Процесс обеспечения конфиденциальности целостности и доступности информации. Обеспечение целостности данных с использованием шифрации и MAC. Системы шифрования данных, передаваемых по сетям

Существует три разновидности угроз.

1. Угрозы нарушения доступности.

2. Угрозы нарушения целостности.

3. Угрозы нарушения конфиденциальности.

Доступность информации – свойство системы (среды, средств и технологии обработки), в которой циркулирует информация, характеризующееся способностью обеспечивать своевременный беспрепятственный доступ субъектов к интересующей их информации и готовность соответствующих автоматизированных служб к обслуживанию поступающих от субъектов запросов всегда, когда в обращении к ним возникает необходимость.

Нарушение доступности представляет собой создание таких условий, при которых доступ к услуге или информации будет либо заблокирован, либо возможен за время, которое не обеспечит выполнение тех или иных бизнес-целей. Рассмотрим пример: в случае выхода из строя сервера, на котором расположена требуемая для принятия стратегического решения информация, нарушается свойство доступности информации. Аналогичный пример: в случае изоляции по какой-либо причине (выход из строя сервера, отказ каналов связи и т.д.) почтового сервера можно говорить о нарушении доступности услуги «электронная почта». Особо следует отметить тот факт, что причина нарушения доступности информации или информационной услуги не обязательно должна находиться в зоне ответственности владельца услуги или информации. Например, в рассмотренном выше примере с нарушением доступности почтового сервера причина (отказ каналов связи) может лежать вне зоны ответственности администраторов сервера (например, отказ магистральных каналов связи). Также следует отметить, что понятие «доступность» субъективно в каждый момент времени для каждого из субъектов, потребляющих услугу или информацию в данный момент времени. В частности, нарушение доступности почтового сервера для одного сотрудника может означать срыв индивидуальных планов и потерю контракта, а для другого сотрудника той же организации – невозможность получить выпуск свежих новостей.

Целостность информации – существование информации в неискаженном виде (неизменном по отношению к некоторому фиксированному ее состоянию). Чаще субъектов интересует обеспечение более широкого свойства – достоверности информации, которое складывается из адекватности (полноты и точности) отображения состояния предметной области и непосредственно целостности информации, т.е. ее неискаженности.

Угрозы нарушения целостности – это угрозы, связанные с вероятностью модификации той или иной информации, хранящейся в ИС. Нарушение целостности может быть вызвано различными факторами – от умышленных действий персонала до выхода из строя оборудования.

Причины нарушения целостности информации:

1. Субъективные

1.1. Преднамеренные.

1.1.1. Диверсия (организация пожаров, взрывов, повреждений электропитания и др.).

1.1.2. Непосредственные действия над носителем (хищение, подмена носителей, уничтожение информации).

1.1.3. Информационное воздействие (электромагнитное облучение, ввод в компьютерные системы разрушающих программных средств, воздействие на психику личности и психотропным оружием).

1.2. Непреднамеренные.

1.2.1. Отказы обслуживающего персонала (гибель, длительный выход из строя).

1.2.2. Сбои людей (временный выход из строя).

1.2.3. Ошибки людей.

2. Объективные, непреднамеренные.

2.1. Отказы (полный выход из строя) аппаратуры, программ, систем питания и жизнеобеспечения).

2.2. Сбои (кратковременный выход из строя) аппаратуры, программ, систем питания и жизнеобеспечения).

2.3. Стихийные бедствия (наводнения, землетрясения, ураганы).

2.4. Несчастные случаи (пожары, взрывы, аварии).

2.5. Электромагнитная несовместимость.

Конфиденциальность – способность системы обеспечивать целостность и сохранность информации ее законных пользователей.

Угроза нарушения конфиденциальности заключается в том, что информация становится известной тому, кто не располагает полномочиями доступа к ней. Она имеет место всякий раз, когда получен доступ к некоторой секретной информации, хранящейся в вычислительной системе или передаваемой от одной системы к другой. Иногда, в связи с угрозой нарушения конфиденциальности, используется термин «утечка». Подобные угрозы могут возникать вследствие «человеческого фактора» (например, случайное делегировании тому или иному пользователю привилегий другого пользователя), сбоев работе программных и аппаратных средств.

Реализация каждой из указанных угроз в отдельности или их совокупности приводит к нарушению информационной безопасности предприятия.

Собственно говоря, все мероприятия по обеспечению информационной безопасности должны строиться по принципу минимизации указанных угроз.

Все мероприятия по обеспечению информационной безопасности условно можно рассматривать на двух основных уровнях: на уровне физического доступа к данным и на уровне логического доступа к данным, которые являются следствием административных решений (политик).

На уровне физического доступа к данным рассматриваются механизмы защиты данных от несанкционированного доступа и механизмы защиты от повреждения физических носителей данных. Защита от несанкционированного доступа предполагает размещения серверного оборудования с данными в отдельном помещении, доступ к которому имеет лишь персонал с соответствующими полномочиями. На этом же уровне в качестве средств защиты возможно создание географически распределенной системы серверов. Уровень защиты от физического повреждения предполагает организацию различного рода специализированных систем, предотвращающих подобные процессы. К их числу относят: серверные кластера и back-up (резервного копирования) сервера. При работе в кластере (например, двух серверов) в случае физического отказа одного из них второй будет продолжать работу, таким образом работоспособность вычислительной системы и данных не будет нарушена. При дополнительной организации резервного копирования (back-up сервера) возможно быстрое восстановление вычислительной системы и данных даже в случае выхода из строя второго сервера в кластере.

