Как защитить канал передачи данных. Основные понятие и функции сети VPN. Шифрование данных в сети

Защита каналов связи

Защита информации в каналах связи - важнейший вопрос организации безопасности на предприятии. На сегодняшний день используют много способов успешно защитить информацию, передаваемую по каналам связи внутри корпорации или во внешний мир.

Защита каналов связи и ее основные методы

Защита связи и информации осуществляется при помощи двух методов. Это метод защиты, основанный на физическом ограничении доступа непосредственно к каналу связи, а также преобразование сигнала (шифрование), которое не позволит злоумышленнику прочитать передаваемую информацию без специального ключа.

В первом способе защита канала связи организовывается ограничением доступа к аппаратуре, по которой передается информация. Используется, в основном, в крупных компаниях и правительственных структурах. Данный метод действует лишь в том случае, если информация не поступает во внешний мир.

Защита информации в каналах связи во всех остальных случаях выполняется благодаря шифрованию данных. Шифрование передаваемой информации, если говорить о классических компьютерных сетях, может выполняться на различных уровнях сетевой модели OSI. Чаще всего преобразование данных происходят на сетевом или прикладном уровнях.

В первом случае шифрование данных осуществляется непосредственно на аппаратуре, которая является отправителем информации, а расшифровка - на приемнике. Данный вариант наиболее эффективно защитит передаваемые данные, однако для его реализации необходимо постороннее программное обеспечение, которое работало бы на прикладном уровне.

Во втором случае шифрование осуществляется непосредственно на узлах канала связи в локальной или глобальной сети. Этот способ защиты связи менее действенный, чем первый, и для должного уровня защиты информации требует реализацию надежных алгоритмов шифрования.

Защита информации в каналах связи также организовывается при построении виртуальных каналов VPN. Данная технология позволяет организовать защищенное соединение с указанным шифрованием по особому виртуальному каналу. Такая технология обеспечивает целостность и конфиденциальность передаваемой по каналу связи информации.

Устройства защиты каналов связи

К таким устройствам относятся:

благодаря которым можно взять под контроль состояние эфира внутри или снаружи предприятия. Это один из действенных методов защиты связи еще на ранней стадии нейтрализовать несанкционированный доступ к источнику информации.


Уважаемый покупатель!
Надеемся, что Вам понравилась прочитанная статья. Если по данной теме у Вас остались вопросы или пожелания, просим Вас заполнить небольшую форму, мы обязательно учтем и опубликуем Ваш отзыв.
Пожалуйста, учтите, что публикация ссылок на посторонние сайты, а также комментарии, не имеющие отношения к тексту статьи запрещены.


Как к Вам обращаться:

E-mail для связи:

Текст отзыва:


14.09.2006 Марк Джозеф Эдвардс

Какой метод оптимален для ваших условий? Пересылка файлов по Internet - операция весьма распространенная, а защита передаваемых файлов имеет первостепенную важность для многих предприятий. Существует целый ряд способов передачи файлов и множество методов защиты этих файлов в процессе передачи.

Какой метод оптимален для ваших условий?

Пересылка файлов по Internet - операция весьма распространенная, а защита передаваемых файлов имеет первостепенную важность для многих предприятий. Существует целый ряд способов передачи файлов и множество методов защиты этих файлов в процессе передачи. Выбор методов передачи и шифрования зависит от общих потребностей отправителя. В одних случаях достаточно просто обеспечить безопасность файлов в процессе передачи. В других важнее зашифровать файлы таким образом, чтобы они оставались защищенными и после доставки адресату. Давайте подробно рассмотрим способы безопасной передачи файлов.

В пути и по прибытии

Если ваши намерения ограничиваются защитой файлов в процессе их передачи по каналам Internet, вам необходима технология безопасной транспортировки. Один из вариантов состоит в использовании Web-узла, способного принимать пересылаемые на него файлы и обеспечивающего возможность безопасной загрузки таких файлов. Для организации защищенной транспортировки файлов на Web-узел можно создать Web-страницу, оснащенную средствами Secure Sockets Layer (SSL), на которой размещается элемент управления ActiveX или сценарий Javascript. К примеру, можно воспользоваться элементом управления AspUpload от компании Persitis Software; разработчики утверждают, что это «самое современное из имеющихся на рынке средств управления транспортировкой файлов на центральные узлы». Еще один вариант - использовать сценарий Free ASP Upload, который не требует применения бинарного компонента. Для обеспечения дополнительной защиты можно даже защитить паролями как Web-страницу, так и ассоциированный с ней каталог для размещения поступивших на узел материалов. Что же касается загрузки файлов с Web-узла, то достаточно позаботиться о том, чтобы соответствующий Web-сервер обеспечивал соединение с применением средств SSL, по крайней мере для URL, который используется для загрузки файлов.

Альтернативный вариант - использование сервера FTP, обеспечивающего передачу данных по протоколу FTP Secure. В сущности, FTPS - это протокол FTP, выполняемый по защищенному соединению SSL. Возможность использования протокола FTPS предусмотрена во многих популярных клиентах FTP, но, к сожалению, она не реализована в службе FTP Service корпорации Microsoft. Поэтому вам придется задействовать обеспечивающее такую возможность приложение сервера FTP (например, популярный продукт WFTPD). Не путайте FTPS с протоколом SSH File Transfer Protocol. SFTP - это протокол для передачи файлов, выполняемый поверх оболочки Secure Shell (SSH); кроме того, его можно использовать для передачи файлов. Впрочем, нужно иметь в виду, что SFTP несовместим с традиционным протоколом FTP, так что наряду с защищенным сервером оболочки (скажем, с сервером, предоставляемым SSH Communications Security), понадобится специальный клиент SFTP (это может быть клиент, входящий в пакет PuTTY Telnet/Secure Shell или WinSCP с графическим интерфейсом).

Кроме того, безопасную передачу файлов можно организовать на базе виртуальных частных сетей VPN. Платформы Windows Server обеспечивают совместимость с технологией VPN посредством RRAS. Однако это не гарантирует совместимости с VPN-решениями ваших партнеров. Если такой совместимости нет, можно воспользоваться одним из широко распространенных решений, например средством Open-VPN с открытым исходным кодом. Оно распространяется бесплатно и выполняется на целом ряде платформ, включая Windows, Linux, BSD и Macintosh OS X. Дополнительные сведения об интеграции OpenVPN можно найти в статье «Работаем с OpenVPN» ( ).

Установив VPN-соединение, вы сможете выделять каталоги и передавать файлы в обоих направлениях. При любом варианте использования VPN трафик шифруется, поэтому необходимости в дополнительном шифровании файлов не возникает - кроме тех случаев, когда требуется, чтобы файлы оставались защищенными и в системе, на которую они передаются. Этот принцип применим ко всем методам передачи, о которых я упоминал до сих пор.

Если этап передачи не вызывает у вас опасений и ваша главная забота состоит в том, чтобы исключить доступ к содержимому файлов со стороны не уполномоченных на то пользователей, целесообразно просто зашифровывать файлы до их транспортировки. В этом случае электронная почта, вероятно, будет эффективным каналом передачи файлов. Приложения для обработки электронной почты установлены почти на каждой настольной системе, так что, если вы передаете файлы по электронной почте, у вас не возникает необходимости применять дополнительные технологии, кроме средств шифрования данных. Метод передачи файлов по электронной почте эффективен потому, что сообщения и прикрепляемые файлы обычно поступают непосредственно в почтовый ящик получателя, хотя в процессе передачи сообщение может проходить через несколько серверов.

Если же вам тем не менее требуются дополнительные средства защиты данных в процессе их передачи по каналам электронной почты, рассмотрите возможность использования протоколов SMTP Secure (SMTPS) и POP3 Secure (POP3S). В сущности, SMTPS и POP3S - это обычные протоколы SMTP и POP3, выполняемые с использованием защищенного соединения SSL. Microsoft Exchange Server, как и большинство почтовых клиентов, включая Microsoft Outlook, обеспечивает возможность использования протоколов SMTPS и POP3S. Нужно иметь в виду, что даже в тех случаях, когда для обмена файлами между почтовым клиентом и почтовым сервером используется протокол SMTPS, сохраняется возможность того, что почтовый сервер будет доставлять почту конечному адресату через обычное незащищенное соединение SMTP.

Поскольку средства для обработки электронной почты получили столь широкое распространение, далее в этой статье мы будем обсуждать прежде всего вопросы безопасной передачи файлов по каналам электронной почты. При этом мы будем исходить из того, что отправителю необходимо шифровать данные, чтобы защитить их как на этапе передачи, так и после доставки. Итак, рассмотрим наиболее популярные на сегодня технологии шифрования сообщений электронной почты.

Средства сжатия файлов

Существует множество средств сжатия файлов в единый архивный файл, и многие из предлагаемых решений предусматривают применение той или иной формы шифрования для защиты содержимого архива. Обычно в процессе сжатия устанавливается пароль, и всякий, кто хочет открыть архив, может сделать это только с помощью данного пароля.

Один из наиболее популярных методов создания архивов сжатых файлов - метод zip-компрессии; его поддерживают практически все архиваторы. И одно из самых распространенных на сегодня средств zip-компрессии - приложение WinZip. Его можно использовать как автономную программу, встроить в Windows Explorer для облегчения доступа, а также с помощью модуля WinZip Companion for Outlook интегрировать этот продукт с клиентом Outlook. WinZip, как и многие другие оснащенные средствами zip архиваторы, обеспечивает возможность шифрования по методу Zip 2.0 Encryption. Но надо сказать, что защита файлов с помощью этого метода недостаточно надежна. Более приемлемый вариант шифрования реализован в продукте WinZip 9.0. Как показано на экране 1, ныне WinZip поддерживает спецификацию Advanced Encryption Standard (AES), где используются 128-разрядные или 256-разрядные ключи шифрования. AES - относительно новая технология, но ее уже считают промышленным стандартом.

