редко, так как требует выделения физического канала отдельно для каждой пары компьютеров.

Рис. 4. Полносвязная топология сети

Рис. 5. Кольцевая топология сети

Кольцевая топология (рис.5) обеспечивает передачу данных по кольцу от одного компьютера к другому. Любая пара компьютеров связана в такой конфигурации двумя путями - по часовой стрелке и против. Однако, в такой сети выход из строя одного компьютера разрывает канал связи между другими компьютерами.


Звездообразная топология (рис.6) образуется подключением каждого компьютера к общему центральному устройству, которым может быть компьютер, повторитель или маршрутизатор, концентратор. В настоящее время звездообразная топология является наиболее распространенной.

Рис. 6. Звездообразная топология сети

Шинная топология (рис.7) обеспечивает распространение информации по общей шине. Если это беспроводная связь, то роль общей шины вместо кабеля играет радиосреда. Передаваемая по шине информация доступна одновременно всем компьютерам, подсоединенным к ней. Реализация этой топологии недорога и проста в наращивании. Недостаток - в ненадежности кабеля.

Рис. 7. Шинная топология

Смешанная топология – использование всех топологий в одной сети. Типовые топологии (звезда, кольцо, шина) имеют применение в небольших сетях. В крупных сетях можно выделить отдельные участки, имеющие произвольно выбранную типовую топологию. Поэтому топологию крупных сетей можно назвать смешанной. На рисунке 8 схематично представлен участок сети со смешанной топологией.

Рис. 8. Смешанная топология сети

7.1.5. Виды коммутации в сетях

Сообщения могут передаваться от компьютера к компьютеру не напрямую, а транзитом – посредством специальных узлов.

Если топология сети не полносвязная, то обмен данными между произвольной парой конечных узлов (абонентов) должен идти в общем случае через транзитные узлы.

Последовательность транзитных узлов на пути от отправителя к получателю называется маршрутом .

Соединение конечных узлов через сеть транзитных узлов называется коммутацией .

При этом для коммутации решаются такие задачи как:

  • определение информационных потоков, для которых требуется провести обмен данными;
  • формирование адресов рабочих станций;
  • определение маршрутов для потоков и выбор оптимального из них;
  • распознавание потоков и их коммутация на каждом транзитном узле.

Информационный поток образует последовательность байтов, объединенная набором общих признаков. Признаком могут быть адреса компьютеров.

Узел коммутации – это специальное устройство или универсальный компьютер со встроенным программным механизмом коммутации (программный коммутатор). По типу коммутации сети различаются следующим образом:

  • сеть с коммутацией каналов;
  • сеть с коммутацией пакетов;
  • сеть с коммутацией сообщений.

Сети с коммутацией каналов происходят от первых телефонных сетей. Коммутация каналов представляет собой процесс организации соединения последовательности каналов между парой абонентских систем.

Коммутация каналов образует между конечными узлами непрерывный физический канал из последовательно соединенных коммутаторами промежуточных канальных участков с равными скоростями передачи данных. Устанавливается соединение между конечными узлами и начинается передача данных. По окончании передачи канал ликвидируется. Для коммутации в сети используются коммутаторы

На рисунке 9 представлена сеть с коммутацией каналов. Узлы коммутации (УК1–УК5) обслуживают подключенные к ним рабочие станции. (РС1–РС5). Например, для передачи данных от рабочей станции 1 (РС1) к рабочей станции 2 (РС2) должен быть установлен канал между узлами 1 (УК1) и 4 (УК4). Этот канал может быть установлен по маршрутам УК1-УК3-УК2-УК4 или УК1-УК5-УК4. Для организации передачи данных РС1 передает запрос на установление соединения узлу коммутации (УК1) с указанием адреса назначения (РС2). Узел коммутации (УК1) должен выбрать маршрут образования составного канала, а затем передать запрос следующему узлу, например УК3, а тот – следующему, пока не будет передан запрос от узла УК4 к РС2. Если запрос принят конечным компьютером, то направляется ответ исходному компьютеру по уже установленному каналу например, УК1–УК2–УК4. Считается, что канал между РС1 и РС2 установлен. После этого по нему могут направляться данные. По окончании передачи данных канал ликвидируется.

Рис. 9. Коммутационная сеть

Сети с коммутацией пакетов появились в результате экспериментов в глобальных компьютерных сетях. Коммутация пакетов представляет собой технологию доставки сообщений, разделенных для передачи данных на порции (отдельные пакеты), которые могут пересылаться из исходного пункта в пункт назначения разными маршрутами. Конкретный маршрут выбирается передающим и принимающим компьютерами, исходя из наличия соединения и объема трафика.

Сети с коммутацией сообщений . Этот вид коммутации устанавливает логический канал для передачи сообщения от одного компьютера к другому через узлы коммутации. Каждое промежуточное устройство на пути этого маршрута принимает сообщение, локально его сохраняет до тех пор, пока следующий участок канала не освободится, и отправляет его к следующему устройству, как только канал связи освобождается.