Уровень защиты от логического доступа к данным предполагает защиту от несанкционированного доступа в систему (здесь под системой понимается система, предназначенная для порождения, хранения и обработки данных любого класса – от простых учетных систем до решений класса ERP) как на уровне баз данных, так и на уровне ядра системы и пользовательских форм. Защита на этом уровне предполагает принятие мер по предотвращению доступа к базе данных как из Интернет, так и из локальной сети организации (на последний аспект обеспечения безопасности традиционно обращается мало внимания, хотя этот аспект напрямую связан с таким явлением, как промышленный шпионаж). Защита ядра системы предполагает, наряду с обозначенными выше мерами, вычисление контрольных сумм критических частей исполнимого кода и периодический аудит этих контрольных сумм. Подобный подход позволяет повысить общую степень защищенности системы. Обеспечение безопасности на уровне пользовательских форм декларирует обязательное шифрование трафика, передающегося по локальной сети (или через Интернет) между клиентом (пользовательской формой) и приложением (ядром системы). Также безопасность на этом уровне может обеспечиваться вычислением контрольных сумм этих форм, с последующей их проверкой, принятием идеологии «разделения данных и кода». Например, система, построенная по технологии «тонкого клиента» с позиций обеспечения безопасности на данном уровне имеет преимущество перед системой, построенной по технологии «толстого клиента», поскольку на уровне пользовательских форм не предоставляет доступа к коду бизнес-логики (например, путем дизассемблирования исполняемого файла). К этому же уровню защиты относится механизм сертификации, когда в обмене между пользовательской формой и сервером, а также подлинность самой пользовательской формы подтверждается третьим участником обмена – центром сертификации.

Контрольные вопросы для самопроверки

Информационная безопасность – многогранная, можно даже сказать, многомерная область деятельности, в которой успех может принести только систематический, комплексный подход.

Спектр интересов субъектов, связанных с использованием информационных систем, можно разделить на следующие категории: обеспечение доступности , целостности и конфиденциальности информационных ресурсов и поддерживающей инфраструктуры.

Иногда в число основных составляющих ИБ включают защиту от несанкционированного копирования информации, но, на наш взгляд, это слишком специфический аспект с сомнительными шансами на успех, поэтому мы не станем его выделять.

Поясним понятия доступности, целостности и конфиденциальности.

Доступность – это возможность за приемлемое время получить требуемую информационную услугу. Под целостностью подразумевается актуальность и непротиворечивость информации, ее защищенность от разрушения и несанкционированного изменения.

Наконец, конфиденциальность – это защита от несанкционированного доступа к информации.

Информационные системы создаются (приобретаются) для получения определенных информационных услуг. Если по тем или иным причинам предоставить эти услуги пользователям становится невозможно, это, очевидно, наносит ущерб всем субъектам информационных отношений. Поэтому, не противопоставляя доступность остальным аспектам, она выделяется как важнейший элемент информационной безопасности.

Особенно ярко ведущая роль доступности проявляется в разного рода системах управления – производством, транспортом и т.п. Внешне менее драматичные, но также весьма неприятные последствия – и материальные, и моральные – может иметь длительная недоступность информационных услуг, которыми пользуется большое количество людей (продажа железнодорожных и авиабилетов, банковские услуги и т.п.).

Целостность можно подразделить на статическую (понимаемую как неизменность информационных объектов) и динамическую (относящуюся к корректному выполнению сложных действий (транзакций)). Средства контроля динамической целостности применяются, в частности, при анализе потока финансовых сообщений с целью выявления кражи, переупорядочения или дублирования отдельных сообщений.

Целостность оказывается важнейшим аспектом ИБ в тех случаях, когда информация служит "руководством к действию". Рецептура лекарств, предписанные медицинские процедуры, набор и характеристики комплектующих изделий, ход технологического процесса – все это примеры информации, нарушение целостности которой может оказаться в буквальном смысле смертельным. Неприятно и искажение официальной информации, будь то текст закона или страница Web-сервера какой-либо правительственной организации. Конфиденциальность – самый проработанный у нас в стране аспект информационной безопасности. К сожалению, практическая реализация мер по обеспечению конфиденциальности современных информационных систем наталкивается в России на серьезные трудности. Во-первых, сведения о технических каналах утечки информации являются закрытыми, так что большинство пользователей лишено возможности составить представление о потенциальных рисках. Во-вторых, на пути пользовательской криптографии как основного средства обеспечения конфиденциальности стоят многочисленные законодательные препоны и технические проблемы.



Если вернуться к анализу интересов различных категорий субъектов информационных отношений, то почти для всех, кто реально использует ИС, на первом месте стоит доступность. Практически не уступает ей по важности целостность – какой смысл в информационной услуге, если она содержит искаженные сведения?

Наконец, конфиденциальные моменты есть также у многих организаций (даже в упоминавшихся выше учебных институтах стараются не разглашать сведения о зарплате сотрудников) и отдельных пользователей (например, пароли).


4. Необходимость и важность политики

Политика устанавливает правила, которые определяют конфигурацию систем, действия служащих организации в обычных условиях и в случае непредвиденных обстоятельств. Таким образом, политика выполняет две основные функции:

· определяет безопасность внутри организации;

· определяет место каждого служащего в системе безопасности.

Еще один способ получения пароля - это внедрение в чужой компьютер «троян-ского коня». Так называют резидентную программу, работающую без ведома хозяи-на данного компьютера и выполняющую действия, заданные злоумышленником. В частности, такого рода программа может считывать коды пароля, вводимого пользователем во время логического входа в систему.

Программа-«троянский конь» всегда маскируется под какую-нибудь полезную ути-литу или игру, а производит действия, разрушающие систему. По такому прин-ципу действуют и программы-вирусы, отличительной особенностью которых яв-ляется способность «заражать» другие файлы, внедряя в них свои собственные копии. Чаще всего вирусы поражают исполняемые файлы. Когда такой испол-няемый код загружается в оперативную память для выполнения, вместе с ним получает возможность исполнить свои вредительские действия вирус. Вирусы могут привести к повреждению или даже полной утрате информации.