Экран 1. WinZip поддерживает спецификацию AES

Я не могу сказать точно, какое количество архиваторов обеспечивает применение стойких алгоритмов шифрования средствами AES, и ограничусь упоминанием одного такого приложения; это разработанное компанией BAxBEx Software изделие bxAutoZip. Оно способно взаимодействовать с программой шифрования CryptoMite фирмы BAxBEx и может встраиваться в Outlook. Если WinZip позволяет шифровать данные только средствами Zip 2.0 и AES, CryptoMite обеспечивает возможность использования ряда других средств шифрования, включая популярные алгоритмы Twofish и Blowfish, Cast 256, Gost, Mars и SCOP.

Средствами распаковки zip-файлов оснащены уже практически все компьютерные системы, однако не все zip-приложения обеспечивают совместимость с различными алгоритмами шифрования. Поэтому, перед тем как отправлять зашифрованные файлы, надо убедиться в том, что zip-приложение получателя «понимает» избранный алгоритм.

При шифровании файлов с помощью zip-приложений используются защитные пароли. Для дешифрации архивного файла его получатель тоже должен воспользоваться соответствующим паролем. Необходимо проявлять осторожность при выборе метода доставки пароля. Вероятно, самые безопасные методы доставки пароля - по телефону, по факсу или через курьера. Можно выбрать любой из них, но ни в коем случае не следует передавать пароль по электронной почте в виде обычного текста; в этом случае резко возрастает опасность того, что доступ к зашифрованному файлу получит не имеющий на то полномочий пользователь.

Не забывайте о том, что оснащенные средствами шифрования архиваторы обеспечивают передачу файлов не только по каналам электронной почты. Их можно эффективно использовать для транспортировки данных и с помощью других упомянутых выше методов.

Pretty Good Privacy

Еще один чрезвычайно популярный метод шифрования можно реализовать с помощью программы Pretty Good Privacy. PGP произвела настоящий фурор, когда Фил Циммерман впервые бесплатно опубликовал ее в Internet в 1991 г. В 1996 г. PGP стала коммерческим продуктом, а затем в 1997 г. права на нее были куплены фирмой Network Associates (NAI). В 2002 г. эту технологию приобрела у NAI молодая компания PGP Corporation.

После этого PGP Corporation продала коммерческую версию PGP, которая функционирует в средах Windows и Mac OS X. Текущая версия PGP 9.0, в которой реализованы средства шифрования отдельных файлов и шифрования всего содержимого диска, может быть встроена в AOL Instant Messenger (AIM). Кроме того, PGP 9.0 интегрируется с такими изделиями, как Outlook, Microsoft Entourage, Lotus Notes, Qualcomm Eudora, Mozilla Thunderbird и Apple Mail.

В PGP применяется система шифрования с открытым ключом, предусматривающая генерирование пары ключей шифрования - открытого ключа и секретного ключа. Эти два ключа математически взаимосвязаны таким образом, что зашифрованные с помощью открытого ключа данные могут быть дешифрованы только с помощью секретного ключа. Пользователь PGP генерирует пару «открытый ключ - секретный ключ», после чего публикует открытый ключ в общедоступном каталоге ключей или на Web-узле. Секретный ключ, разумеется, нигде не публикуется и хранится в секрете; им пользуется только его владелец. При расшифровке данных с помощью секретного ключа требуется пароль, но при шифровании данных с помощью открытого ключа это не предусмотрено, поскольку открытыми ключами могут пользоваться все желающие.

Для простоты применения системы PGP ее разработчики реализовали функцию автоматического опроса общедоступных каталогов ключей. Эта функция позволяет, введя в строку поиска почтовый адрес того или иного пользователя, находить его открытый ключ. PGP предоставляет возможность автоматического считывания открытых ключей, которые можно для простоты доступа хранить локально на своей системе в специальной «связке ключей» (keyring) на базе файлов. Опрашивая каталог открытых ключей, PGP позволяет всегда держать в «связке» их самые последние версии. Если пользователь изменяет свой открытый ключ, вы можете получить доступ к обновленному ключу в любой момент, когда он вам потребуется.

Для обеспечения более надежных гарантий аутентичности открытых ключей можно использовать цифровые подписи с помощью ключей других пользователей. Подпись ключа другим пользователем служит дополнительным подтверждением того, что ключ действительно принадлежит человеку, называющему себя его владельцем. Чтобы подтвердить достоверность ключа с помощью цифровой подписи, PGP выполняет некую математическую операцию и добавляет к ключу ее уникальный результат. Затем подпись можно проверить, сравнив ее с подписывающим ключом, который применялся для создания подписи. Этот процесс напоминает процесс подтверждения одним человеком идентичности другого.

Системе PGP доверяют многие, поскольку она давно уже завоевала в отрасли репутацию надежной технологии для защиты информации. Но как бы то ни было, если вы решили использовать PGP или другой метод шифрования данных с помощью открытых ключей, помните, что получатели ваших файлов тоже должны располагать совместимой системой шифрования. Одно из преимуществ системы PGP при использовании электронной почты в качестве канала передачи данных состоит в том, что она поддерживает собственную модель шифрования, а также технологии X.509 и S/MIME, о которых я расскажу далее.

Кроме того, следует отметить еще один момент. Вне зависимости от того, планируется ли использовать PGP, WinZip или другую систему шифрования, если вы хотите в дополнение к шифрованию присоединенных файлов зашифровать содержимое собственно сообщения, потребуется записать сообщение в отдельный файл и тоже зашифровать его. По желанию этот файл с сообщением можно разместить в архиве вместе с другими файлами или присоединить его в качестве файла-вложения.

PKI

Инфраструктура открытых ключей (Public Key Infrastructure, PKI) уникальна, однако принцип ее действия в чем-то напоминает принцип действия PGP. PKI предполагает использование пары ключей - открытого и секретного. Для зашифровки данных, направляемых получателю, отправители применяют его открытый ключ; после того как данные доставляются получателю, он расшифровывает их с помощью своего секретного ключа.

Экран 2. Просмотр содержимого сертификата

Одно существенное отличие состоит в том, что в PKI открытый ключ обычно хранится в формате данных, известном как сертификат. Сертификаты могут содержать намного больше информации, нежели обычные ключи. К примеру, сертификаты обычно содержат дату истечения срока действия, так что мы знаем, когда сертификат и ассоциированный с ним ключ уже не будут действительны. Кроме того, сертификат может включать имя, адрес, номер телефона владельца ключа и другие данные. На экране 2 представлено содержимое сертификата в том виде, в каком оно отображается в окне программы Microsoft Internet Explorer (IE) или Outlook. В определенной степени содержимое сертификата зависит от того, какие именно данные желает разместить в нем владелец.

Как и PGP, PKI позволяет формировать «цепочки доверия», в которых сертификаты могут быть подписаны с помощью сертификатов других пользователей. Более того, появились удостоверяющие центры Certificate Authorities (CA). Это облеченные доверием независимые организации, которые не только выдают собственные сертификаты, но и подписывают другие сертификаты, гарантируя тем самым их подлинность. Как и в случае с PGP и связанными с этой системой серверами ключей, сертификаты могут публиковаться на общедоступных или частных серверах сертификатов либо на серверах LDAP, пересылаться по электронной почте и даже размещаться на Web-узлах или на файловом сервере.

Для обеспечения автоматической проверки подлинности сертификата разработчики клиентов электронной почты и Web-браузеров обычно оснащают свои программы средствами взаимодействия с серверами центров сертификации. В ходе этого процесса вы также сможете получить информацию об отзыве сертификата по тем или иным причинам и, соответственно, сделать заключение о том, что данному сертификату нельзя больше доверять. Разумеется, за услуги центров сертификации по предоставлению и заверению сертификатов иногда приходится платить; цены могут быть разными в зависимости от выбранного центра сертификации. Одни организации предоставляют клиентам бесплатные персональные сертификаты по электронной почте, другие берут за это значительное вознаграждение.

В основе PKI лежит спецификация X.509 (являющаяся производной от спецификации LDAP X). Поэтому сертификаты, выданные одним центром (включая сертификаты, которые вы генерируете для себя), обычно можно использовать на целом ряде платформ. Нужно только, чтобы эти платформы были совместимы со стандартом X.509. Вы можете и сами генерировать сертификаты с помощью любого из имеющихся инструментальных средств, таких как OpenSSL.

Если ваша организация использует службу Microsoft Certificate Services, вы можете запросить сертификат через эту службу. В средах Windows Server 2003 и Windows 2000 Server данный процесс должен протекать примерно одинаково. Следует открыть Web-страницу сервера сертификатов (как правило, она располагается по адресу http://servername/CertSrv ), затем выбрать пункт Request a Certificate. На следующей странице нужно выбрать элемент User certificate request и следовать указаниям Web-мастера до завершения процесса. Если служба сертификатов настроена таким образом, что для выдачи сертификата требуется санкция администратора, система известит вас об этом специальным сообщением, и вам придется дожидаться решения администратора. В иных случаях вы в итоге увидите гиперссылку, которая позволит установить сертификат.

Некоторые независимые центры сертификации, такие как Thwate и InstantSSL компании Comodo Group, предлагают пользователям бесплатные персональные почтовые сертификаты; это простой способ получения сертификатов. Кроме того, такие сертификаты уже будут подписаны выдавшей их инстанцией, что облегчит проверку их подлинности.