7.1.6. Эталонная модель взаимодействия открытых систем

Появление сетей, в которых функционировали разнотипные компьютеры, привело к необходимости разработки стандартов для обмена информацией. Функционирование компьютеров в сетях возможно, благодаря правилам взаимодействия, называемым протоколами . При передаче информации происходит их взаимодействие на разных уровнях.

Связи и процессы в открытых сетях происходят согласно стандартной модели ISO OSI, описывающей правила взаимодействия систем с открытой архитектурой от различных производителей.

ISO – International Standart Organisation - Международная Организация Стардартов.

OSI - аббревиатура, которая расшифровывается двумя вариантами:

  • Open System Interconnection - Взаимодействие Открытых Систем - ВОС;
  • Optimum Scale Integration - Информационная система с оптимальной степенью интеграции.

Взаимодействие осуществляется на основе набора структур, правил и программ, обеспечивающих обработку событий в сетях. Эти наборы называются в модели OSI уровнями . Каждый уровень описывается протоколами (совокупностью правил передачи). В модели OSI выделено семь уровней взаимодействия для выполнения на каждом из них определенной совокупности функций обмена.

Уровень 1 – физический. Описывает передачу двоичной информации по линии связи: напряжения, частоты, природу передающей среды. Протоколы этого уровня обеспечивают поддержание связи, прием и передачу битового потока.

Уровень 2 – канальный. Обеспечивает доступ к среде, управление каналом связи, передачу данных блоками (кадрами). На этом уровне формируются блоки, определяется начало и конец кадра в битовом потоке, происходит контроль правильности их передачи, наличие и исправление ошибок.

Уровень 3 – сетевой. Обеспечивает связь любых двух точек в сети. На этом уровне происходит маршрутизация, т.е. определение пути, по которому происходит передача данных через разные линии связи, обработка адресов.

На этом уровне происходит преобразование информации в пакеты для передачи их в точку назначения. Передача данных происходит после установки виртуального канала связи. После передачи данных канал закрывается. Пакеты передаются по различным физическим маршрутам, т.е. канал определяется динамически. Адрес определяется во время установления связи. Данные также могут передаваться не только пакетами, но и другими методами.

Распространенный протокол сетевого уровня IP (Internet Protocol).

Уровень 4 – транспортный. Задача транспортного уровня передать информацию из одной точки сети в другую и обеспечить качество транспортировки. Этот уровень контролирует поток данных, правильность передачи блоков, правильность доставки в пункт назначения, порядок следования, собирает информацию из блоков в ее прежний вид. Может подтверждать прием и правильность доставки при передаче другими методами.

Распространенный транспортный протокол TCP (Transmission Conrtol Protocol). Часто протоколы сетевого и транспортного уровня называют вместе TCP/IP, подразумевая под этим целое семейство протоколов, потому что они реализуют технологию межсетевого взаимодействия.

TCP делит пересылаемую информацию на несколько частей и нумерует каждую часть, чтобы восстановить их порядок при получении. TCP-пакет помещается в IP-пакет. При получении распаковывается сначала IP-пакет, а затем TCP-пакет. Затем данные собираются согласно номерам пакетов.

На этом уровне действуют также и другие стандартные протоколы.

Уровень 5 – сеансовый. Устанавливает, поддерживает, разрывает соединения. Координирует взаимодействия во время сеанса связи: начинает сеанс, заканчивает, восстанавливает аварийно завершенные сеансы. На этом уровне доменные сетевые имена преобразовываются в числовые и наоборот.

Уровень 6 – представительный (представления данных). Отвечает за синтаксис и семантику передаваемой информации, шифрование, кодирование и сжатие данных. Например, на этом этапе происходит перекодировка текстовой информации, изображений, сжатие, распаковка.

Уровень 7 – прикладной. Обеспечивает передачу информации между программами. Этот уровень связывает пользователя с сетью, делая доступными различные услуги, например передачу файлов, электронных сообщений, просмотр информации Интернет. На этом уровне используются протоколы: FTP (передачи файлов), HTTP (HyperText Transfer Protocol) – протокол передачи гипертекста.

Каждый уровень предоставляет сервис смежному с ним верхнему уровню, получает сервис от смежного с ним нижнего уровня, обменивается блоками данных для выполнения своих задач.

Взаимодействия осуществляются последовательно уровень за уровнем. Передаваемая информация, исходящая от пользователя должна быть обработана сначала прикладным (седьмым) уровнем правил, затем должна пройти обработку на представительном, потом сеансовом, транспортном уровне. Затем последовательно информация проходит обработку сетевого, канального уровня и отдается в физическую среду сети. После обработки на физическом уровне и передачи ее к другому компьютеру, информация обрабатывается в обратном порядке от нижних уровней к последующим и, наконец, после прикладного уровня обработки ее получает пользователь.