Нелегальные действия легального пользователя - этот тип угроз исходит от ле-гальных пользователей сети, которые, используя свои полномочия, пытаются вы-полнять действия, выходящие за рамки их должностных обязанностей. Напри-мер, администратор сети имеет практически неограниченные права на доступ ко всем сетевым ресурсам. Однако на предприятии может быть информация, до-ступ к которой администратору сети запрещен. Для реализации этих ограниче-ний могут быть предприняты специальные меры, такие, например, как шифрова-ние данных, но и в этом случае администратор может попытаться получить дос-туп к ключу. Нелегальные действия может попытаться предпринять и обычный пользователь сети. Существующая статистика говорит о том, что едва ли не по-ловина всех попыток нарушения безопасности системы исходит от сотрудников предприятия, которые как раз и являются легальными пользователями сети.

«Подслушиванием внутрисетевого трафика - это незаконный мониторинг сети, захват и анализ сетевых сообщений. Существует много доступных программных и аппаратных анализаторов трафика, которые делают эту задачу достаточно три-виальной. Еще более усложняется защита от этого типа угроз в сетях с глобаль-ными связями. Глобальные связи, простирающиеся на десятки и тысячи кило-метров, по своей природе являются менее защищенными, чем локальные связи (больше возможностей для прослушивания трафика, более удобная для злоумыш-ленника позиция при проведении процедур аутентификации). Такая опасность одинаково присуща всем видам территориальных каналов связи и никак не зави-сит от того, используются собственные, арендуемые каналы или услуги общедос-тупных территориальных сетей, подобных Интернету.

Однако использование общественных сетей (речь в основном идет об Интерне-те) еще более усугубляет ситуацию. Действительно, использование Интернета добавляет к опасности перехвата данных, передаваемых по линиям связи, опас-ность несанкционированного входа в узлы сети, поскольку наличие огромного числа хакеров в Интернете увеличивает вероятность попыток незаконного про-никновения в компьютер. Это представляет постоянную угрозу для сетей, под-соединенных к Интернету.

Интернет сам является целью для разного рода злоумышленников. Поскольку Интернет создавался как открытая система, предназначенная для свободного об-мена информацией, совсем не удивительно, что практически все протоколы стека TCP/IP имеют «врожденные» недостатки защиты. Используя эти недос-| татки, злоумышленники все чаще предпринимают попытки несанкционирован-ного доступа к информации, хранящейся на узлах Интернета.

Системный подход к обеспечению безопасности

Построение и поддержка безопасной системы требует системного подхода. В со-ответствии с этим подходом прежде всего необходимо осознать весь спектр воз-можных угроз для конкретной сети и для каждой из этих угроз продумать тактику. ее отражения. В этой борьбе можно и нужно использовать самые разноплановые средства и приемы - морально-этические и законодательные, административ-ные и психологические, защитные возможности программных и аппаратных средств сети.

К морально-этическим средствам защиты можно отнести всевозможные нормы, которые сложились по мере распространения вычислительных средств в той или иной стране. Например, подобно тому как в борьбе против пиратского копирова-ния программ в настоящее время в основном используются меры воспитатель-ного плана, необходимо внедрять в сознание людей аморальность всяческих по-кушений на нарушение конфиденциальности, целостности и доступности чужих информационных ресурсов.

Законодательные средства защиты - это законы, постановления правительства и указы президента, нормативные акты и стандарты, которыми регламентируют-ся правила использования и обработки информации ограниченного доступа, а также вводятся меры ответственности за нарушения этих правил. Правовая регламентация деятельности в области защиты информации имеет целью защи-ту информации, составляющей государственную тайну, обеспечение прав потре-бителей на получение качественных продуктов, защиту конституционных прав граждан на сохранение личной тайны, борьбу с организованной преступностью.

Административные меры - это действия, предпринимаемые руководством пред-приятия или организации для обеспечения информационной безопасности. К та-ким мерам относятся конкретные правила работы сотрудников предприятия, например режим работы сотрудников, их должностные инструкции, строго опре-деляющие порядок работы с конфиденциальной информацией на компьютере. К административным мерам также относятся правила приобретения предпри-ятием средств безопасности. Представители администрации, которые несут от-ветственность за защиту информации, должны выяснить, насколько безопасным является использование продуктов, приобретенных у зарубежных поставщиков. Особенно это касается продуктов, связанных с шифрованием. В таких случаях желательно проверить наличие у продукта сертификата, выданного российски-ми тестирующими организациями.

Психологические меры безопасности могут играть значительную роль в укрепле-нии безопасности системы. Пренебрежение учетом психологических моментов в неформальных процедурах, связанных с безопасностью, может привести к на-рушениям защиты. Рассмотрим, например, сеть предприятия, в которой работает много удаленных пользователей. Время от времени пользователи должны ме-нять пароли (обычная практика для предотвращения их подбора). В данной системе выбор паролей осуществляет администратор. В таких условиях злоумыш-ленник может позвонить администратору по телефону и от имени легального пользователя попробовать получить пароль. При большом количестве удален-ных пользователей не исключено, что такой простой психологический прием мо-жет сработать.

К физическим средствам защиты относятся экранирование помещений для защи-ты от излучения, проверка поставляемой аппаратуры на соответствие ее специ-фикациям и отсутствие аппаратных «жучков», средства наружного наблюдения, устройства, блокирующие физический доступ к отдельным блокам компьютера, различные замки и другое оборудование, защищающие помещения, где находят-ся носители информации, от незаконного проникновения и т. д. и т. п.