Когда дело доходит до использования PKI с целью отправки зашифрованных данных с помощью программы обработки электронной почты, в дело вступает спецификация Secure MIME (S/MIME). Outlook, Mozilla Thunderbird и Apple Mail - вот лишь несколько примеров почтовых приложений, позволяющих задействовать этот протокол. Чтобы отправить адресату зашифрованное почтовое сообщение (включающее или не включающее присоединенные файлы), необходимо иметь доступ к открытому ключу адресата.

Для получения открытого ключа другого пользователя можно просмотреть данные о ключах на сервере LDAP (если только ключ публикуется с использованием протокола LDAP). Другой вариант: можно попросить этого человека направить вам сообщение с цифровой подписью; как правило, при доставке адресату подписанного сообщения оснащенные средствами S/MIME почтовые клиенты присоединяют копию открытого ключа. А можно просто попросить интересующее вас лицо прислать вам сообщение с присоединенным к нему открытым ключом. Впоследствии можно будет хранить этот открытый ключ в интерфейсе управления ключами, который входит в состав вашего почтового клиента. Программа Outlook интегрируется со встроенным в Windows хранилищем сертификатов Certificate Store. При необходимости воспользоваться открытым ключом он всегда будет под рукой.

Шифрование на основе данных об отправителе

Фирма Voltage Security разработала новую технологию - шифрование на основе данных об отправителе (identity-based encryption, IBE). В целом она аналогична технологии PKI, но имеет любопытную особенность. Для дешифации сообщений в IBE используется секретный ключ, но в процессе шифрования обычный открытый ключ не применяется. В качестве такого ключа IBE предусматривает использование почтового адреса отправителя. Таким образом, при отправке получателю зашифрованного сообщения проблемы получения его открытого ключа не возникает. Достаточно иметь адрес электронной почты этого человека.

Технология IBE предполагает хранение секретного ключа получателя на сервере ключей. Получатель подтверждает свои права доступа к серверу ключей и получает секретный ключ, с помощью которого осуществляет дешифрацию содержимого сообщения. Технологию IBE могут применять пользователи Outlook, Outlook Express, Lotus Notes, Pocket PC, а также Research in Motion (RIM) BlackBerry. По словам представителей Voltage Security, IBE выполняется также на любых почтовых системах на базе браузеров под управлением практически любой операционной системы. Вполне вероятно, что такие универсальные решения Voltage Security - именно то, что вам нужно.

Примечательно, что технология IBE применяется в продуктах компании FrontBridge Technologies как средство, облегчающее безопасный обмен зашифрованными почтовыми сообщениями. Вам, наверное, уже известно, что в июле 2005 г. компания FrontBridge была приобретена корпорацией Microsoft, которая планирует интегрировать решения FrontBridge с Exchange; возможно, уже довольно скоро комбинация этих технологий будет предложена потребителям в виде управляемой службы. Если системы обработки электронной почты в вашей организации и у ваших партнеров базируются на Exchange, следите за развитием событий на этом участке.

С учетом всех обстоятельств

Существует множество способов безопасной передачи файлов по каналам Internet, и, несомненно, самый простой и эффективный из них обеспечивается средствами электронной почты. Разумеется, те, кому приходится обмениваться большим количеством файлов, составляющих большие объемы данных, могут рассмотреть возможность использования других методов.

Следует тщательно взвесить, какое количество файлов вы будете передавать, насколько велики они по объему, как часто вам придется передавать эти файлы, кто должен иметь доступ к ним и как они будут храниться по месту получения. С учетом этих факторов вы сможете подобрать оптимальный способ передачи файлов.

Если вы придете к заключению, что лучший вариант для вас - электронная почта, имейте в виду, что по прибытии почты на многих почтовых серверах и почтовых клиентах можно запускать сценарии или выполнять определенные действия на базе правил. С помощью этих функций можно автоматизировать движение файлов как по пути следования на почтовых серверах, так и при поступлении файлов в почтовый ящик.

Марк Джозеф Эдвардс - старший редактор Windows IT Pro и автор еженедельного почтового бюллетеня Security UPDATE (http://www.windowsitpro.com/email ). [email protected]



Создание защищенного канала передачи данных между распределенными информационными ресурсами предприятия

А. А. Теренин, к. т. н.,

специалист по обеспечению качества ИТ и ПО

«Дойче Банк Москва»

В настоящее время крупному предприятию, имеющему сеть филиалов в стране или мире, для успешного ведения бизнеса необходимо создание единого информационного пространства и обеспечение четкой координации действий между его филиалами.

Для координации бизнес-процессов, протекающих в различных филиалах, необходим обмен информацией между ними. Данные, поступающие из различных офисов, аккумулируются для дальнейшей обработки, анализа и хранения в некотором головном офисе. Накопленная информация затем используется для решения бизнес-задач всеми филиалами предприятия.

К данным, которыми обмениваются филиалы, выдвигаются строгие требования по их достоверности и целостности. В дополнение к этому, данные, представляющие коммерческую тайну, должны носить конфиденциальный характер. Для полноценной параллельной работы всех офисов обмен информацией должен происходить в режиме он-лайн (в режиме реального времени). Другими словами, между филиалами предприятия и головным офисом должен быть установлен постоянный канал передачи данных. Для обеспечения бесперебойной работы такого канала выдвигается требование по сохранению доступности к каждому источнику информации.

Резюмируем требования, которым должны соответствовать каналы передачи данных между филиалами предприятия для высококачественного выполнения задачи обеспечения постоянной связи:

    канал передачи данных должен быть постоянным,

    данные, передаваемые по такому каналу, должны сохранять целостность, достоверность и конфиденциальность.

    Кроме того, надежное функционирование постоянного канала связи подразумевает, что легальные пользователи системы в любой момент времени будут иметь доступ к источникам информации.

Помимо распределенных корпоративных систем, функционирующих в режиме реального времени, существуют системы, работающие в режиме офф-лайн. Обмен данными в таких системах происходит не постоянно, а через заданные периоды времени: один раз в день, один раз в час и т. д. Данные в подобных системах накапливаются в отдельных филиальных базах данных (БД), а также в центральных БД, и только данные из этих БД считаются достоверными.

Но даже если обмен информацией происходит только один раз в день, необходимо устанавливать защищенный канал передачи данных, к которому предъявляются все те же требования по обеспечению достоверности, целостности и конфиденциальности, а также доступности на время работы канала.

Под требованием достоверности подразумевается обеспечение авторизованного доступа, аутентификации сторон взаимодействия и обеспечение недопустимости отказа от авторства и факта передачи данных.

Более строгие требования предъявляются к системам обеспечения безопасности информационных транзакций в распределенной информационной среде, но это тема для отдельной статьи.

Как обеспечить подобную защиту канала передачи данных?

Можно соединить физическим каналом передачи данных каждый филиал с каждым (или только все филиалы с центром) и обеспечить невозможность доступа к физической среде передачи информационных сигналов. Да, такое решение может оказаться приемлемым для реализации в пределах одного охраняемого объекта, но речь идет о распределенных корпоративных системах, где расстояние между объектами взаимодействия может измеряться тысячами километров. Стоимость реализации подобного плана настолько высока, что никогда не будет экономически эффективной.

Другой вариант: арендовать имеющиеся, уже проложенные каналы связи или спутниковые каналы у операторов связи. Подобное решение также входит в разряд дорогостоящих, к тому же защита данных каналов потребует реализации или установки специального программного обеспечения (ПО) у каждой из взаимодействующих сторон.

Весьма распространенным, недорогим и эффективным решением является организация защищенных каналов связи поверх всемирной вычислительной сети Интернет.

Сейчас трудно представить себе организацию, не имеющую выхода в Интернет и не использующую Всемирную сеть для организации своих бизнес-процессов. Кроме того, рынок информационных технологий насыщен сетевым оборудованием и ПО разных производителей со встроенной поддержкой обеспечения информационной безопасности. Существуют стандарты, защищенные сетевые протоколы, которые ложатся в основу создаваемых аппаратных и программных продуктов, использующихся для организации защищенного взаимодействия в открытой информационной сети.

Рассмотрим подробно, как можно создавать защищенные каналы передачи данных через Интернет.

Проблемы защищенной передачи данных по открытым сетям широко обсуждаются в популярной и массовой литературе:

Всемирная сеть Интернет постоянно расширяется, развиваются средства для передачи и обработки данных, все совершеннее становится оборудование для перехвата передаваемых данных и доступа к конфиденциальной информации. В настоящее время все более актуальной становится проблема обеспечения защиты информации от ее несанкционированного копирования, уничтожения или модифицирования, при хранении, обработке и передаче по каналам связи .

Защита информации при ее передаче по открытым каналам связи с помощью асимметричного шифрования рассмотрена в , а проблемы и пути их решения при использовании электронной цифровой подписи – в .

В данной статье подробно рассматриваются методы обеспечения информационной безопасности при передаче секретных данных по открытым каналам связи.

Для защиты информации, передаваемой по общедоступным каналам связи, применяется множество средств защиты: данные шифруются, пакеты снабжаются дополнительной управляющей информацией, используется протокол обмена данными с повышенной степенью защищенности .

Перед принятием решения о том, как защищать передаваемые данные, необходимо четко очертить круг возможных уязвимостей, перечислить способы перехвата, искажения или уничтожения данных, методы подключения к каналам связи. Ответить на вопросы, какие цели преследуют злоумышленники и каким образом они могут использовать существующие уязвимости для реализации своих планов.