Задача каждого уровня при передаче информации готовить данные в соответствии со стандартом и передавать на следующий нижний уровень. При получении информации – на следующий верхний.

Версия для печати

Хрестоматия

Название работы Аннотация

Практикумы

Название практикума Аннотация

Презентации

Название презентации Аннотация

Даже в результате достаточно поверхностного рассмотрения работы в сети становится ясно, что вычислительная сеть - это сложный комплекс взаимосвязанных и согласованно функционирующих программных и аппаратных компонентов. Изучение сети в целом предполагает знание принципов работы ее отдельных элементов:

    компьютеров;

    коммуникационного оборудования;

    операционных систем;

    сетевых приложений.

Весь комплекс программно-аппаратных средств сети может быть описан многослойной моделью. В основе любой сети лежит аппаратный слой стандартизованных компьютерных платформ. В настоящее время в сетях широко и успешно применяются компьютеры различных классов - от персональных компьютеров до мэйнфреймов и суперЭВМ. Набор компьютеров в сети должен соответствовать набору разнообразных задач, решаемых сетью.

Второй слой - это коммуникационное оборудование. Хотя компьютеры и являются центральными элементами обработки данных в сетях, в последнее время не менее важную роль стали играть коммуникационные устройства. Кабельные системы, повторители, мосты, коммутаторы, маршрутизаторы и модульные концентраторы из вспомогательных компонентов сети превратились в основные наряду с компьютерами и системным программным обеспечением как по влиянию на характеристики сети, так и по стоимости. Сегодня коммуникационное устройство может представлять собой сложный специализированный мультипроцессор, который нужно конфигурировать, оптимизировать и администрировать. Изучение принципов работы коммуникационного оборудования требует знакомства с большим количеством протоколов, используемых как в локальных, так и глобальных сетях.

Третьим слоем, образующим программную платформу сети, являются операционные системы (ОС). От того, какие концепции управления локальными и распределенными ресурсами положены в основу сетевой ОС, зависит эффективность работы всей сети. При проектировании сети важно учитывать, насколько просто данная операционная система может взаимодействовать с другими ОС сети, насколько она обеспечивает безопасность и защищенность данных, до какой степени она позволяет наращивать число пользователей, можно ли перенести ее на компьютер другого типа и многие другие соображения.

Самым верхним слоем сетевых средств являются различные сетевые приложения, такие как сетевые базы данных, почтовые системы, средства архивирования данных, системы автоматизации коллективной работы и др. Очень важно представлять диапазон возможностей, предоставляемых приложениями для различных областей применения, а также знать, насколько они совместимы с другими сетевыми приложениями и операционными системами.

Простейший случай взаимодействия двух компьютеров

В самом простом случае взаимодействие компьютеров может быть реализовано с помощью тех же самых средств, которые используются для взаимодействия компьютера с периферией, например, через последовательный интерфейс RS-232C. В отличие от взаимодействия компьютера с периферийным устройством, когда программа работает, как правило, только с одной стороны - со стороны компьютера, в этом случае происходит взаимодействие двух программ, работающих на каждом из компьютеров.

Программа, работающая на одном компьютере, не может получить непосредственный доступ к ресурсам другого компьютера - его дискам, файлам, принтеру. Она может только «попросить» об этом программу, работающую на том компьютере, которому принадлежат эти ресурсы. Эти «просьбы» выражаются в виде сообщений , передаваемых по каналам связи между компьютерами. Сообщения могут содержать не только команды на выполнение некоторых действий, но и собственно информационные данные (например, содержимое некоторого файла).

Рассмотрим случай, когда пользователю, работающему с текстовым редактором на персональном компьютере А, нужно прочитать часть некоторого файла, расположенного на диске персонального компьютера В (рис. 4). Предположим, что мы связали эти компьютеры по кабелю связи через СОМ-порты, которые, как известно, реализуют интерфейс RS-232C (такое соединение часто называют нуль-модемным). Пусть для определенности компьютеры работают под управлением MS-DOS, хотя принципиального значения в данном случае это не имеет.

Рис. 4. Взаимодействие двух компьютеров

Драйвер СОМ-порта вместе с контроллером СОМ-порта работают примерно так же, как и в описанном выше случае взаимодействия ПУ с компьютером. Однако при этом роль устройства управления ПУ выполняет контроллер и драйвер СОМ-порта другого компьютера. Вместе они обеспечивают передачу по кабелю между компьютерами одного байта информации. (В «настоящих» локальных сетях подобные функции передачи данных в линию связи выполняются сетевыми адаптерами и их драйверами.)

Драйвер компьютера В периодически опрашивает признак завершения приема, устанавливаемый контроллером при правильно выполненной передаче данных, и при его появлении считывает принятый байт из буфера контроллера в оперативную память, делая его тем самым доступным для программ компьютера В. В некоторых случаях драйвер вызывается асинхронно, по прерываниям от контроллера.

