Преобразование Жордана-Гаусса и симплекс-метод в Excel

Основные теоремы линейного программирования

Для обоснования методов решения задач линейного программирования сформулируем ряд важнейших теорем, опуская их аналитические доказательства. Уяснить смысл каждой из теорем поможет понятие о геометрической интерпретации решения ЗЛП, данное в предыдущем подразделе.

Однако сначала напомним о некоторых понятиях, важных с точки зрения дальнейшего разговора.

Любые m переменных системы m линейных уравнений с n переменными (m < n) называются основными , если определитель матрицы коэффициентов при них отличен от нуля. Тогда остальные m-n переменных называются неосновными (или свободными) .

Базисным решением системы m линейных уравнений c n переменными (m < n) называется всякое ее решение, в котором все неосновные переменные имеют нулевые значения.

Теорема 1 . Множество всех допустимых решений системы ограничений задачи линейного программирования является выпуклым.

В частном случае, когда в систему ограничений входят только две переменные x 1 и x 2 , это множество можно изобразить на плоскости. Так как речь идет о допустимых решениях (x 1 , x 2 ≥ 0), то соответствующее множество будет располагаться в первой четверти декартовой системы координат. Это множество может быть замкнутым (многоугольник), незамкнутым (неограниченная многогранная область), состоять из единственной точки и, наконец, система ограничений-неравенств может быть противоречивой.

Теорема 2 . Если задача линейного программирования имеет оптимальное решение, то оно совпадает с одной (двумя) из угловых точек множества допустимых решений.

Из теоремы 2 можно сделать вывод о том, что единственность оптимального решения может нарушаться, причем, если решение не единственное, то таких оптимальных решений будет бесчисленное множество (все точки отрезка, соединяющего соответствующие угловые точки).

Теорема 3 . Каждому допустимому базисному решению задачи линейного программирования соответствует угловая точка области допустимых решений, и наоборот.

Следствием из теорем 2 и 3 является утверждение о том, что оптимальное решение (оптимальные решения) задачи линейного программирования, заданной (или приведенной) ограничениями-уравнениями, совпадает с допустимым базисным решением (допустимыми базисными решениями) системы ограничений.

Таким образом, оптимальное решение ЗЛП следует искать среди конечного числа допустимых базисных решений.

Симплекс-метод был разработан и впервые применен для решения задач в 1947 г. американским математиком Дж. Данцигом.

Симплексный метод в отличие от геометрического универсален. С его помощью можно решить любую задачу линейного программирования.


В основу симплексного метода положена идея последовательного улучшения получаемого решения.

Геометрический смысл симплексного метода состоит в последовательном переходе от одной вершины многогранника ограничений к соседней, в которой целевая функция принимает лучшее (или, по крайней мере, не худшее) значение до тех пор, пока не будет найдено оптимальное решение - вершина, где достигается оптимальное значение функции цели (если задача имеет конечный оптимум).

Таким образом, имея систему ограничений, приведенную к канонической форме (все функциональные ограничения имеют вид равенств), находят любое базисное решение этой системы, заботясь только о том, чтобы найти его как можно проще. Если первое же найденное базисное решение оказалось допустимым, то проверяют его на оптимальность. Если оно не оптимально, то осуществляется переход к другому, обязательно допустимому базисному решению. Симплексный метод гарантирует, что при этом новом решении целевая функция, если и не достигнет оптимума, то приблизится к нему (или, по крайней мере, не удалится от него). С новым допустимым базисным решением поступают так же, пока не отыщется решение, которое является оптимальным.

Процесс применения симплексного метода предполагает реализацию трех его основных элементов:

1) способ определения какого-либо первоначального допустимого базисного решения задачи;

2) правило перехода к лучшему (точнее, не худшему) решению;

3) критерий проверки оптимальности найденного решения.

Симплексный метод включает в себя ряд этапов и может быть сформулирован в виде четкого алгоритма (четкого предписания о выполнении последовательных операций). Это позволяет успешно программировать и реализовывать его на ЭВМ. Задачи с небольшим числом переменных и ограничений могут быть решены симплексным методом вручную.

Реализация симплекс-алгоритма включает восемь шагов. Опишем их, параллельно рассматривая пример выполнения каждого шага в применении к задаче о хоккейных клюках и шахматных наборах.

Шаг 1 . Формулировка ЗЛП (формирование целевой функции и системы ограничений).