Из дополнительных требований к реализуемому защитному каналу передачи данных можно выделить:

    идентификацию и аутентификацию взаимодействующих сторон;

    процедуру защиты от подмены одной из сторон (использование криптоалгоритмов с открытым ключом);

    контроль за целостностью передаваемых данных, маршрутом передачи информации и уровнем защиты канала связи;

    конфигурирование и проверку качества канала связи;

    компрессию передаваемой информации;

    обнаружение и коррекцию ошибок при передаче данных по каналам связи;

    аудит и регистрацию событий;

    автоматическое восстановление работоспособности.

Построим модель нарушителя и модель объекта защиты (рис. 1).

Алгоритм установления соединения

Для реализации защищенного канала передачи данных используется клиент-серверная модель взаимодействия.

Рассматриваются две стороны: сервер и клиент – рабочая станция, которая хочет установить соединение с сервером для дальнейшей работы с ним.

Изначально существуют только два ключа: открытый и закрытый ключи сервера (ОКС и ЗКС ), причем открытый ключ сервера известен всем и передается клиенту при его обращении к серверу. Закрытый ключ сервера в строжайшей секретности хранится на сервере.

Инициализатором соединения выступает клиент, он получает доступ к серверу через любую глобальную сеть, с которой этот сервер работает, чаще всего через Интернет.

Основная задача при инициализации соединения – установить канал обмена данными между двумя взаимодействующими сторонами, предотвратить возможность подлога и предупредить ситуацию подмены пользователя, когда соединение устанавливается с одним пользователем, а затем к одной из сторон канала подсоединяется другой участник системы и начинает присваивать себе сообщения, предназначенные легальному пользователю, или передавать сообщения от чужого имени.

Необходимо предусмотреть возможность подсоединения злоумышленника в любой момент времени и повторять процедуру «рукопожатия» (handshake) через определенные временные интервалы, продолжительность которых необходимо установить минимальной от допустимой.

Исходя из предположения, что ЗКС и ОКС уже созданы, причем ОКС известен всем, а ЗКС – только серверу, мы получаем следующий алгоритм:

1. Клиент посылает серверу запрос на соединение.

2. Сервер запускает приложение, передавая запросившей станции некоторое специальное сообщение для предустановленного клиентского приложения, в котором зашит открытый ключ сервера.

3. Клиент генерирует свои ключи (открытый и закрытый) для работы с сервером (ОКК и ЗКК ).

4. Клиент генерирует ключ сессии (КС ) (симметричный ключ шифрования сообщений).

5. Клиент передает серверу следующие компоненты:

    открытый ключ клиента (ОКК );

    ключ сессии;

    случайное сообщение (назовем его Х ), зашифрованное открытым ключом сервера по алгоритму RSA .

6. Сервер обрабатывает полученное сообщение и посылает в ответ сообщение Х , зашифрованное ключом сессии (симметричное шифрование) + зашифрованное открытым ключом клиента (асимметричное шифрование, например алгоритм RSA ) + подписанное закрытым ключом сервера (RSA, DSA, ГОСТ ) (то есть если мы на стороне клиента после дешифрования получим опять Х, то это значит, что:

    сообщение пришло от сервера (подпись – ЗКС );

    сервер принял наш ОКК (и зашифровал нашим ключом);

    сервер принял КС (зашифровал этим ключом сообщение).

7. Клиент принимает это сообщение, проверяет подпись и дешифрует полученный текст. Если в результате произведения всех обратных действий мы получаем сообщение, полностью идентичное посылаемому серверу сообщению Х , то считается, что защищенный канал обмена данными установлен корректно и полностью готов к работе и выполнению своих функций.

8. В дальнейшем обе стороны начинают обмен сообщениями, которые подписываются закрытыми ключами отправителя и шифруются ключом сессии.

Схема алгоритма установления соединения приведена на рис. 2.

Алгоритм подготовки сообщения к отправке в защищенный канал

Постановка задачи звучит следующим образом: на вход алгоритма поступает исходный (открытый) текст, на выходе путем криптографических преобразований мы получаем закрытый и подписанный файл. Главная задача, поставленная перед этим алгоритмом, состоит в обеспечении безопасной передачи текста, обеспечении защиты в незащищенном канале.

Также необходимо ввести возможность предотвращения раскрытия информации при перехвате сообщения злоумышленником. Сеть является открытой, любой пользователь в этой сети может перехватить любое сообщение, посланное по каналу передачи данных. Но благодаря защите, заложенной в этом алгоритме, полученные злоумышленником данные будут совершенно для него бесполезны.

Естественно, необходимо предусмотреть вариант вскрытия путем полного перебора, но тогда надо учитывать время, затрачиваемое на вскрытие, которое рассчитывается известным способом, и использовать соответствующие длины ключей, гарантирующих нераскрытие закрываемой ими информации в течение заданного времени.

Существует также вероятность того, что на другом конце канала (на приемной стороне) оказался злоумышленник, подменивший собой легального представителя. Благодаря этому алгоритму сообщение, которое беспрепятственно попадет в руки такого злоумышленника, тоже окажется «нечитабельным», поскольку подменившему неизвестны открытый и закрытый ключи подмененной им стороны, а также ключ сессии.

Алгоритм может быть реализован следующим образом (рис. 3):

    исходный текст сжимается с помощью алгоритма ZIP;

    параллельно этому процессу происходит подпись исходного текста открытым ключом получателя;

    сжатый текст шифруется симметричным ключом сессии, этот ключ тоже есть на приемной стороне;

    к зашифрованному и сжатому тексту добавляется цифровая подпись, однозначно идентифицирующая отправителя;

    сообщение готово к отправлению и может быть передано по каналу связи.

Алгоритм обработки сообщения при приеме из защищенного канала

На вход алгоритма поступает зашифрованный, сжатый и подписанный текст, который мы принимаем по каналу связи. Задача алгоритма состоит в получении с использованием обратных криптографических преобразований исходного открытого текста, проверки подлинности сообщения и его авторства.

Так как главная задача системы – создать защищенный канал на незащищенных линиях связи, каждое сообщение претерпевает сильные изменения и несет с собой сопутствующую контрольную и управляющую информацию. Процесс обратного восстановления исходного текста также требует довольно долгого времени преобразования и использует современные криптографические алгоритмы, в которых применяются операции с очень большими числами.

При желании обеспечить максимальную защиту прохождения сообщения по защищенному каналу приходится прибегать к довольно долговременным и ресурсоемким операциям. Выигрывая в степени защищенности, мы проигрываем в скорости обработки пересылаемых сообщений.

Кроме этого, необходимо учесть временные и машинные затраты на поддержание достоверности связи (проверку сторонами друг друга) и на обмен контрольной и управляющей информацией.

Алгоритм обработки сообщения при приеме из защищенного канала (рис. 4):

    из полученного зашифрованного, сжатого и подписанного сообщения выделяется цифровая подпись;

    текст без цифровой подписи дешифруется ключом сессии;

    декодированный текст проходит процедуру разархивирования с использованием, например, алгоритма ZIP;

    полученный в результате двух предыдущих операций текст используется для проверки цифровой подписи сообщения;

    на выходе алгоритма мы имеем исходное открытое сообщение и результат проверки подписи.

Алгоритм подписи сообщения

Рассмотрим более подробно алгоритм подписи сообщения. Мы будем исходить из предположения, что все открытые и закрытые ключи обеих обменивающихся данными сторон уже сгенерированы и закрытые ключи хранятся у их непосредственных владельцев, а открытые ключи разосланы друг другу.

Так как исходный текст может иметь неограниченный и каждый раз непостоянный размер, а алгоритм цифровой подписи требует для своей работы блок данных определенной постоянной длины, то для преобразования всего текста в его отображение заранее установленной длины будет использоваться значение хэш-функции от этого текста. В результате мы получаем отображение текста благодаря основному свойству хэшфункции: она является односторонней, из полученного отображения нельзя будет восстановить исходный текст. Алгоритмически невозможно подобрать любой такой текст, у которого значение хэш-функции совпадало бы с ранее найденным. Это не позволяет злоумышленнику беспрепятственно подменить послание, так как сразу изменится значение его хэшфункции, и проверяемая подпись не совпадет с эталоном.

Для нахождения значения хэшфункции можно применять известные алгоритмы хэширования (SHA, MD4, MD5, ГОСТ и др.), которые позволяют получить на выходе блок данных фиксированной длины. Именно с этим блоком и будет работать алгоритм цифровой подписи. В качестве алгоритма электронной цифровой подписи можно использовать алгоритмы DSA, RSA, Эль-Гамаля и др.

Опишем алгоритм подписи сообщения по пунктам (рис. 5):

    на вход общего алгоритма поступает исходный текст любой длины;

    вычисляется значение хэш-функции для данного текста;

    ЭЦП ;

    используя поступившие данные, вычисляется значение ЭЦП всего текста;

    на выходе алгоритма мы имеем цифровую подпись сообщения, которая поступает дальше для присоединения к отправляемому в канал обмена данными пакету информации.

Алгоритм проверки подписи

На вход алгоритма поступают две составляющие: исходный текст сообщения и его цифровая подпись. Причем исходный текст может иметь неограниченный и каждый раз непостоянный размер, а цифровая подпись всегда имеет фиксированную длину. Данный алгоритм находит хэш-функцию текста, вычисляет цифровую подпись и сравнивает ее с информацией, поступившей к нему на вход.

На выходе алгоритма мы имеем результат проверки цифровой подписи, который может иметь только два значения: «подпись соответствует оригиналу, текст подлинный» либо «подпись текста некорректна, целостность, подлинность или авторство сообщения вызывает подозрение». Значение на выходе данного алгоритма можно затем использовать дальше в системе поддержки защищенного канала.