Технические средства информационной безопасности реализуются программным и аппаратным обеспечением вычислительных сетей. Такие средства, называемые также службами сетевой безопасности, решают самые разнообразные задачи по защите системы, например контроль доступа, включающий процедуры аутен-тификации и авторизации, аудит, шифрование информации, антивирусную за-щиту, контроль сетевого графика и много других задач. Технические средства безопасности могут быть либо встроены в программное (операционные системы и приложения) и аппаратное (компьютеры и коммуникационное оборудование) обеспечение сети, либо реализованы в виде отдельных продуктов, созданных специально для решения проблем безопасности.

Политика безопасности

Важность и сложность проблемы обеспечения безопасности требует выработки политики информационной безопасности, которая подразумевает ответы на сле-дующие вопросы:

  • Какую информацию защищать?
  • Какой ущерб понесет предприятие при потере или при раскрытии тех или иных данных?
  • Кто или что является возможным источником угрозы, какого рода атаки на безопасность системы могут быть предприняты?
  • Какие средства использовать для защиты каждого вида информации?

Специалисты, ответственные за безопасность системы, формируя политику без-опасности, должны учитывать несколько базовых принципов. Одним из таких принципов является предоставление каждому сотруднику предприятия того ми-нимально уровня привилегий на доступ к данным, который необходим ему для выполнения его должностных обязанностей. Учитывая, что большая часть нару-шений в области безопасности предприятий исходит именно от собственных со-трудников, важно ввести четкие ограничения для всех пользователей сети, не на-деляя их излишними возможностями.

Следующий принцип - использование комплексного подхода к обеспечению без-опасности. Чтобы затруднить злоумышленнику доступ к данным, необходимо предусмотреть самые разные средства безопасности, начиная с организационно-административных запретов и кончая встроенными средствами сетевой аппара-туры. Административный запрет на работу в воскресные дни ставит потенциаль-ного нарушителя под визуальный контроль администратора и других пользовате-лей, физические средства защиты (закрытые помещения, блокировочные ключи) ограничивают непосредственный контакт пользователя только приписанным ему компьютером, встроенные средства сетевой ОС (система аутентификации и авторизации) предотвращают вход в сеть нелегальных пользователей, а для легального пользователя ограничивают возможности только разрешенными для него операциями (подсистема аудита фиксирует его действия). Такая система защиты с многократным резервированием средств безопасности увеличивает ве-роятность сохранности данных.

Используя многоуровневую систему защиты, важно обеспечивать баланс надеж-ности защиты всех уровней. Если в сети все сообщения шифруются, но ключи легкодоступны, то эффект от шифрования нулевой. Или если на компьютерах установлена файловая система, поддерживающая избирательный доступ на уров-не отдельных файлов, но имеется возможность получить жесткий диск и устано-вить его на другой машине, то все достоинства средств защиты файловой систе-мы сводятся на нет. Если внешний трафик сети, подключенной к Интернету, проходит через мощный брандмауэр, но пользователи имеют возможность свя-зываться с узлами Интернета по коммутируемым линиям, используя локально установленные модемы, то деньги (как правило, немалые), потраченные на бранд-мауэр, можно считать выброшенными на ветер.

Следующим универсальным принципом является использование средств, кото-рые при отказе переходят в состояние максимальной защиты. Это касается самых различных средств безопасности. Если, например, автоматический пропускной пункт в какое-либо помещение ломается, то он должен фиксироваться в таком положении, чтобы ни один человек не мог пройти на защищаемую территорию. А если в сети имеется устройство, которое анализирует весь входной трафик и отбрасывает кадры с определенным, заранее заданным обратным адресом, то при отказе оно должно полностью блокировать вход в сеть. Неприемлемым следова-ло бы признать устройство, которое бы при отказе пропускало в сеть весь внеш-ний трафик.

Принцип единого контрольно-пропускного пункта - весь входящий во внутрен-нюю сеть и выходящий во внешнюю сеть трафик должен проходить через един-ственный узел сети, например через межсетевой экран (firewall ). Только это позволяет в достаточной степени контролировать трафик. В противном случае, когда в сети имеется множество пользовательских станций, имеющих независи-мый выход во внешнюю сеть, очень трудно скоординировать правила, ограничи-вающие права пользователей внутренней сети по доступу к серверам внешней сети и обратно - права внешних клиентов по доступу к ресурсам внутренней сети.

Принцип баланса возможного ущерба от реализации угрозы и затрат на ее пре-дотвращение. Ни одна система безопасности не гарантирует защиту данных нг уровне 100 %, поскольку является результатом компромисса между возможны-ми рисками и возможными затратами. Определяя политику безопасности, администратор должен взвесить величину ущерба, которую может понести предприятие в результате нарушения защиты данных, и соотнести ее с величиной за-трат, требуемых на обеспечение безопасности этих данных. Так, в некоторых случаях можно отказаться от дорогостоящего межсетевого экрана в пользу стан-дартных средств фильтрации обычного маршрутизатора, в других же можно пой-ти на беспрецедентные затраты. Главное, чтобы принятое решение было обосно-вано экономически.

При определении политики безопасности для сети, имеющей выход в Интернет, специалисты рекомендуют разделить задачу на две части: выработать политику доступа к сетевым службам Интернета и выработать политику доступа к ресур-сам внутренней сети компании.