Таким образом, в распоряжении программ компьютеров А и В имеется средство для передачи одного байта информации. Но рассматриваемая в нашем примере задача значительно сложнее, так как нужно передать не один байт, а определенную часть заданного файла. Все связанные с этим дополнительные проблемы должны решить программы более высокого уровня, чем драйверы СОМ-портов. Для определенности назовем такие программы компьютеров А и В приложением А и приложением В соответственно. Итак, приложение А должно сформировать сообщение-запрос для приложения В. В запросе необходимо указать имя файла, тип операции (в данном случае - чтение), смещение и размер области файла, содержащей нужные данные.

Чтобы передать это сообщение компьютеру В, приложение А обращается к драйверу СОМ-порта, сообщая ему адрес в оперативной памяти, по которому драйвер находит сообщение и затем передает его байт за байтом приложению В. Приложение В, приняв запрос, выполняет его, то есть считывает требуемую область файла с диска с помощью средств локальной ОС в буферную область своей оперативной памяти, а далее с помощью драйвера СОМ-порта передает считанные данные по каналу связи в компьютер А, где они и попадают к приложению А.

Описанные функции приложения А могла бы выполнить сама программа текстового редактора, но включать эти функции в состав каждого приложения - текстовых редакторов, графических редакторов, систем управления базами данных и других приложений, которым нужен доступ к файлам, - не очень рационально. Гораздо выгоднее создать специальный программный модуль, который будет выполнять функции формирования сообщений-запросов и приема результатов для всех приложений компьютера. Как уже было ранее сказано, такой служебный модуль называется клиентом. На стороне же компьютера В должен работать другой модуль - сервер, постоянно ожидающий прихода запросов на удаленный доступ к файлам, расположенным на диске этого компьютера. Сервер, приняв запрос из сети, обращается к локальному файлу и выполняет с ним заданные действия, возможно, с участием локальной ОС.

Программные клиент и сервер выполняют системные функции по обслуживанию запросов приложений компьютера А на удаленный доступ к файлам компьютера В. Чтобы приложения компьютера В могли пользоваться файлами компьютера А, описанную схему нужно симметрично дополнить клиентом для компьютера В и сервером для компьютера А.

Схема взаимодействия клиента и сервера с приложениями и операционной системой приведена на рис. 5. Несмотря на то, что мы рассмотрели очень простую схему аппаратной связи компьютеров, функции программ, обеспечивающих доступ к удаленным файлам, очень похожи на функции модулей сетевой операционной системы, работающей в сети с более сложными аппаратными связями компьютеров.

Рис. 5. Взаимодействие программных компонентов при связи двух компьютеров

Очень удобной и полезной функцией клиентской программы является способность отличить запрос к удаленному файлу от запроса к локальному файлу. Если клиентская программа умеет это делать, то приложения не должны заботиться о том, с каким файлом они работают (локальным или удаленным), клиентская программа сама распознает и перенаправляет (redirect) запрос к удаленной машине. Отсюда и название, часто используемое для клиентской части сетевой ОС, -редиректор . Иногда функции распознавания выделяются в отдельный программный модуль, в этом случае редиректором называют не всю клиентскую часть, а только этот модуль.

Объединение рассмотренных выше компонент в сеть может производится различными способами и средствами. По составу своих компонент, способам их соединения, сфере использования и другим признакам сети можно разбить на классы таким образом, чтобы принадлежность описываемой сети к тому или иному классу достаточно полно могла характеризовать свойства и качественные параметры сети.

Однако такого рода классификация сетей является довольно условной. Наибольшее распространение на сегодня получило, разделение компьютерных сетей по признаку территориального размещения. По этому признаку сети делятся на три основных класса: ·

LAN - локальные сети (Local Area Networks); ·
MAN - городские сети (Metropolitan Area Networks). ·
WAN - глобальные сети (Wide Area Networks);

Локальная сеть (ЛС) - это коммуникационная система, поддерживающая в пределах здания или некоторой другой ограниченной территории один или несколько высокоскоростных каналов передачи цифровой информации, предоставляемых подключенным устройствам для кратковременного монопольного использования. Территории, охватываемые ЛС, могут существенно различаться.
Длина линий связи для некоторых сетей может быть не более 1000 м, другие же ЛС в состоянии обслужить целый город. Обслуживаемыми территориями могут быть как заводы, суда, самолеты, так и учреждения, университеты, колледжи. В качестве передающей среды, как правило, используются коаксиальные кабели, хотя все большее распространение получают сети на витой паре и оптоволокне, а в последнее время также стремительно развивается технология беспроводных локальных сетей, в которых используется один из трех видов излучений: широкополосные радиосигналы, маломощное излучение сверхвысоких частот (СВЧ излучение) и инфракрасные лучи.
Небольшие расстояния между узлами сети, используемая передающая среда и связанная с этим малая вероятность появления ошибок в передаваемых данных позволяют поддерживать высокие скорости обмена - от 1 Мбит/с до 100 Мбит/с (в настоящее время уже есть промышленные образцы ЛС со скоростями порядка 1 Гбит/с).