Опишем алгоритм проверки подписи сообщения по пунктам (рис. 6):

    на вход общего алгоритма поступает исходный текст любой длины и цифровая подпись этого текста фиксированной длины;

    вычисляется значение хэш-функции от данного текста;

    полученное отображение текста фиксированной длины поступает в следующий блок алгоритмической обработки;

    в этот же блок направляется цифровая подпись, которая пришла на вход общего алгоритма;

    также на вход этого блока (вычисление цифровой подписи) поступает секретный (закрытый) ключ, который используется для нахождения ЭЦП ;

    с использованием поступивших данных вычисляется значение электронной цифровой подписи всего текста;

    мы получили цифровую подпись сообщения, сравнивая которую с ЭЦП , поступившей на вход общего алгоритма, мы можем делать выводы о достоверности текста;

    на выходе алгоритма мы имеем результат проверки цифровой подписи.

Возможные атаки на предложенную схему реализации защищенного канала связи

Рассмотрим наиболее распространенные примеры возможных атак на защищенный канал передачи данных .

Во-первых, необходимо решить чему и кому можно доверять, потому что если не доверять никому и ничему, то нет смысла писать подобные программы поддержки обмена данными по глобальной сети.

Мы доверяем себе, а также программному обеспечению, установленному на рабочей станции.

При использовании для установления связи с сервером браузера (Internet Explorer или Netscape Navigator) мы доверяем этому браузеру и доверяем его проверке сертификатов посещаемых сайтов.

После проверки подписи на апплете можно доверять ОКС , который вшит в загружаемые с сервера данные или программы (апплеты).

Обладая ОКС , которому мы доверяем, можно приступить к дальнейшей работе с сервером.

Если система строится с применением клиентских приложений, то необходимо доверять установленному клиентскому ПО. После чего по подобной, приведенной выше цепочке мы можем доверять серверу, с которым установлено соединение.

Возможные атаки.

1. При передаче ОКС . Он, в принципе, доступен всем, поэтому злоумышленнику перехватить его не составит труда. Обладая ОКС , теоретически можно вычислить ЗКС . Необходимо использовать криптографические ключи, достаточной для заданного времени сохранения конфиденциальности длины.

2. После передачи с сервера ОКС и перед отправлением клиентом в ответ своих ОКК и КС . В случае если при их генерации (ОКК , ЗКК и КС ) используется слабый генератор случайных чисел, можно попытаться предсказать все три указанных параметра или какой-нибудь один из них.

Для отражения данной атаки необходимо генерировать случайные числа, отвечающие ряду требований. Нельзя, например, использовать для генерации случайных чисел таймер, так как злоумышленник, перехватив первое сообщение (ОКС от сервера), может установить время отправления пакета с точностью до секунд. Если таймер срабатывает каждую миллисекунду, то для вскрытия необходим полный перебор всего лишь 60 000 значений (60 с _ 1000 мс).

Для генерации случайных чисел необходимо использовать параметры, недоступные злоумышленнику (его компьютеру), например номер процесса или другие системные параметры (такие, как идентификационный номер дескриптора).

3. При передаче от клиента к серверу пакета, содержащего ОКК , КС , Х , зашифрованного ОКС . Чтобы вскрыть перехваченную информацию, необходимо обладать ЗКС . Данная атака сводится к атаке, рассмотренной выше (подбор ЗКС ). Сама по себе закрытая информация, передаваемая серверу, бесполезна для злоумышленника.

4. При передаче от сервера к клиенту некоторого тестового сообщения Х , зашифрованного КС и ОКК и подписанного ЗКС . Чтобы расшифровать перехваченное сообщение, надо знать и ОКК , и КС , которые будут известны в случае реализации одной из приведенных выше атак после того, как противнику стал известен ЗКС .

Но расшифровка тестового сообщения не настолько страшна, гораздо большую опасность представляет собой возможность подделки передаваемого сообщения, когда злоумышленник может выдать себя за сервер. Для этого ему надо знать ЗКС , чтобы корректно подписать пакет, и все ключи КС и ОКК , как и само сообщение Х , чтобы правильно составить подложный пакет.

При нарушении любого из этих пунктов система считается скомпрометированной и неспособной к дальнейшему обеспечению безопасной работы клиента.

Итак, мы рассмотрели атаки, возможные на этапе реализации процедуры «рукопожатия» (HandShake). Опишем атаки, которые могут осуществляться в процессе передачи данных по нашему каналу.

При перехвате информации злоумышленник может читать открытый текст только в том случае, если ему известен КС . Злоумышленник может предсказать или подобрать его, полностью перебрав все его возможные значения. Даже если противнику известно сообщение (то есть он знает в точности, как выглядит открытый текст, соответствующий тому коду, который он перехватил), он не сможет однозначно установить ключ шифрования, поскольку данный текст подвергался алгоритму сжатия.

Невозможно также применить атаку на основе «протяжки вероятного слова», так как в каждом сообщении любое слово будет выглядеть по-разному. Из-за того что при архивировании происходит замешивание информации, подобно тому, что проводится при вычислении значения хэш-функции, предыдущая информация влияет на то, как будет выглядеть следующий блок данных.

Из описанного следует, что в любом случае злоумышленник может применить только атаку на основе полного перебора всех возможных значений ключа. Для усиления устойчивости к данному типу атак необходимо расширять диапазон значений КС . При использовании ключа длиной 1024 бита диапазон возможных значений возрастает до 2 1024 .

Чтобы писать или подменять сообщения, передаваемые по каналу связи, злоумышленнику необходимо знать закрытые ключи обеих сторон-участников обмена либо знать один из двух закрытых ключей (ЗК ). Но в этом случае он сможет подделывать сообщения только в одну сторону, в зависимости от того, чей ЗК он знает. Он может выступать в качестве отправителя.

При попытке подмены какой-либо из сторон, то есть при попытке выдать себя за легального участника обмена после установления сеанса связи, ему необходимо знать КС и ЗК (см. случаи, рассмотренные ранее). Если ни КС , ни ЗК того, вместо кого он хочет подсоединиться к каналу связи, злоумышленнику неизвестны, то система тут же узнает об этом, и дальнейшая работа с компрометированным источником прекратится.

В самом начале работы, при подсоединении к серверу, возможна тривиальная атака: подмена DNS-сервера. Защититься от нее не представляется возможным. Решение данной проблемы возложено на администраторов DNS-серверов, находящихся в ведении интернет-провайдеров. Единственное, что может спасти, – это уже описанная выше процедура проверки сертификата сайта браузером, подтверждающая, что произошло подключение именно к нужному серверу.

Заключение

В статье были рассмотрены методы построения защищенного канала передачи данных для обеспечения взаимодействия между распределенными корпоративными вычислительными системами.

Выработан протокол установления и поддержания защищенного соединения. Предложены алгоритмы обеспечения защиты передачи данных. Проанализированы возможные уязвимости разработанной схемы взаимодействия.

Подобную технологию организации защищенных соединений организует протокол сетевого взаимодействия SSL. Кроме этого, на основе предложенных принципов строятся виртуальные частные сети (Virtual Private Networks – VPN).

ЛИТЕРАТУРА

1. Медведовский И. Д., Семьянов П. В., Платонов В. В. Атака на Интернет. – СПб.: Изд-во «ДМК» 1999. – 336 с.

2. Карве А. Инфраструктура с открытыми ключами. LAN/Журнал сетевых решений (Russian edition), 8, 1997.

3. Мельников Ю. Н. Электронная цифровая подпись. Возможности защиты. Конфидент № 4 (6), 1995, с. 35–47.

4. Теренин А. А., Мельников Ю. Н. Создание защищенного канала в сети. Материалы семинара «Информационная безопасность – юг России», Таганрог, 28–30 июня 2000.

5. Теренин А. А. Разработка алгоритмов для создания защищенного канала в открытой сети. Автоматизация и современные технологии. – Изд-во «Машиностроение», № 6, 2001, с. 5–12.

6. Теренин А. А. Анализ возможных атак на защищенный канал в открытой сети, созданный программным способом. Материалы XXII Конференции молодых ученых механико-математического факультета МГУ, М, 17–22 апреля 2000.

Организация защищенного канала связи

Максим Илюхин,
к.т.н., ОАО "ИнфоТеКС"

КОНЕЦ XX века был отмечен лавинообразным распространением Интернета: в геометрической прогрессии росли скорости доступа, охватывались все новые и новые территории, практически между любыми двумя точками в мире можно было установить быструю связь через сеть. Но передача информации не была безопасной, злоумышленники могли перехватить, украсть, изменить ее. В это время стала набирать популярность идея организации надежного канала, который для связи будет использовать общедоступные коммуникации, но защитит передаваемые данные за счет применения криптографических методов. Стоимость организации такого канала была во много раз меньше стоимости прокладки и поддержания выделенного физического канала. Таким образом, организация защищенного канала связи становилась доступной средним и малым предприятиям и даже частным лицам.

Система ViPNet

На заре своего развития идея организации частных приватных сетей (VPN) была чрезвычайно популярна, и многие серьезные участники ИТ-рынка и энтузиасты-любители пытались воплотить абстрактные идеи в реальный программный продукт. Серьезные компании создали множество решений, обеспечивающих функциональность частных приватных сетей как на программном, так и на аппаратном уровне. Одним из самых ярких и масштабных стала система ViPNet, разработанная компанией "ИнфоТеКС".

Система ViPNet обеспечивает прозрачную защиту информационных потоков любых приложений и любых протоколов IP как для отдельных рабочих станций, файловых серверов, серверов приложений, маршрутизаторов, серверов удаленного доступа и т.п., так и сегментов IP-сетей. Одновременно она выполняет функции персонального сетевого экрана для каждого компьютера и межсетевого экрана для сегментов IP-сетей.