Как известно, метод Жордана-Гаусса, он же метод последовательного исключения неизвестных, является модификацией метода Гаусса решения систем линейных алгебраических уравнений (СЛАУ).

Метод базируется на элементарных преобразованиях (переводящих систему в эквивалентную), к которым относятся:

  • прибавление к обеим частям уравнения системы другого уравнения той же системы, умноженного на число, отличное от нуля;
  • перестановка местами уравнений в системе;
  • удаление из системы уравнений вида 0 = 0.

В отличие от метода Гаусса, на каждом шаге одна переменная исключается из всех уравнений, кроме одного.

Шаг метода состоит в следующем:

  • выбрать в очередном уравнении неизвестное с коэффициентом, отличным от нуля (разрешающим элементом);
  • разделить выбранное уравнение на разрешающий элемент;
  • с помощью выбранного уравнения исключить неизвестное при разрешающем элементе из всех остальных уравнений;
  • на следующем шаге аналогично исключается другое неизвестное из всех уравнений, кроме одного;
  • процесс продолжается, пока не будут использованы все уравнения.

Алгоритмизировать это можно так:

Для СЛАУ в матричном виде A*x=b (матрица A размерности m*n , совсем необязательно квадратная) составляется следующая таблица:

В таблице выбран разрешающий элемент a r,s ≠0 , тогда r - разрешающая строка, s - разрешающий столбец.

Переход к следующей таблице выполняется по правилам:

1. вычисляются элементы разрешающей строки: a" r,j =a r,j /a r,s - то есть, r-строка таблицы делится на разрешающий элемент;

2. все элементы разрешающего столбца, кроме a r,s , равного единице, становятся равны нулю;

3. элементы вне разрешающих строки и столбца вычисляются по формуле, изображённой ниже:


Легко не запутаться, если увидеть, что числитель этой формулы похож на вычисление определителя матрицы 2 на 2.

4. При ручном расчёте значение в последнем контрольном столбце сравнивается с суммой предыдущих элементов строки. Если значения не совпадают, ошибки надо искать в данной строке. При автоматизированном расчёте контрольный столбец можно опустить.

Возможны следующие случаи:

1. В процессе исключений левая часть уравнения системы обращается в 0, а правая b≠0 , тогда система не имеет решения.

2. Получается тождество 0 = 0 - уравнение является линейной комбинацией остальных и строка нулей может быть вычеркнута из системы.

3. После использования всех уравнений для исключения неизвестных, таблица либо содержит искомое решение, либо показывает несовместность системы ограничений.

Запрограммируем метод в Excel одной формулой, изменять которую должно быть не слишком трудоёмко. Например, для решения СЛАУ


заполним коэффициентами системы ячейки листа от A1 до D4 включительно, выберем разрешающий элемент a 1,1 =1 , а первый шаг метода сделаем в ячейке A6 , куда загоним "универсальную" формулу для преобразования Жордана-Гаусса:

ЕСЛИ(СТРОКА($A$1)=СТРОКА(A1);A1/$A$1;
ЕСЛИ(СТОЛБЕЦ($A$1)=СТОЛБЕЦ(A1);0;(A1*$A$1-
ДВССЫЛ(АДРЕС(СТРОКА(A1);СТОЛБЕЦ($A$1)))*
ДВССЫЛ(АДРЕС(СТРОКА($A$1);СТОЛБЕЦ(A1))))/$A$1))


На следующем шаге разрешающим элементом может быть, например, a 2,2 =1 (ячейка B7). Нам останется скопировать формулу из A6 в A11 (по пустой строке оставляем, чтоб визуально разделить шаги метода), войти в режим редактирования формулы (двойной щелчок по ячейке или выбрать её и нажать клавишу F2) и поправить (аккуратно перетащить мышкой за границу) все закреплённые ссылки с ячейки A1 на B7 .

Конечно, можно заменить везде в формуле закреплённую ссылку $A$1 на конструкцию вида ДВССЫЛ(ЯЧЕЙКА) , образующую динамический адрес ссылки. Скажем, ДВССЫЛ(F8) , а в ячейке F8 будет автоматически формироваться адрес ячейки разрешающего элемента по заданным пользователем номеру строки и столбца. Тогда для этих номеров строки и столбца придётся предусмотреть отдельные ячейки, например, так:


Увы, всё это ничего не даст - вместо $A$1 мы просто вынуждены будем закрепить в формуле ДВССЫЛ($F$8) и всё равно потом перетаскивать столько же ссылок при копировании формулы. Кроме того, "вручную" введённые номера строки и столбца придётся ещё и проверять на допустимость (хотя бы как на рисунке), так что, не будем умножать сущностей.