Политика доступа к сетевым службам Интернета включает следующие пункты:

  • Определение списка служб Интернета, к которым пользователи внутренней сети должны иметь ограниченный доступ.
  • Определение ограничений на методы доступа, например на использование протоколов SLIP (Serial Line Internet Protocol ) и РРР (Point -to -Point Proto -col ). Ограничения методов доступа необходимы для того, чтобы пользователи не могли обращаться к «запрещенным» службам Интернета обходными путями. Например, если для ограничения доступа к Интернету в сети устанавлива-ется специальный шлюз, который не дает возможности пользователям рабо-тать в системе WWW , они могут устанавливать с Web-серверами РРР-соеди-нения по коммутируемой линии. Во избежание этого надо просто запретить использование протокола РРР.
  • Принятие решения о том, разрешен ли доступ внешних пользователей из Ин-тернета во внутреннюю сеть. Если да, то кому. Часто доступ разрешают толь-ко для некоторых, абсолютно необходимых для работы предприятия служб, например электронной почты.

Политика доступа к ресурсам внутренней сети компании может быть выражена в одном из двух принципов:

· запрещать все, что не разрешено в явной форме;

· разрешать все, что не запрещено в явной форме.

В соответствии с выбранным принципом определяются правила обработки внеш-него графика межсетевыми экранами или маршрутизаторами. Реализация защи-ты на основе первого принципа дает более высокую степень безопасности, одна-ко при этом могут возникать большие неудобства у пользователей, а кроме того, такой способ защиты обойдется значительно дороже. При реализации второго принципа сеть окажется менее защищенной, однако пользоваться ею будет удоб-нее и потребуется меньше затрат.

Быстро развивающиеся компьютерные информационные технологии вносят заметные изменения в нашу жизнь. Информация стала товаром, который можно приобрести, продать, обменять. При этом стоимость информации часто в сотни раз превосходит стоимость компьютерной системы, в которой она хранится.

От степени безопасности информационных технологий в настоящее время зависит благополучие, а порой и жизнь многих людей. Такова плата за усложнение и повсеместное распространение автоматизированных систем обработки информации.

Под информационной безопасностью понимается защищенность информационной системы от случайного или преднамеренного вмешательства, наносящего ущерб владельцам или пользователям информации.

На практике важнейшими являются три аспекта информационной безопасности:

  • доступность (возможность за разумное время получить требуемую информационную услугу);
  • целостность (актуальность и непротиворечивость информации, ее защищенность от разрушения и несанкционированного изменения);
  • конфиденциальность (защита от несанкционированного прочтения).

Нарушения доступности, целостности и конфиденциальности информации могут быть вызваны различными опасными воздействиями на информационные компьютерные системы.

Основные угрозы информационной безопасности

Современная информационная система представляет собой сложную систему, состоящую из большого числа компонентов различной степени автономности, которые связаны между собой и обмениваются данными. Практически каждый компонент может подвергнуться внешнему воздействию или выйти из строя. Компоненты автоматизированной информационной системы можно разбить на следующие группы:

  • аппаратные средства - компьютеры и их составные части (процессоры, мониторы, терминалы, периферийные устройства - дисководы, принтеры, контроллеры, кабели, линии связи и т.д.);
  • программное обеспечение - приобретенные программы, исходные, объектные, загрузочные модули; операционные системы и системные программы (компиляторы, компоновщики и др.), утилиты, диагностические программы и т.д.;
  • данные - хранимые временно и постоянно, на магнитных носителях, печатные, архивы, системные журналы и т.д.;
  • персонал - обслуживающий персонал и пользователи.

Опасные воздействия на компьютерную информационную систему можно подразделить на случайные и преднамеренные. Анализ опыта проектирования, изготовления и эксплуатации информационных систем показывает, что информация подвергается различным случайным воздействиям на всех этапах цикла жизни системы. Причинами случайных воздействий при эксплуатации могут быть:

  • аварийные ситуации из-за стихийных бедствий и отключений электропитания;
  • отказы и сбои аппаратуры;
  • ошибки в программном обеспечении;
  • ошибки в работе персонала;
  • помехи в линиях связи из-за воздействий внешней среды.

Преднамеренные воздействия - это целенаправленные действия нарушителя. В качестве нарушителя могут выступать служащий, посетитель, конкурент, наемник. Действия нарушителя могут быть обусловлены разными мотивами:

  • недовольством служащего своей карьерой;
  • взяткой;
  • любопытством;
  • конкурентной борьбой;
  • стремлением самоутвердиться любой ценой.

Можно составить гипотетическую модель потенциального нарушителя:

  • квалификация нарушителя на уровне разработчика данной системы;
  • нарушителем может быть как постороннее лицо, так и законный пользователь системы;
  • нарушителю известна информация о принципах работы системы;
  • нарушитель выбирает наиболее слабое звено в защите.

Наиболее распространенным и многообразным видом компьютерных нарушений является несанкционированный доступ (НСД). НСД использует любую ошибку в системе защиты и возможен при нерациональном выборе средств защиты, их некорректной установке и настройке.

Проведем классификацию каналов НСД, по которым можно осуществить хищение, изменение или уничтожение информации:

  • Через человека:
    • хищение носителей информации;
    • чтение информации с экрана или клавиатуры;
    • чтение информации из распечатки.
  • Через программу:
    • перехват паролей;
    • дешифровка зашифрованной информации;
    • копирование информации с носителя.
  • Через аппаратуру:
    • подключение специально разработанных аппаратных средств, обеспечивающих доступ к информации;
    • перехват побочных электромагнитных излучений от аппаратуры, линий связи, сетей электропитания и т.д.

Особо следует остановиться на угрозах, которым могут подвергаться компьютерные сети. Основная особенность любой компьютерной сети состоит в том, что ее компоненты распределены в пространстве. Связь между узлами сети осуществляется физически с помощью сетевых линий и программно с помощью механизма сообщений. При этом управляющие сообщения и данные, пересылаемые между узлами сети, передаются в виде пакетов обмена. Компьютерные сети характерны тем, что против них предпринимают так называемые удаленные атаки . Нарушитель может находиться за тысячи километров от атакуемого объекта, при этом нападению может подвергаться не только конкретный компьютер, но и информация, передающаяся по сетевым каналам связи.