Ключевая структура носит комбинированный характер, имеет как симметричную схему распределения ключей, что позволяет обеспечить жесткую централизованную систему управления, так и систему открытого распределения ключей, и используется как доверенная среда для работы PKI. Прикладные программы системы ViPNet дополнительно предоставляют защищенные службы реального времени для циркулярного обмена сообщениями, проведения конференций, ведения переговоров; для служб гарантированной доставки почтовой корреспонденции с процедурами электронной подписи и разграничением доступа к документам; для служб автопроцессинга для автоматической доставки файлов. Кроме того, отдельно оформленные криптографические функции ядра (подпись и шифрование) и реализованная поддержка MS Crypto API при необходимости могут встраиваться непосредственно в различные прикладные системы (например, системы электронного документооборота).

Программное обеспечение системы ViPNet функционирует в операционных средах Windows, Linux.

ViPNet CUSTOM

ViPNet CUSTOM - многофункциональная технология создания защищенных VPN-сетей с возможностью развертывания полноценной PKI-структуры, ориентированная на организацию защищенного взаимодействия "клиент - клиент", в то время как большинство VPN-решений других производителей обеспечивают только соединения уровня "сервер - сервер" или "сервер -клиент". Это дает возможность реализовать любую необходимую политику разграничения доступа в рамках всей защищенной сети, а также снизить нагрузку на VPN-серверы, так как в общем случае при взаимодействии "клиент - клиент" VPN-сервер не задействован в операциях шифрования трафика между этими клиентами. Большое внимание в ViPNet CUSTOM уделено решению проблемы функционирования в условиях наличия разнообразного сетевого оборудования и программного обеспечения, реализующего динамическую или статическую трансляцию адресов/портов (NAT/PAT), что существенно облегчает процесс интеграции системы защиты в существующую инфраструктуру сети. В большинстве случаев ручной настройки клиентского ПО ViPNet Client вообще не требуется.

Каждый компонент ViPNet CUSTOM содержит встроенный сетевой экран и систему контроля сетевой активности приложений, что позволяет получить надежную распределенную систему межсетевых и персональных сетевых экранов.

Для разрешения возможных конфликтов IP-адресов в локальных сетях, включаемых в единую защищенную сеть, ViPNet CUSTOM предлагает развитую систему виртуальных адресов. Во многих случаях это позволяет упростить настройку прикладного ПО пользователя, так как наложенная виртуальная сеть со своими виртуальными адресами будет скрывать реальную сложную структуру сети. ViPNet CUSTOM поддерживает возможность межсетевого взаимодействия, что позволяет устанавливать необходимые защищенные каналы связи между произвольным числом защищенных сетей, построенных с использованием ViPNet CUSTOM. Кроме того, система обеспечивает защиту информации в современных мульти-сервисных сетях связи, предоставляющих услуги IP-телефонии и аудио- и видеоконфе-ренц-связи. Поддерживается приоритизация трафика и протоколы Н.323, Skinny.

ОАНО «ВОЛЖСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Н. ТАТИЩЕВА»

ФАКУЛЬТЕТ «ИНФОРМАТИКА И ТЕЛЕКОММУНИКАЦИИ»

Кафедра «Информатика и системы управления»

КУРСОВАЯ РАБОТА

по дисциплине: «Методы и средства защиты компьютерной информации»

тема: «Защита каналов связи »

Студент группы ИС-506

Утятников А.А.

Преподаватель:

М.В. Самохвалова

Тольятти 2007

Введение

Защита информации в каналах связи и создание защищённых телекоммуникационных систем

Удаленный доступ к информационным ресурсам. Защита информации, передаваемой по каналам связи

1 Решения на базе сертифицированных криптошлюзов

2 Решения на базе протокола IPSec

Технологии информационной безопасности в информационно-телекоммуникационных системах (ИТС)

Заключение

Введение

Защита (безопасность) информации является неотъемлемой составной частью общей проблемы информационной безопасности, роль и значимость которой во всех сферах жизни и деятельности общества и государства на современном этапе неуклонно возрастают.

Производство и управление, оборона и связь, транспорт и энергетика, банковское дело, финансы, наука и образование, средства массовой информации всё больше зависят от интенсивности информационного обмена, полноты, своевременности, достоверности и безопасности информации.

В связи с этим проблема безопасности информации стала предметом острой озабоченности руководителей органов государственной власти, предприятий, организаций и учреждений независимо от их организационно-правовых форм и форм собственности.

Бурное развитие средств вычислительной техники открыло перед человечеством небывалые возможности по автоматизации умственного труда и привело к созданию большого числа разного рода автоматизированных информационно-телекоммуникационных и управляющих систем, к возникновению принципиально новых, так называемых информационных технологий.

При выработке подходов к решению проблемы компьютерной, информационной безопасности следует всегда исходить из того, что защита информации и вычислительной системы не является самоцелью. Конечной целью создания системы компьютерной безопасности является защита всех категорий субъектов, прямо или косвенно участвующих в процессах информационного взаимодействия, от нанесения им ощутимого материального, морального или иного ущерба в результате случайных или преднамеренных воздействий на информацию и системы ее обработки и передачи.

1. Защита информации в каналах связи и создание защищённых

телекоммуникационных систем

В условиях нарастающих интеграционных процессов и создания единого информационного пространства во многих организациях ЛАНИТ предлагает провести работы по созданию защищенной телекоммуникационной инфраструктуры, связывающей удаленные офисы фирм в единое целое, а также обеспечение высокого уровня безопасности информационных потоков между ними.

Применяемая технология виртуальных частных сетей позволяет объединять территориально распределенные сети как с помощью защищенных выделенных каналов, так и виртуальных каналов, проходящих через глобальные общедоступные сети. Последовательный и системный подход к построению защищенных сетей предполагает не только защиту внешних каналов связи, но и эффективную защиту внутренних сетей путем выделения замкнутых внутренних контуров VPN. Таким образом, применение технологии VPN позволяет организовать безопасный доступ пользователей в Интернет, защитить серверные платформы и решить задачу сегментирования сети в соответствии с организационной структурой.

Защита информации при передаче между виртуальными подсетями реализуется на алгоритмах асимметричных ключей и электронной подписи, защищающей информацию от подделки. Фактически данные, подлежащие межсегментной передаче, кодируются на выходе из одной сети, и декодируются на входе другой сети, при этом алгоритм управления ключами обеспечивает их защищенное распределение между оконечными устройствами. Все манипуляции с данными прозрачны для работающих в сети приложений.

2. Удаленный доступ к информационным ресурсам. Защита

информации, передаваемой по каналам связи

При межсетевом взаимодействии между территориально удаленными объектами компании возникает задача обеспечения безопасности информационного обмена между клиентами и серверами различных сетевых служб. Сходные проблемы имеют место и в беспроводных локальных сетях (Wireless Local Area Network, WLAN), а также при доступе удаленных абонентов к ресурсам корпоративной информационной системы. В качестве основной угрозы здесь рассматривается несанкционированное подключение к каналам связи и осуществление перехвата (прослушивания) информации и модификация (подмена) передаваемых по каналам данных (почтовые сообщения, файлы и т.п.).

Для защиты данных, передаваемых по указанным каналам связи, необходимо использовать соответствующие средства криптографической защиты. Криптопреобразования могут осуществляться как на прикладном уровне (или на уровнях между протоколами приложений и протоколом TCP/IP), так и на сетевом (преобразование IP-пакетов).

В первом варианте шифрование информации, предназначенной для транспортировки по каналу связи через неконтролируемую территорию, должно осуществляться на узле-отправителе (рабочей станции - клиенте или сервере), а расшифровка - на узле-получателе. Этот вариант предполагает внесение существенных изменений в конфигурацию каждой взаимодействующей стороны (подключение средств криптографической защиты к прикладным программам или коммуникационной части операционной системы), что, как правило, требует больших затрат и установки соответствующих средств защиты на каждый узел локальной сети. К решениям данного варианта относятся протоколы SSL, S-HTTP, S/MIME, PGP/MIME, которые обеспечивают шифрование и цифровую подпись почтовых сообщений и сообщений, передаваемых с использованием протокола http.

Второй вариант предполагает установку специальных средств, осуществляющих криптопреобразования в точках подключения локальных сетей и удаленных абонентов к каналам связи (сетям общего пользования), проходящим по неконтролируемой территории. При решении этой задачи необходимо обеспечить требуемый уровень криптографической защиты данных и минимально возможные дополнительные задержки при их передаче, так как эти средства туннелируют передаваемый трафик (добавляют новый IP-заголовок к туннелируемому пакету) и используют различные по стойкости алгоритмы шифрования. В связи с тем, что средства, обеспечивающие криптопреобразования на сетевом уровне полностью совместимы с любыми прикладными подсистемами, работающими в корпоративной информационной системе (являются «прозрачными» для приложений), то они наиболее часто и применяются. Поэтому, остановимся в дальнейшем на данных средствах защиты информации, передаваемой по каналам связи (в том числе и по сетям общего доступа, например, Internet). Необходимо учитывать, что если средства криптографической защиты информации планируются к применению в государственных структурах, то вопрос их выбора должен решаться в пользу сертифицированных в России продуктов.