Городские сети, как правило, охватывают группу зданий и реализуются на оптоволоконных или широкополосных кабелях. По своим характеристикам они являются промежуточными между локальными и глобальными сетями. В последнее время в связи с прокладкой высокоскоростных и надежных оптоволоконных кабелей на городских и междугородних участках, а новые перспективные сетевые протоколы, например, ATM (Asynchronous Transfer Mode - режим асинхронной передачи), которые в перспективе могут использоваться как в локальных, так и в глобальных сетях.

Глобальные сети, в отличие от локальных, как правило, охватывают значительно большие территории и даже большинство регионов земного шара (примером может служить сеть Internet). В настоящее время в качестве передающей среды в глобальных сетях используются аналоговые или цифровые проводные каналы, а также спутниковые каналы связи (обычно для связи между континентами). Ограничения по скорости передачи (до 28,8 Кбит/с на аналоговых каналах и до 64 Кбит/с - на пользовательских участках цифровых каналов) и относительно низкая надежность аналоговых каналов, требующая использования на нижних уровнях протоколов средств обнаружения и исправления ошибок существенно снижают скорость обмена данными в глобальных сетях по сравнению с локальными.
Существуют и другие классификационные признаки компьютерных сетей. Так, например:

По сфере функционирования сети могут быть разделены на банковские сети, сети научных учреждений, университетские сети;

По форме функционирования можно выделить коммерческие сети и бесплатные сети, корпоративные и сети общего пользования;

По характеру реализуемых функций сети подразделяются на вычислительные, предназначенные для решения задач управления на основе вычислительной обработки исходной информации; информационные, предназначенные для получения справочных данных по запросу пользователей; смешанные, в которых реализуются вычислительные и информационные функции;

По способу управления вычислительные сети делятся на сети с децентрализованным, централизованным и смешанным управлением. В первом случае каждая ЭВМ, входящая в состав сети, включает полный набор программных средств для координации выполняемых сетевых операций. Сети такого типа сложны и достаточно дороги, так как операционные системы отдельных ЭВМ разрабатываются с ориентацией на коллективный доступ к общему полю памяти сети. В условиях смешанных сетей под централизованным управлением ведется решение задач, обладающих высшим приоритетом и, как правило, связанных с обработкой больших объемов информации;

По совместимости программного обеспечения бывают сети однородными или гомогенными (состоящие из программно-совместимых компьютеров) и неоднородной или гетерогенной (если компьютеры, входящие в сеть, программно несовместимы).

Назначение и краткая характеристика основных компонентов вычислительных сетей.

Вычислительной сетью называют совокупность взаимосвязанных и распределенных по некоторой территории ЭВМ.

Вычислительная сеть – вычислительный комплекс, включающий территориально распределенную систему компьютеров и их терминалов, объединенных в единую систему.

По степени географического распространения вычислительные сети подразделяются на локальные, городские, корпоративные, глобальные и др.

Вычислительная сеть состоит из трех компонент:

Сети передачи данных, включающей в себя каналы передачи данных и средства коммутации;

Компьютеров, связанных сетью передачи данных;

Сетевого программного обеспечения.

Вычислительная сеть – это сложный комплекс взаимосвязанных программных и аппаратных компонентов:

компьютеров (хост-компьютеры, сетевые компьютеры, рабочие станции, серверы), размещенных в узлах сети;

сетевой операционной системы и прикладного программного обеспечения , управляющих компьютерами;

коммуникационного оборудования – аппаратуры и каналов передачи данных с сопутствующими им периферийными устройствами; интерфейсных плат и устройств (сетевые платы, модемы); маршрутизаторов и коммутационных устройств.

Программные и аппаратные компоненты вычислительной сети

Вычислительная сеть, network - распределенная в пространстве система программных и аппаратных компонентов, связанных линиями компьютерной связи.

Среди аппаратных средств можно выделить компьютеры и коммуникационное оборудование. Программные компоненты состоят из операционных систем и сетевых приложений.

В настоящее время в сети используются компьютеры различных типов и классов с различными характеристиками. Это основа любой вычислительной сети. Компьютеры, их характеристики определяют возможности вычислительной сети. Но в последнее время и коммуникационное оборудование (кабельные системы, повторители, мосты, маршрутизаторы и др.) стало играть не менее важную роль. Некоторые из этих устройств, учитывая их сложность, стоимость и другие характеристики, можно назвать компьютерами, решающими сугубо специфические задачи по обеспечению работоспособности сетей.



Для эффективной работы сетей используются специальные сетевые операционные системы (сетевые ОС) , которые, в отличие от персональных операционных систем, предназначены для решения специальных задач по управлению работой сети компьютеров. Сетевые ОС устанавливаются на специально выделенные компьютеры.