Обеспечение информационной безопасности

Формирование режима информационной безопасности - проблема комплексная. Меры по ее решению можно подразделить на пять уровней:

  1. законодательный (законы, нормативные акты, стандарты и т.п.);
  2. морально-этический (всевозможные нормы поведения, несоблюдение которых ведет к падению престижа конкретного человека или целой организации);
  3. административный (действия общего характера, предпринимаемые руководством организации);
  4. физический (механические, электро- и электронно-механические препятствия на возможных путях проникновения потенциальных нарушителей);
  5. аппаратно-программный (электронные устройства и специальные программы защиты информации).

Единая совокупность всех этих мер, направленных на противодействие угрозам безопасности с целью сведения к минимуму возможности ущерба, образуют систему защиты .

Надежная система защиты должна соответствовать следующим принципам:

  • Стоимость средств защиты должна быть меньше, чем размеры возможного ущерба.
  • Каждый пользователь должен иметь минимальный набор привилегий, необходимый для работы.
  • Защита тем более эффективна, чем проще пользователю с ней работать.
  • Возможность отключения в экстренных случаях.
  • Специалисты, имеющие отношение к системе защиты должны полностью представлять себе принципы ее функционирования и в случае возникновения затруднительных ситуаций адекватно на них реагировать.
  • Под защитой должна находиться вся система обработки информации.
  • Разработчики системы защиты, не должны быть в числе тех, кого эта система будет контролировать.
  • Система защиты должна предоставлять доказательства корректности своей работы.
  • Лица, занимающиеся обеспечением информационной безопасности, должны нести личную ответственность.
  • Объекты защиты целесообразно разделять на группы так, чтобы нарушение защиты в одной из групп не влияло на безопасность других.
  • Надежная система защиты должна быть полностью протестирована и согласована.
  • Защита становится более эффективной и гибкой, если она допускает изменение своих параметров со стороны администратора.
  • Система защиты должна разрабатываться, исходя из предположения, что пользователи будут совершать серьезные ошибки и, вообще, имеют наихудшие намерения.
  • Наиболее важные и критические решения должны приниматься человеком.
  • Существование механизмов защиты должно быть по возможности скрыто от пользователей, работа которых находится под контролем.

Аппаратно-программные средства защиты информации

Несмотря на то, что современные ОС для персональных компьютеров, такие, как Windows 2000, Windows XP и Windows NT, имеют собственные подсистемы защиты, актуальность создания дополнительных средств защиты сохраняется. Дело в том, что большинство систем не способны защитить данные, находящиеся за их пределами, например при сетевом информационном обмене.

Аппаратно-программные средства защиты информации можно разбить на пять групп:

  1. Системы идентификации (распознавания) и аутентификации (проверки подлинности) пользователей.
  2. Системы шифрования дисковых данных.
  3. Системы шифрования данных, передаваемых по сетям.
  4. Системы аутентификации электронных данных.
  5. Средства управления криптографическими ключами.

1. Системы идентификации и аутентификации пользователей

Применяются для ограничения доступа случайных и незаконных пользователей к ресурсам компьютерной системы. Общий алгоритм работы таких систем заключается в том, чтобы получить от пользователя информацию, удостоверяющую его личность, проверить ее подлинность и затем предоставить (или не предоставить) этому пользователю возможность работы с системой.

При построении этих систем возникает проблема выбора информации, на основе которой осуществляются процедуры идентификации и аутентификации пользователя. Можно выделить следующие типы:

  • секретная информация, которой обладает пользователь (пароль, секретный ключ, персональный идентификатор и т.п.); пользователь должен запомнить эту информацию или же для нее могут быть применены специальные средства хранения;
  • физиологические параметры человека (отпечатки пальцев, рисунок радужной оболочки глаза и т.п.) или особенности поведения (особенности работы на клавиатуре и т.п.).

Системы, основанные на первом типе информации, считаются традиционными . Системы, использующие второй тип информации, называют биометрическими . Следует отметить наметившуюся тенденцию опережающего развития биометрических систем идентификации.

2. Системы шифрования дисковых данных

Чтобы сделать информацию бесполезной для противника, используется совокупность методов преобразования данных, называемая криптографией [от греч. kryptos - скрытый и grapho - пишу].

Системы шифрования могут осуществлять криптографические преобразования данных на уровне файлов или на уровне дисков. К программам первого типа можно отнести архиваторы типа ARJ и RAR, которые позволяют использовать криптографические методы для защиты архивных файлов. Примером систем второго типа может служить программа шифрования Diskreet, входящая в состав популярного программного пакета Norton Utilities, Best Crypt.

Другим классификационным признаком систем шифрования дисковых данных является способ их функционирования. По способу функционирования системы шифрования дисковых данных делят на два класса:

  • системы "прозрачного" шифрования;
  • системы, специально вызываемые для осуществления шифрования.

В системах прозрачного шифрования (шифрования "на лету") криптографические преобразования осуществляются в режиме реального времени, незаметно для пользователя. Например, пользователь записывает подготовленный в текстовом редакторе документ на защищаемый диск, а система защиты в процессе записи выполняет его шифрование.

Системы второго класса обычно представляют собой утилиты, которые необходимо специально вызывать для выполнения шифрования. К ним относятся, например, архиваторы со встроенными средствами парольной защиты.