.1 Решения на базе сертифицированных криптошлюзов

Для реализации второго варианта и обеспечения конфиденциальности и достоверности информации, передаваемой между объектами компании по каналам связи, можно использовать сертифицированные криптошлюзы (VPN-шлюзы). Например, Континент-К, VIPNet TUNNEL, ЗАСТАВА-Офис компаний НИП «Информзащита», Инфотекс, Элвис+. Эти устройства обеспечивают шифрование передаваемых данных (IP-пакетов) в соответствии с ГОСТ 28147-89, а также скрывают структуру локальной сети, защищают от проникновения извне, осуществляют маршрутизацию трафика и имеют сертификаты Гостехкомиссии РФ и ФСБ (ФАПСИ).

Криптошлюзы позволяют осуществить защищенный доступ удаленных абонентов к ресурсам корпоративной информационной системы (рис. 1). Доступ производится с использованием специального программного обеспечения, которое устанавливается на компьютер пользователя (VPN-клиент) для осуществления защищенного взаимодействия удаленных и мобильных пользователей с криптошлюзом. Программное обеспечение криптошлюза (сервер доступа) проводит идентификацию и аутентификацию пользователя и осуществляет его связь с ресурсами защищаемой сети.

Рисунок 1. - «Удаленный доступ по защищенному каналу с

использованием криптошлюза»

С помощью криптошлюзов можно формировать виртуальные защищенные каналы в сетях общего пользования (например, Internet), гарантирующие конфиденциальность и достоверность информации и организовывать виртуальные частные сети (Virtual Private Network - VPN), которые представляют собой объединение локальных сетей или отдельных компьютеров, подключенных к сети общего пользования в единую защищенную виртуальную сеть. Для управления такой сетью обычно используется специальное программное обеспечение (центр управления), которое обеспечивает централизованное управление локальными политиками безопасности VPN-клиентов и криптошлюзов, рассылает для них ключевую информацию и новые конфигурационные данные, обеспечивает ведение системных журналов. Криптошлюзы могут поставляться как программные решения, так и как аппаратно-программные комплексы. К сожалению, большинство из сертифицированных криптошлюзов не поддерживает протокол IPSec и, поэтому они функционально не совместимы с аппаратно-программными продуктами других производителей.

.2 Решения на базе протокола IPSec

Протокол IP Security (IPSec) является базовым для построения систем безопасности сетевого уровня, представляет собой набор открытых международных стандартов и поддерживается большинством производителей решений по защите сетевой инфраструктуры. Протокол IPSec позволяет организовать на сетевом уровне потоки защищенных и аутентичных данных (IP-пакетов) между различными взаимодействующими принципалами, включая компьютеры, межсетевые экраны, маршрутизаторы, и обеспечивает:

· аутентификацию, шифрование и целостность передаваемых данных (IP-пакетов);

· защиту от повторной передачи пакетов (replay attack);

· создание, автоматическое обновление и защищенное распространение криптографических ключей;

· использование широкого набора алгоритмов шифрования (DES, 3DES, AES) и механизмов контроля целостности данных (MD5, SHA-1). Существуют программные реализации протокола IPSec, использующие российские алгоритмы шифрования (ГОСТ 28147-89), хеширования (ГОСТ Р 34.11-94), электронной цифровой подписи (ГОСТ Р 34.10-94);

· аутентификацию объектов сетевого взаимодействия на базе цифровых сертификатов.

Текущий набор стандартов IPSec включает в себя базовые спецификации, определенные в документах RFC (RFC 2401-2412, 2451). Request for Comments (RFC) - серия документов группы Internet Engineering Task Force (IETF), начатая в 1969 году и содержащая описания набора протоколов Internet. Архитектура системы определена в RFC 2401 «Security Architecture for Internet Protocol», а спецификации основных протоколов в следующих RFC:

· RFC 2402 «IP Authentication Header» - спецификация протокола AH, обеспечивающего целостность и аутентификацию источника передаваемых IP-пакетов;

· RFC 2406 «IP Encapsulating Security Payload» - спецификация протокола ESP, обеспечивающая конфиденциальность (шифрование), целостность и аутентификацию источника передаваемых IP-пакетов;

· RFC 2408 «Internet Security Association and Key Management Protocol» - спецификация протокола ISAKMP, обеспечивающего согласование параметров, создание, изменение, уничтожение защищенных виртуальных каналов (Security Association - SA) и управление необходимыми ключами;

· RFC 2409 «The Internet Key Exchange» - спецификация протокола IKE (включает в себя ISAKMP), обеспечивающего согласование параметров, создание, изменение и уничтожение SA, согласование, генерацию и распространение ключевого материала, необходимого для создания SA.

Протоколы AH и ESP могут использоваться как совместно, так и отдельно. Протокол IPSec для обеспечения безопасного сетевого взаимодействия использует симметричные алгоритмы шифрования и соответствующие ключи. Механизмы генерации и распространения таких ключей предоставляет протокол IKE.

Защищенный виртуальный канал (SA) - важное понятие в технологии IPSec. SA - направленное логическое соединение между двумя системами, поддерживающими протокол IPSec, которое однозначно идентифицируется следующими тремя параметрами:

· индексом защищенного соединения (Security Parameter Index, SPI - 32-битная константа, используемая для идентификации различных SA c одинаковыми IP-адресом получателя и протоколом безопасности);

· IP-адресом получателя IP-пакетов (IP Destination Address);

· протоколом безопасности (Security Protocol - один из AH или ESP протоколов).

В качестве примера, на рисунке 2 приводится решение удаленного доступа по защищенному каналу компании Cisco Systems на базе протокола IPSec. На компьютер удаленного пользователя устанавливается специальное программное обеспечение Cisco VPN Client. Существуют версии данного программного обеспечения для различных операционных систем - MS Windows, Linux, Solaris.

Рисунок 2. - «Удаленный доступ по защищенному каналу с

использованием VPN-концентратора»

VPN Client взаимодействует с Cisco VPN Series 3000 Concentrator и создает защищенное соединение, которое называется IPSec-туннелем, между компьютером пользователя и частной сетью, находящейся за VPN-концентратором. VPN-концентратор представляет собой устройство, которое терминирует IPSec-туннели от удаленных пользователей и управляет процессами установки защищенных соединений с VPN-клиентами, установленными на компьютерах пользователей. К недостаткам такого решения можно отнести отсутствие поддержки компанией Cisco Systems российских алгоритмов шифрования, хеширования и электронной цифровой подписи.

3. Технологии информационной безопасности в информационно-

телекоммуникационных системах (ИТС)

телекоммуникационный защита информация канал связь

Эффективная поддержка процессов государственного управления с использованием средств и информационных ресурсов (ИИР) возможна только в том случае, если система будет обладать свойством «защищенности», которое обеспечивается реализацией комплексной системы защиты информации, включающей базовые компоненты защиты - систему управления доступом на объекты ИТС, систему видеонаблюдения и систему безопасности информации.

Краеугольным камнем комплексной системы защиты является система безопасности информации, концептуальные положения которой вытекают из особенностей построения системы и составляющих ее подсистем и понятия «защищенной» системы, которое может быть сформулировано следующим образом:

Защищенная ИТС - информационно-телекоммуникационная система, обеспечивающая устойчивое выполнение целевой функции в рамках заданного перечня угроз безопасности и модели действий нарушителя.

Перечень угроз безопасности и модель действий нарушителя определяется широким спектром факторов, включающих эксплуатационный процесс ИТС, возможные ошибочные и несанкционированные действий обслуживающего персонала и пользователей, отказы и сбои оборудования, пассивные и активные действия нарушителей.

При построении ИТС органам государственной власти (ОГВ) целесообразно рассматривать три базовые категории угроз безопасности информации, которые могут привести к нарушению выполнения основной целевой функции системы - эффективная поддержка процессов государственного управления:

· отказы и сбои в аппаратных средствах системы, аварийные ситуации и т.п. (события без участия человека);

· ошибочные действия и непреднамеренные несанкционированные действия обслуживающего персонала и абонентов системы;

Несанкционированные действия нарушителя могут относиться к пассивным действиям (перехват информации в канале связи, перехват информации в технических каналах утечки) и к активным действиям (перехват информации с носителей информации с явным нарушением правил доступа к информационным ресурсам, искажение информации в канале связи, искажение, включая уничтожение, информации на носителях информации с явным нарушением правил доступа к информационным ресурсам, введение дезинформации).

Со стороны нарушителя могут осуществляться также активные действия, направленные на анализ и преодоление системы защиты информации. Данный тип действия целесообразно выделить в отдельную группу, поскольку, преодолев систему защиты, нарушитель может выполнять действия без явного нарушения правил доступа к информационным ресурсам.

В указанном выше типе действий целесообразно выделить возможные действия, направленные на внедрение аппаратно-программных закладок в оборудование ИТС, что в первую очередь определяется использованием зарубежного оборудования, элементной базы и программного обеспечения.

На основе анализа архитектуры ИТС и угроз может быть сформирована общая архитектура системы безопасности информации, включающая следующие основные подсистемы:

· подсистему управления системой безопасности информации;

· подсистему безопасности в информационной подсистеме;

· подсистему безопасности в телекоммуникационной подсистеме;

· подсистему безопасности при межсетевом взаимодействии;

· подсистему выявления и противодействия активным действиям нарушителей;

· подсистему выявления и противодействия возможным аппаратно-программным закладкам.

Следует отметить, что последние три подсистемы, в общем случае, являются компонентами второй и третьей подсистем, но с учетом сформулированных выше особенностей, целесообразно их рассматривать как отдельные подсистемы.

Основой системы безопасности информации в ИТС и каждой из ее подсистем является Политика безопасности в ИТС и ее подсистемах, ключевыми положениями которой являются требования использования следующих базовых механизмов и средств обеспечения безопасности информации:

· идентификация и аутентификация абонентов ИТС, оборудования ИТС, обрабатываемой информации;

· контроль информационных потоков и жизненного цикла информации на базе меток безопасности;

· управление доступом к ресурсам ИТС на основе сочетания дискреционной, мандатной и ролевой политик и межсетевого экранирования;

· криптографическая защита информации;

· технические средства защиты;

· организационные и режимные меры.