Посмотреть метод в работе можно на двух первых листах приложенного файла Excel (2 разных примера).

На преобразовании Жордана-Гаусса основан и такой универсальный метод решения линейных задач оптимизации, как симплекс-метод . Описания его обычно страшны, длинны и перегружены теоремами. Попробуем сделать простое описание и разработать пригодный для расчёта в Excel алгоритм. На самом деле, симплекс-метод уже встроен в стандартную надстройку Пакет анализа, и программировать его "вручную" не нужно, так что наш код имеет, скорее, учебную ценность.

Сначала минимум теории.

Если вектор-столбцы СЛАУ линейно независимы, соответствующие им переменные являются базисными , а остальные – свободными . Например, в СЛАУ


переменные x 2 и x 4 - базисные, а x 1 и x 3 - свободные. Базисные переменные между собой независимы, а свободные можно сделать, например, нулями и получить { x 2 =2, x 4 =1 } – базисное решение системы.

Выбирая различные разрешающие элементы, можно получить решения СЛАУ с различными базисами. Любое неотрицательное базисное решение СЛАУ называется опорным .

Симплекс-метод обеспечивает переход от одного опорного решения к другому, пока не будет достигнуто оптимальное решение, дающее минимум целевой функции.

Алгоритм симплекс-метода состоит в следующем:

1. Задача ЛП преобразуется к каноническому виду:


Это всегда можно сделать следующим образом: к задаче, записанной в стандартной постановке


добавляются дополнительные балансовые переменные , число которых соответствует числу ограничений-неравенств m (ограничения на неотрицательность значений неизвестных не учитываются). После этого неравенства со знаком " ≤ " превращаются в равенства, например, система ограничений вида

2*x 1 +3*x 2 ≤20
3*x 1 +x 2 ≤15
4*x 1 ≤16
3*x 2 ≤12
x 1 ,x 2 ≥0

примет вид

2*x 1 +3*x 2 +x 3 =20
3*x 1 +x 2 +x 4 =15
4*x 1 +x 5 =16
3*x 2 +x 6 =12
x 1 ,x 2 ,...,x 6 ≥0

То есть, "экономический" смысл балансовых переменных очень прост – это "остатки" неиспользованных ресурсов каждого вида.

Если в исходной задаче искался не минимум, а максимум, целевая функция Z заменятся на Z 1 = -Z . Решения задач совпадают, при этом min Z = - max Z 1 . Например, цель

Z(x 1 ,x 2)=2*x 1 +5*x 2 (max)

переписывается в виде

Z 1 (x 1 ,x 2)=-2*x 1 -5*x 2 (min)

Если в исходной задаче были уравнения-неравенства со знаками " ≥ " вместо " ≤ ", обе части каждого такого неравенства умножаются на -1 , а знак неравенства меняется на противоположный, например,

3*x 1 +x 2 +x 4 ≥15

превращается в

3*x 1 -x 2 -x 4 ≤15

Канонический вид модели получен, для него выписывается симплекс-таблица :


В левом столбце записываются базисные переменные (БП), если они ещё не выделены – пусто.

2. С помощью шагов Жордана–Гаусса ищется первоначальный опорный план, т.е. СЛАУ приводится к базисному виду с неотрицательными свободными членами b i >0 . При этом целевая функция Z должна быть выражена только через свободные неизвестные (нулевые коэффициенты в Z-строке стоят только под переменными x i , которые есть в базисе). При выборе разрешающего элемента a r,s в строку r столбца БП выписываем переменную x s , если там уже была переменная – вычеркиваем её (выводим из базиса).

3. Выписываем под столбцами x i опорный план X * : под свободными переменными - нули, под базисными – соответствующие базисной переменной коэффициенты из столбца b .

Ниже выписываем вектор R по правилу: под базисными переменными – нули, под свободными R i =Z i .

Если все R i ≥0 , найдено оптимальное решение X * и значение цели Z min = -q , иначе нужен новый план, а у вас он есть, товарищ Жюков? (п. 4).