Сетевые приложения - это прикладные программные комплексы, которые расширяют возможности сетевых ОС. Среди них можно выделить почтовые программы, системы коллективной работы, сетевые базы данных и др.

В процессе развития сетевых ОС некоторые функции сетевых приложений становятся обычными функциями ОС.

Все устройства, подключаемые к сети, можно разделить на три функциональные группы:

1) рабочие станции;

2) серверы сети;

3) коммуникационные узлы.

1) Рабочая станция , workstation - это персональный компьютер, подключенный к сети, на котором пользователь сети выполняет свою работу. Каждая рабочая станция обрабатывает свои локальные файлы и использует свою операционную систему. Но при этом пользователю доступны ресурсы сети.

Можно выделить три типа рабочих станций:

Рабочая станция с локальным диском,

Бездисковая рабочая станция,

Удаленная рабочая станция.

На рабочей станции с диском (жестким или гибким) операционная система загружается с этого локального диска. Для бездисковой станции операционная система загружается с диска файлового сервера. Такая возможность обеспечивается специальной микросхемой, устанавливаемой на сетевом адаптере бездисковой станции.

Удаленная рабочая станция - это станция, которая подключается к локальной сети через телекоммуникационные каналы связи (например, с помощью телефонной сети).

2) Сервер сети , network server - это компьютер, подключенный к сети и предоставляющий пользователям сети определенные услуги, например хранение данных общего пользования, печать заданий, обработку запроса к СУБД, удаленную обработку заданий и т. д.

По выполняемым функциям можно выделить следующие группы серверов.

Файловый сервер, file server - компьютер, хранящий данные пользователей сети и обеспечивающий доступ пользователей к этим данным. Как правило, этот компьютер имеет большой объем дискового пространства. Файловый сервер обеспечивает одновременный доступ пользователей к общим данным.

Файловый сервер выполняет следующие функций:

Хранение данных;

Архивирование данных;

Передачу данных.

Сервер баз данных, database server - компьютер, выполняющий функции хранения, обработки и управления файлами баз данных (БД).

Сервер баз данных выполняет следующие функции:

Хранение баз данных, поддержку их целостности, полноты, актуальности;

Прием и обработку запросов к базам данных, а также пересылку результатов обработки на рабочую станцию;

Согласование изменений данных, выполняемых разными пользователями;

Поддержку распределенных баз данных, взаимодействие с другими серверами баз данных, расположенными в другом месте.

Сервер прикладных программ, application server - компьютер, который используется для выполнения прикладных программ пользователей.

Коммуникационный сервер, communications server - устройство или компьютер, который предоставляет пользователям локальной сети прозрачный доступ к своим последовательным портам ввода/вывода.

С помощью коммуникационного сервера можно создать разделяемый модем, подключив его к одному из портов сервера. Пользователь, подключившись к коммуникационному серверу, может работать с таким модемом так же, как если бы модем был подключен непосредственно к рабочей станции.

Сервер доступа, access server - это выделенный компьютер, позволяющий выполнять удаленную обработку заданий. Программы, инициируемые с удаленной рабочей станции, выполняются на этом сервере.

От удаленной рабочей станции принимаются команды, введенные пользователем с клавиатуры, а возвращаются результаты выполнения задания.

Факс-сервер, fax server - устройство или компьютер, который выполняет рассылку и прием факсимильных сообщений для пользователей локальной сети.

Сервер резервного копирования данных, backup server - устройство или компьютер, который решает задачи создания, хранения и восстановления копий данных, расположенных на файловых серверах и рабочих станциях. В качестве такого сервера может использоваться один из файловых серверов сети.

Следует отметить, что все перечисленные типы серверов могут функционировать на одном выделенном для этих целей компьютере.

3) К коммуникационным узлам сети относятся следующие устройства:

Повторители;

Коммутаторы (мосты);

Маршрутизаторы;

Протяженность сети, расстояние между станциями в первую очередь определяются физическими характеристиками передающей среды (коаксиального кабеля, витой пары и т. д.). При передаче данных в любой среде происходит затухание сигнала, что и приводит к ограничению расстояния. Чтобы преодолеть это ограничение и расширить сеть, устанавливают специальные устройства - повторители, мосты и коммутаторы. Часть сети, в которую не входит устройство расширения, принято называть сегментом сети.

Повторитель , repeater - устройство, усиливающее или регенерирующее пришедший на него сигнал. Повторитель, приняв пакет из одного сегмента, передает его во все остальные. При этом повторитель не выполняет развязку присоединенных к нему сегментов. В каждый момент времени во всех связанных повторителем сегментах поддерживается обмен данными только между двумя станциями.

Коммутатор , switch, мост, bridge - это устройство, которое, как и повторитель, позволяет объединять несколько сегментов. В отличие от повторителя, мост выполняет развязку присоединенных к нему сегментов, то есть одновременно поддерживает несколько процессов обмена данными для каждой пары станций разных сегментов.