Большинство систем, предлагающих установить пароль на документ, не шифрует информацию, а только обеспечивает запрос пароля при доступе к документу. К таким системам относится MS Office, 1C и многие другие.

3. Системы шифрования данных, передаваемых по сетям

Различают два основных способа шифрования: канальное шифрование и оконечное (абонентское) шифрование.

В случае канального шифрования защищается вся информация, передаваемая по каналу связи, включая служебную. Этот способ шифрования обладает следующим достоинством - встраивание процедур шифрования на канальный уровень позволяет использовать аппаратные средства, что способствует повышению производительности системы. Однако у данного подхода имеются и существенные недостатки:

  • шифрование служебных данных осложняет механизм маршрутизации сетевых пакетов и требует расшифрования данных в устройствах промежуточной коммуникации (шлюзах, ретрансляторах и т.п.);
  • шифрование служебной информации может привести к появлению статистических закономерностей в шифрованных данных, что влияет на надежность защиты и накладывает ограничения на использование криптографических алгоритмов.

Оконечное (абонентское) шифрование позволяет обеспечить конфиденциальность данных, передаваемых между двумя абонентами. В этом случае защищается только содержание сообщений, вся служебная информация остается открытой. Недостатком является возможность анализировать информацию о структуре обмена сообщениями, например об отправителе и получателе, о времени и условиях передачи данных, а также об объеме передаваемых данных.

4. Системы аутентификации электронных данных

При обмене данными по сетям возникает проблема аутентификации автора документа и самого документа, т.е. установление подлинности автора и проверка отсутствия изменений в полученном документе. Для аутентификации данных применяют код аутентификации сообщения (имитовставку) или электронную подпись.

Имитовставка вырабатывается из открытых данных посредством специального преобразования шифрования с использованием секретного ключа и передается по каналу связи в конце зашифрованных данных. Имитовставка проверяется получателем, владеющим секретным ключом, путем повторения процедуры, выполненной ранее отправителем, над полученными открытыми данными.

Электронная цифровая подпись представляет собой относительно небольшое количество дополнительной аутентифицирующей информации, передаваемой вместе с подписываемым текстом. Отправитель формирует цифровую подпись, используя секретный ключ отправителя. Получатель проверяет подпись, используя открытый ключ отправителя.

Таким образом, для реализации имитовставки используются принципы симметричного шифрования, а для реализации электронной подписи - асимметричного. Подробнее эти две системы шифрования будем изучать позже.

5. Средства управления криптографическими ключами

Безопасность любой криптосистемы определяется используемыми криптографическими ключами. В случае ненадежного управления ключами злоумышленник может завладеть ключевой информацией и получить полный доступ ко всей информации в системе или сети.

Различают следующие виды функций управления ключами: генерация, хранение, и распределение ключей.

Способы генерации ключей для симметричных и асимметричных криптосистем различны. Для генерации ключей симметричных криптосистем используются аппаратные и программные средства генерации случайных чисел. Генерация ключей для асимметричных криптосистем более сложна, так как ключи должны обладать определенными математическими свойствами. Подробнее на этом вопросе остановимся при изучении симметричных и асимметричных криптосистем.

Функция хранения предполагает организацию безопасного хранения, учета и удаления ключевой информации. Для обеспечения безопасного хранения ключей применяют их шифрование с помощью других ключей. Такой подход приводит к концепции иерархии ключей. В иерархию ключей обычно входит главный ключ (т.е. мастер-ключ), ключ шифрования ключей и ключ шифрования данных. Следует отметить, что генерация и хранение мастер-ключа является критическим вопросом криптозащиты.

Распределение - самый ответственный процесс в управлении ключами. Этот процесс должен гарантировать скрытность распределяемых ключей, а также быть оперативным и точным. Между пользователями сети ключи распределяют двумя способами:

  • с помощью прямого обмена сеансовыми ключами;
  • используя один или несколько центров распределения ключей.

Перечень документов

  1. О ГОСУДАРСТВЕННОЙ ТАЙНЕ. Закон Российской Федерации от 21 июля 1993 года № 5485-1 (в ред. Федерального закона от 6 октября 1997 года № 131-ФЗ).
  2. ОБ ИНФОРМАЦИИ, ИНФОРМАТИЗАЦИИ И ЗАЩИТЕ ИНФОРМАЦИИ. Федеральный закон Российской Федерации от 20 февраля 1995 года № 24-ФЗ. Принят Государственной Думой 25 января 1995 года.
  3. О ПРАВОВОЙ ОХРАНЕ ПРОГРАММ ДЛЯ ЭЛЕКТРОННЫХ ВЫЧИСЛИТЕЛЬНЫХ МАШИН И БАЗ ДАННЫХ. Закон Российской Федерации от 23 фентября 1992 года № 3524-1.
  4. ОБ ЭЛЕКТРОННОЙ ЦИФРОВОЙ ПОДПИСИ. Федеральный закон Российской Федерации от 10 января 2002 года № 1-ФЗ.
  5. ОБ АВТОРСКОМ ПРАВЕ И СМЕЖНЫХ ПРАВАХ. Закон Российской Федерации от 9 июля 1993 года № 5351-1.
  6. О ФЕДЕРАЛЬНЫХ ОРГАНАХ ПРАВИТЕЛЬСТВЕННОЙ СВЯЗИ И ИНФОРМАЦИИ. Закон Российской Федерации (в ред. Указа Президента РФ от 24.12.1993 № 2288; Федерального закона от 07.11.2000 № 135-ФЗ.
  7. Положение об аккредитации испытательных лабораторий и органов по сертификации средств защиты информации по требованиям безопасности информации / Государственная техническая комиссия при Президенте Российской Федерации.
  8. Инструкция о порядке маркирования сертификатов соответствия, их копий и сертификационных средств защиты информации / Государственная техническая комиссия при Президенте Российской Федерации.
  9. Положение по аттестации объектов информатизации по требованиям безопасности информации / Государственная техническая комиссия при Президенте Российской Федерации.
  10. Положение о сертификации средств защиты информации по требованиям безопасности информации: с дополнениями в соответствии с Постановлением Правительства Российской Федерации от 26 июня 1995 года № 608 "О сертификации средств защиты информации" / Государственная техническая комиссия при Президенте Российской Федерации.
  11. Положение о государственном лицензировании деятельности в области защиты информации / Государственная техническая комиссия при Президенте Российской Федерации.
  12. Автоматизированные системы. Защита от несанкционированного доступа к информации. Классификация автоматизированных систем и требования по защите информации: Руководящий документ / Государственная техническая комиссия при Президенте Российской Федерации.
  13. Концепция защиты средств вычислительной техники и автоматизированных систем от несанкционированного доступа к информации: Руководящий документ / Государственная техническая комиссия при Президенте Российской Федерации.
  14. Средства вычислительной техники. Межсетевые экраны. Защита от несанкционированного доступа к информации. Показатели защищенности от несанкционированного доступа к информации: Руководящий документ / Государственная техническая комиссия при Президенте Российской Федерации.
  15. Средства вычислительной техники. Защита от несанкционированного доступа к информации. Показатели защищенности от несанкционированного доступа к информации: Руководящий документ / Государственная техническая комиссия при Президенте Российской Федерации.
  16. Защита информации. Специальные защитные знаки. Классификация и общие требования: Руководящий документ / Государственная техническая комиссия при Президенте Российской Федерации.
  17. Защита от несанкционированного доступа к информации. Термины и определения: Руководящий документ / Государственная техническая комиссия при Президенте Российской Федерации.