4. Для выбора разрешающего столбца s выбираем максимальную по модулю отрицательную компоненту вектора R , разрешающий столбец s выбран. Затем анализируем коэффициенты s-го столбца матрицы системы ограничений. Если все a i,s ≤0 , решения нет и Z min стремится к минус бесконечности, иначе переходим к п.5.

5. Для выбора разрешающей строки r составляем неотрицательные отношения b i /A i,s ≥0 , i=1,2,...,m , и выбираем среди них наименьшее. Если минимум достигается для нескольких строк, за разрешающую можно принять любую из них, при этом, в новом опорном плане значения некоторых базисных переменных станут равными 0, т.е., получаем вырожденный опорный план.

6. Выполняем преобразование Жордана-Гаусса с разрешающим элементом a r,s и переходим к п.3

Геометрически симплекс-методу соответствует кратчайший обход вершин n-мерного выпуклого многогранника, образующего область допустимых решений задачи:


Здесь мы перешли от опорного плана C , представляющего собой одну из вершин многомерного многоугольника, к оптимальному плану E=X * .

Запрограммировать это всё в Excel нелегко, но можно. В прилагаемом документе приведены 3 примера, реализующие решение задач симплекс-методом. Правда, при выполнени шага менять уже придётся 3 формулы, на листе первого примера на симплекс-метод они выделены жёлтым цветом: расчёт отношений для выбора разрешающей строки в ячейке I2 , заполнение столбца БП в ячейке A12 , шаг преобразования Жордана-Гаусса в ячейке B12 . Как и в примере на преобразование Жордана-Гаусса, изменение формул связано только с необходимостью сослаться на новую строку, содержащую адрес ячейки с разрешающим элементом (для первого шага - ячейка C9).

Рассмотрим подробно, как производится пересчет симплекс-таблиц (на примере одной итерации). Пусть имеется симплекс-таблица представленная на Рис.1 . Решается задача максимизации целевой функции. Разрешающий столбец соответствует переменной x 2 , а разрешающая строка переменной x 3 (красные числа), на их пересечении находится разрешающий элемент (клетка с серым фоном). Первое, что нам необходимо сделать - это заменить. Разрешающая строка показывает, какая переменная должна быть выведена из базиса (в нашем случае x 3 ), а разрешающий столбец показывает какая переменная должна войти в базис (в нашем случае x 2 ). На Рис.2 факт замены акцентирован синей линией.

Теперь пересчитаем элементы стоящие в разрешающей строке. Для этого просто разделим каждый из них на разрешающий элемент (в нашем примере 4 ). А все элементы разрешающего столбца обнулим, кроме элемента стоящего в разрешающей строке. (Смотри Рис.2 )

Рисунок 1

Остальные ячейки таблицы (кроме столбца "Отношение") пересчитываются по так называемому правилу прямоугольника , смысл которого проще всего понять на примере. Пусть нужно пересчитать элемент обведенный на Рис.1 красным контуром. Мысленно проводим от него вертикальную и горизонтальную линии до пересечения, с разрешающей строкой и разрешающим столбцом. Элементы стоящие в местах пересечения обведены синими контурами (Смотри Рис.1 ). Новое значение "красного" элемента будет равно нынешнему значению элемента минус произведение "синих" деленное на разрешающий ("серый") элемент (Смотри Рис.1 ). То есть: 18 - (64 * -1) / 4 = 34 , здесь знаком "* " показана операция умножения.
Записываем новое значение на прежнее место (Смотри Рис.2 красный контур).

Рисунок 2

Пользуясь данным правилом, заполняем все пустые элементы таблицы (кроме столбца "Отношение") Смотри Рис.3 . После этого определим новый разрешающий столбец. Для этого проанализируем строку "Q" и так как наша задача на максимум, то найдем в ней максимальный положительный элемент , он и определит разрешающий столбец. В нашем случае это 3/2 . Все элементы разрешающего столбца показаны красным шрифтом (Смотри Рис.3 ). Если после очередной итерации в строке "Q" не окажется положительных элементов - это значит что оптимальное решение достигнуто, итерации прекращаются. Если бы наша задача была на минимум, то разрешающий столбец определялся бы по минимальному отрицательному элементу, и если после очередной итерации в строке "Q" не окажется отрицательных элементов, значит достигнуто оптимальное решение.