Маршрутизатор, router - устройство, соединяющее сети одного или разных типов по одному протоколу обмена данными. Маршрутизатор анализирует адрес назначения и направляет данные по оптимально выбранному маршруту.

Шлюз, gateway - это устройство, позволяющее организовать обмен данными между разными сетевыми объектами, использующими разные протоколы обмена данными.

Основными аппаратными компонентами сети являются следующие:

1. Абонентские системы: компьютеры (рабочие станции или клиенты и серверы); принтеры; сканеры и др.

2. Сетевое оборудование: сетевые адаптеры; концентраторы (хабы); мосты; маршрутизаторы и др.

3. Коммуникационные каналы: кабели; разъемы; устройства передачи и приема данных в беспроводных технологиях.

Основными программными компонентами сети являются следующие:

1. Сетевые операционные системы , где наиболее известные из них это: MS Windows; LANtastic; NetWare; Unix; Linux и т.д.

2. Сетевое программное обеспечение (Сетевые службы): клиент сети; сетевая карта; протокол; служба удаленного доступа.

ЛВС (Локальная вычислительная сеть) – это совокупность компьютеров, каналов связи, сетевых адаптеров, работающих под управлением сетевой операционной системы и сетевого программного обеспечения.

В ЛВС каждый ПК называется рабочей станцией, за исключением одного или нескольких компьютеров, которые предназначены для выполнения функций серверов. Каждая рабочая станция и сервер имеют сетевые карты (адаптеры), которые посредством физических каналов соединяются между собой. В дополнение к локальной операционной системе на каждой рабочей станции активизируется сетевое программное обеспечение, позволяющее станции взаимодействовать с файловым сервером.

Компьютеры, входящие в ЛВС клиент – серверной архитектуры, делятся на два типа: рабочие станции, или клиенты, предназначенные для пользователей, и серверы, которые, как правило, недоступны для обычных пользователей и предназначены для управления ресурсами сети.

Рабочие станции

Рабочая станция (workstation) – это абонентская система, специализированная для решения определенных задач и использующая сетевые ресурсы. К сетевому программному обеспечению рабочей станции относятся следующие службы:

Клиент для сетей;

Служба доступа к файлам и принтерам;

Сетевые протоколы для данного типа сетей;

Сетевая плата;

Контроллер удаленного доступа.

Рабочая станция отличается от обычного автономного персонального компьютера следующим:

Наличием сетевой карты (сетевого адаптера) и канала связи;

На экране во время загрузки ОС появляются дополнительные сообщения, которые информируют о том, что загружается сетевая операционная система;

Перед началом работы необходимо сообщить сетевому программному обеспечению имя пользователя и пароль. Это называется процедурой входа в сеть;

После подключения к ЛВС появляются дополнительные сетевые дисковые накопители;

появляется возможность использования сетевого оборудования, которое может находиться далеко от рабочего места.

Сетевые адаптеры

Для подключения ПК к сети требуется устройство сопряжения, которое называют сетевым адаптером, интерфейсом, модулем, или картой. Оно вставляется в гнездо материнской платы. Карты сетевых адаптеров устанавливаются на каждой рабочей станции и на файловом сервере. Рабочая станция отправляет запрос через сетевой адаптер к файловому серверу и получает ответ через сетевой адаптер, когда файловый сервер готов.

Сетевые адаптеры вместе с сетевым программным обеспечением способны распознавать и обрабатывать ошибки, которые могут возникнуть из-за электрических помех, коллизий или плохой работы оборудования.

Различные типы сетевых адаптеров отличаются не только методами доступа к каналу связи и протоколами, но еще и следующими параметрами:

Скорость передачи;

Объем буфера для пакета;

Тип шины;

Быстродействие шины;

Совместимость с различными микропроцессорами;

Использованием прямого доступа к памяти (DMA);

Адресация портов ввода/вывода и запросов прерывания;

конструкция разъема.

Вы сами можете менять содержимое

  • Форма сообщений
  • Заказать
  • Недорогой но высококачественный сайт . Такое может быть? Да. У нас может быть всё. Достойное качество по доступной цене.
    С точки зрения нашей студии создание сайта недорого значит, прежде всего, отменно, технологично и потом уже - недорого.
    Удаленная форма работы с клиентами оптимизирует наши расходы и мы можем делать сайты по всему миру . Вам совсем не нужно приезжать к нам. Мы сэкономим Ваше время и средства.

    В столь непростое время глобального финансового кризиса, когда отмирают старые схемы бизнеса, появляются новые. Самое лучше время для начала своей деятельности. Вы начинаете свой бизнес, а я помогу создать вам свой сайт очень недорого , для вас.
    Огромной популярностью пользуются так называемые сайты-визитки .
    Создание сайта-визитки - это совсем недорого, и будет по карману даже начинающему предпринимателю. При разработке подобного сайта достаточно небольшого бюджета .