Все специалисты по безопасности знают классическую триаду "конфиденциальность, целостность и доступность" (КЦД) или "confidentiality, integrity, availability" (CIA). Ее применяют к месту и не очень, но мало кто знает, откуда она вообще появилась? Этому в ВУЗах не учат, а стоило бы. Тогда стало бы понятно, что эта концепция уже немного устарела и не является догмой.

Напомню, что впервые этот принцип был изложен в статье "Защита информации в компьютерных системах", написанной Зальцером и Шредером в 1974-м году и опубликованной в "Communications of the ACM". В этой статье безопасность определялась как "техники, которые контролируют, кто может использовать или модифицировать компьютер или содержащуюся в нем информацию ". При этом авторы ссылались на других авторов, которые считали, что все нарушения безопасности могут быть разбиты всего на 3 группы - неавторизованное использование (unauthorized information release), неавторизованное изменение и неавторизованное блокирование использования (unauthorized denial of use). С тех пор и началось победное шествие этой триады по миру. У нас она как-то подзадержалась и зависла во многих нормативных документах.

Однако, чтобы понимать всю ограниченность этой концепции в современном мире надо вспомнить окружение, в котором эта триада появилась. Мейнфреймы, язык COBOL, операционная система MVS, Multics, UNIX и т.д. Что поменялось с тех пор? Все. Появился Интернет, черви навроде Stuxnet, Java и C++, облачные вычисления и много чего... Все это уже очень трудно уложить в традиционную триаду. Стали появляться расширения триады. Например, ФСБ в своей методичке по персональным данным, указав триаду как основные характеристики безопасности, добавила еще: "в дополнение к перечисленным выше основным характеристикам безопасности могут рассматриваться также и другие характеристики безопасности. В частности, к таким характеристикам относятся неотказуемость, учетность (иногда в качестве синонима используется термин «подконтрольность»), аутентичность (иногда в качестве синонима используется термин «достоверность») и адекватность ".А в 91-м Джон МакКамбер предложил свою модель на базе триады, названную им моделью информационной безопасности МакКамбера (я о ней 3 года назад).

ОЭСР в 1992-м году предложила свои 9 принципов безопасности - Awareness, Responsibility, Response, Ethics, Democracy, Risk Assessment, Security Design and Implementation, Security Management и Reassessment. ОСЭР всегда смотрела на безопасность с философски-культурологической позиции;-)

В 2002-м году Дон Паркер предложил свой "Паркеровский гексагон", котрый к триаде добавлял еще 3 характеристики - владение или контроль (possession или control), аутентичность (достоверность) и полезность (utility).

По поводу владения/контроля Паркер приводил такой пример. Представьте, что вор украл у вас запечатанный конверт с банковскими картами и PIN-кодами к ним. Даже если вор не открыл этот конверт и не нарушил тем самым его конфиденциальность, это все равно должно вызывать беспокойство владельца конверта, который потерял над ним контроль. Аналогичная ситуация с тестами на проникновение, например, в системы АСУ ТП. Во время таких тестов не страдает ни один из элементов классической триады, но успешное проникновение показывает потерю контроля.

На тему полезности Паркер тоже приводил жизненную ситуацию. Допустим вы зашифровали свой жесткий диск и забыли пароль (ключ). Для данных на диске сохраняется конфиденциальность, целостность, доступность, достоверность и контроль, но... вы не можете ими воспользоваться. Это и есть нарушение полезности.

NIST в 2004-м году пошел еще дальше и предложил свою модель из 33 (!) элементов или, как написано в SP800-27 "Engineering Principles for Information Technology Security (A Baseline for Achieving Security)", принципов. Но и это тоже не конец. Многие организации пытались придумать что-то свое, подменяя понятие "информационной безопасности" другими - "управление рисками", "security governance" и т.д. И у каждого из них был свой набор характеристик или принципов, реализация которых позволяла надеяться на создание действительно защищенной системы или процесса.