Рисунок 3

Теперь заполним столбец "Отношение". Для этого нужно соответствующий (стоящий в той же строке) элемент столбца "Решение" разделить на соответствующий элемент разрешающего столбца (Смотри Рис.3 ). Обратите внимание , что данная операция проводится только для положительных элементов разрешающего столбца и строка "Q" в данной операции не участвует. Если после некоторой итерации в разрешающем столбце не окажется положительных элементов, то данная задача неразрешима ввиду неограниченности целевой функции, итерации прекращаются.

После заполнения столбца "Отношение" определим новую разрешающую строку. Она определяется минимальным элементом из столбца "Отношение". В нашем случае это 32 , все элементы разрешающей строки показаны красным шрифтом (Смотри Рис.3 ). На этом очередная итерация заканчивается, на следующей итерации переменная x 2 будет выведена из базиса (об этом нам говорит новая разрешающая строка), ее место займет переменная x 1 (об этом нам говорит новый разрешающий столбец) и все вычисления повторятся снова.

    При условии отсутствия “0-строк” (ограничений-равенств) и “сво­бодных” перемен­ных (т.е. переменных, на которые не наложено требование неотри­цатель­ности).

2. В случае присутствия ограничений-равенств и “свободных” переменных поступают следующим образом.

    Выбирают разрешающий элемент в “0-строке” и делают шаг модифицированного жорданова исключения, после чего вычеркивают этот разрешающий столбец. Данную последовательность действий продолжают до тех пор, пока в симплексной таблице остается хотя бы одна “0-строка” (при этом таблица сокращается).

    Если же присутствуют и свободные переменные, то необходимо данные переменные сделать базисными. И после того, как свободная переменная станет базисной, в процессе определения разрешающего элемента при поиске опорного и оптимального планов данная строка не учитывается (но преобразуется).

Вырожденность в задачах линейного программирования

Рассматривая симплекс-метод, мы предполагали, что задача линейного программирования является невырожденной, т.е. каждый опорный план содержит ровно
положительных компонент, где
– число ограничений в задаче. В вырожденном опорном плане число положительных компонент оказывается меньше числа ограничений: некоторые базисные переменные, соответствующие данному опорному плану, принимают нулевые значения. Используя геометрическую интерпретацию для простейшего случая, когда
(число небазисных переменных равно 2), легко отличить вырожденную задачу от невырожденной. В вырожденной задаче в одной вершине многогранника условий пересекается более двух прямых, описываемых уравнениями вида
. Это значит, что одна или несколько сторон многоугольника условий стягиваются в точку.

Аналогично при
в вы­рож­денной задаче в одной вершине пересекается более 3-х плоскостей
.

В предположении о невырож­ден­ности задачи находилось только одно значение
, по кото­рому определялся индекс выводимого из базиса вектора условий (выводимой из числа базисных переменной). В вырожденной задаче
может достигаться на нескольких индек­сах сразу (для нескольких строк). В этом случае в находимом опорном плане несколько базисных переменных будут нулевыми.

Если задача линейного програм­ми­рования оказывается вырожденной, то при плохом выборе вектора условий, выводимого из базиса, может возникнуть бесконечное движение по базисам одного и того же опорного плана. Так называемое, явление зацик­ливания. Хотя в практических задачах линейного программирования зацикливание явление крайне редкое, возможность его не исключена.

Один из приемов борьбы с вырожденностью состоит в преобразовании задачи путем “незначительного” изменения вектора правых частей системы ограничений на величины , таким образом, чтобы задача стала невырож­денной, и, в то же время, чтобы это изменение не повлияло реально на оптимальный план задачи.

Чаще реализуемые алгоритмы включают в себя некоторые простые правила, снижающие вероятность возникновения зацикливания или его преодоления.

Пусть переменную необходимо сделать базисной. Рассмотрим мно­жество индексов, состоящее из тех, для которых достигается
. Множество индексов, для которых выполняется данное условие обозначим через. Еслисостоит из одного элемента, то из базиса исключается вектор условий(переменнаяделается небазисной).

Если состоит более чем из одного элемента, то составляется множество, которое состоит из
, на которых достигается
. Еслисостоит из одного индекса, то из базиса выводится переменная. В противном случае составляется множествои т.д.

Практически правилом надо пользоваться, если зацикливание уже обнаружено.