    Сетевые специалисты утверждают, что 50 % знаний в этой динамичной области техники полностью устаревает за 5 лет. Можно, конечно, спорить о точном количестве процентов и лет, но факт остается фактом: набор базовых технологий, представления о перспективности той или иной технологии, подходы и методы решения ключевых задач и даже понятия о том, какие задачи при создании сетей являются ключевыми - все это изменяется очень быстро и часто неожиданно. И примеров, подтверждающих такое положение дел, можно привести достаточно много. Концепция вычислительных сетей является логическим результатом эволюции компьютерной технологии. Первые компьютеры 50-х годов - большие, громоздкие и дорогие - предназначались для очень небольшого числа избранных пользователей. Часто эти монстры занимали целые здания. Такие компьютеры не были предназначены для интерактивной работы пользователя, а использовались в режиме пакетной обработки.

    Компьютерные сети

    1.1.3. Основные программные и аппаратные компоненты сети

    Даже в результате достаточно поверхностного рассмотрения работы в сети становится ясно, что вычислительная сеть - это сложный комплекс взаимосвязанных и согласованно функционирующих программных и аппаратных компонентов. Изучение сети в целом предполагает знание принципов работы ее отдельных элементов:

    • компьютеров;
    • коммуникационного оборудования;
    • операционных систем;
    • сетевых приложений.

    Весь комплекс программно-аппаратных средств сети может быть описан многослойной моделью. В основе любой сети лежит аппаратный слой стандартизованных компьютерных платформ. В настоящее время в сетях широко и успешно применяются компьютеры различных классов - от персональных компьютеров до мэйнфреймов и суперЭВМ. Набор компьютеров в сети должен соответствовать набору разнообразных задач, решаемых сетью.

    Второй слой - это коммуникационное оборудование. Хотя компьютеры и являются центральными элементами обработки данных в сетях, в последнее время не менее важную роль стали играть коммуникационные устройства. Кабельные системы, повторители, мосты, коммутаторы, маршрутизаторы и модульные концентраторы из вспомогательных компонентов сети превратились в основные наряду с компьютерами и системным программным обеспечением как по влиянию на характеристики сети, так и по стоимости. Сегодня коммуникационное устройство может представлять собой сложный специализированный мультипроцессор, который нужно конфигурировать, оптимизировать и администрировать. Изучение принципов работы коммуникационного оборудования требует знакомства с большим количеством протоколов, используемых как в локальных, так и глобальных сетях.

    Третьим слоем, образующим программную платформу сети, являются операционные системы (ОС). От того, какие концепции управления локальными и распределенными ресурсами положены в основу сетевой ОС, зависит эффективность работы всей сети. При проектировании сети важно учитывать, насколько просто данная операционная система может взаимодействовать с другими ОС сети, насколько она обеспечивает безопасность и защищенность данных, до какой степени она позволяет наращивать число пользователей, можно ли перенести ее на компьютер другого типа и многие другие соображения.

    Самым верхним слоем сетевых средств являются различные сетевые приложения, такие как сетевые базы данных, почтовые системы, средства архивирования данных, системы автоматизации коллективной работы и др. Очень важно представлять диапазон возможностей, предоставляемых приложениями для различных областей применения, а также знать, насколько они совместимы с другими сетевыми приложениями и операционными системами.

    дальше | содержание | назад
    • Из чего складывается стоимость современного сайта

    Почти всегда целью создания сайта является получение прибыли, которая в свою очередь, зависит от его внешнего вида. Статистика говорит, что около 94% людей, при выборе товара, сначала обращают внимание на упаковку, а потом уже на её содержимое. И если эта упаковка не привлекательная и безвкусная, мало кто обратит на нее внимание, и, соответственно, товар не будет пользоваться спросом.
    В случае с интернет, “упаковкой” выступает ваш сайт, а “товаром” - его контент . Если сайт выглядит непривлекательно, то каким бы ценным и нужным не было его содержимое, люди будут обходить его стороной. Наша задача - сделать ваш сайт привлекательным и удобным, чтобы люди чувствовали себя уютно и комфортно, чтоб они возвращались к вам еще и еще. Соответствие между ценой и качеством вас, несомненно, порадуют.
    .
    Мы делаем сайты для бизнеса , а не красочную картинку , которая увешена тяжеловесными флэшами и огромными фотографиями.
    Пользователя , когда он попадает на абсолютно любой сайт , прежде всего интересует информация , затем, как реализовать на этом сайте полученную информацию, чтобы было удобно и просто (юзабилити), подбор цветовой гаммы, расположение блоков на странице и многое другое.

    Перед тем, как заказывать создание сайта, рекомендуем прочесть статью А зачем мне (нам) сайт? или Что нужно знать заказчику сайта
    Да и вообще, обратите внимание на раздел Статьи о продвижении сайта и бизнеса там вы найдёте ответы на многие вопросы.