Приведенный перечень механизмов защиты определяется целями системы защиты информации в ИТС, среди которых будем выделять следующие пять основных:

· управление доступом к информационным ресурсам ИТС;

· обеспечение конфиденциальности защищаемой информации;

· контроль целостности защищаемой информации;

· неотрицаемость доступа к информационным ресурсам;

· готовность информационных ресурсов.

Реализация указанных механизмов и средств защиты базируется на интеграции аппаратно-программных средств защиты в аппаратно-программные средства ИТС и обрабатываемую информацию.

Отметим, что под термином «информация» в ИТС понимаются следующие виды информации:

· пользовательская информация (информация, необходимая для управления и принятие решений);

· служебная информация (информация, обеспечивающая управлением оборудованием ИТС);

· специальная информация (информация, обеспечивающая управление и работу средств защиты);

· технологическая информация (информация, обеспечивающая реализацию всех технологий обработки информации в ИТС).

При этом защите подлежат все перечисленные виды информации.

Важно отметить, что без применения автоматизированных средств управления системой безопасности информации невозможно обеспечить устойчивую работу системы безопасности в территориально-распределенной системе обработки информации, взаимодействующей как с защищенными, так и не защищенными системами в контуре ИТС и обрабатывающей информацию различного уровня конфиденциальности.

Основными целями подсистемы управления безопасностью информации являются:

· формирование, распределение и учет специальной информации, используемой в подсистемах защиты (ключевая информация, парольная информация, метки безопасности, права доступа к информационным ресурсам и т.п.);

· конфигурирование и управление средствами обеспечения безопасности информации;

· согласование политик безопасности во взаимодействующих системах, включая специальную информацию;

· мониторинг системы безопасности;

· актуализация Политики безопасности в ИТС с учетом различных периодов эксплуатации, внедрения в ИТС новых технологий обработки информации.

Реализация подсистемы управления безопасностью информации требует создания единого центра управления, взаимодействующего с локальными центрами управления безопасностью телекоммуникационной и информационной подсистемам ИТС, центрами управления безопасностью информации во взаимодействующих сетях и агентами безопасности информации на объектах системы.

Архитектура системы управления безопасностью информации должна быть фактически идентична архитектуре самой ИТС, а с точки зрения ее реализации должны выполняться следующие принципы:

· центр управления безопасностью информации и локальные центры управления должны реализовываться на выделенных аппаратно-программных средствах с использованием отечественных средств;

· агенты управления безопасностью должны интегрироваться в аппаратно-программные средства рабочих мест системы с возможностью независимого от них управления со стороны центра и локальных центров.

Подсистема безопасности информации в информационной подсистеме ИТС - одна из наиболее сложных подсистем как с точки зрения механизмов защиты, так и их реализации.

Сложность этой подсистемы определяется тем, что именно в данной подсистеме выполняется основной объем обработки информации, при этом в ней сосредоточены основные ресурсы по доступу к информации абонентов системы - абоненты непосредственно имеют санкционированный доступ как к информации, так и к функциям ее обработки. Именно поэтому основу данной подсистемы составляет система управления доступом к информации и функциям ее обработки.

Базовым механизмом реализации санкционированного доступа к информации и функциям ее обработки является механизм защиты информационных ресурсов от несанкционированных действий, основными компонентами которого являются:

· организационно-технические средства управления доступом к объектам системы, информации и функциям ее обработки;

· система регистрации и учета работы системы и абонентов системы;

· подсистема обеспечения целостности;

· криптографическая подсистема.

Основой реализации отмеченной защиты является архитектурное построение информационной составляющей ИТС - создание логически и информационно выделенных объектов информационного компонента ИТС (банки данных, информационно-справочные комплексы, ситуационные центры). Это позволит реализовать криптографически независимые изолированные объекты, функционирующие по технологии клиент-сервер и не предоставляющие непосредственного доступа к хранилищам информации и функциям ее обработки - вся обработки производится по санкционированного запросу пользователей на базе предоставленных им полномочий.

Для санкционированного предоставления информационных ресурсов абонентам применяются следующие методы и механизмы:

· метки безопасности информации;

· идентификация и аутентификация абонентов и оборудования системы;

· криптографическая защита информации при хранении;

· криптографический контроль целостности информации при хранении.

При реализации подсистемы безопасности в телекоммуникационном компоненте ИТС необходимо учитывать наличие каналов связи как на контролируемой, так и на не контролируемой территории.

Обоснованным способом защиты информации в каналах связи является криптографическая защита информации в каналах связи на не контролируемой территории в сочетании с организационно-техническими средствами защиты информации в каналах связи на контролируемой территории, с перспективой перехода на криптографическую защиту информации во всех каналах связи ИТС, в том числе с использованием методов технологии VPN. Ресурсом защиты информации в телекоммуникационной подсистеме (с учетом наличия нарушителей с легальным доступом к телекоммуникационным ресурсам) является разграничение доступа к телекоммуникационным ресурсам с регистрацией потоков информации и регламента работы абонентов.

Типовым решением защиты информации в каналах связи является применение абонентского и линейного контуров защиты в сочетании с алгоритмическими и техническими средствами защиты, обеспечивающих (как напрямую, так и косвенно), следующие механизмы защиты:

· защита от утечки информации в каналы связи и в технические каналы;

· контроль сохранности информации при передаче по каналам связи;

· защита от возможных атак нарушителя по каналам связи;

· идентификация и аутентификация абонентов;

· управление доступом к ресурсам системы.

Подсистема безопасности при межсетевом обмене в ИТС основывается на следующих механизмах безопасности:

· управлении доступом к ресурсам межсетевого обмена (межсетевое экранирование);

· идентификации и аутентификации абонентов (включая криптографические способы аутентификации);

· идентификации и аутентификации информации;

· криптографической защиты информации в каналах связи на неконтролируемой территории, а в перспективе - во всех каналах связи;

· криптографической изоляции взаимодействующих систем.

Важное значение в рассматриваемой подсистеме имеет реализация технологии виртуальных частных сетей (VPN), свойства которых во многом решают вопросы как защиты информации в каналах связи, так и противодействия атакам нарушителей со стороны каналов связи.

· одной из функций ИТС является принятие решений по управлению как отдельными ведомствами и предприятиями, так и государством в целом на основе аналитической обработки информации;

· не исключается существование нарушителей среди абонентов, взаимодействующих с ИТС систем.

Подсистема выявления и противодействия активным действиям нарушителя реализуется на двух основных компонентах: аппаратно-программных средствах выявления и противодействия возможным атакам нарушителей по каналам связи и архитектуре защищенной сети.

Первый компонент - компонент выявления возможных атак, предназначен для защиты в тех подсистемах ИТС, в которых принципиально возможны действия нарушителя в части атак на информационные ресурсы и оборудование ИТС, второй компонент - предназначен для исключения таких действий или существенное их затруднение.

Основными средствами второго компонента являются аппаратно-программные средства, обеспечивающие реализацию методов защиты в соответствии с технологией виртуальных частных сетей (VPN) как при взаимодействии различных объектов ИТС в соответствии с их структурой, так внутри отдельных объектов и подсетей на базе межсетевых экранов или межсетевых экранов со встроенными средствами криптографической защиты.

Подчеркнем, что наиболее эффективное противодействие возможным атакам обеспечивают криптографические средства линейного контура защиты и межсетевого криптографического шлюза для внешних нарушителей и средства управления доступом к информационным ресурсам для легальных пользователей, относящихся к категории нарушителя.

Подсистема выявления и противодействия возможным аппаратно-программным закладкам реализуется комплексом организационно-технических мероприятий при изготовлении и эксплуатации оборудования ИТС, включающем следующие основные мероприятия:

· специальную проверку оборудования и элементной базы зарубежного производства;

· эталонирование программного обеспечения;

· проверка свойств элементной базы, влияющих на эффективность системы защиты;

· проверку целостности программного обеспечения с использованием криптографических алгоритмов.

Одновременно с другими задачами вопрос противодействия возможным аппаратно-программным закладкам обеспечивают и другие средства защиты:

· линейный контур криптографической защиты, обеспечивающий защиту от активизации возможных программных закладок по каналам связи;

· архивирование информации;

· резервирование (дублирование аппаратных средств).

Средствами ИТС на различных объектах системы пользователям ОГВ могут предоставляться различные услуги по передаче информации и информационному обслуживанию, включая:

· защищенную подсистему документооборота;

· удостоверяющие центры;

· защищенную подсистему передачи телефонной информации, данных и организации видеоконференции;

· защищенную подсистему официального информирования, включая создание и обслуживание официальных сайтов руководителей федерального и регионального уровней.

Отметим, что защищенная подсистема документооборота жестко связана с удостоверяющими центрами, обеспечивающими реализацию механизма цифровой подписи.

Рассмотрим более подробно интеграцию средств обеспечения безопасности информации в систему электронного документооборота, в подсистему передачи телефонной информации, подсистему официального информирования и официальный сайт руководителей различного уровня.

Базовым механизмом защиты информации в системе электронного документооборота является цифровая электронная подпись, обеспечивающая идентификацию и аутентификацию документов и абонентов, а также контроль их целостности.

Поскольку особенности системы документооборота ИТС определяются наличием информационного обмена между различными объектами и ведомствами (включая возможный информационный обмен между защищенными и незащищенными системами), а также использованием различных технологий обработки документов в различных ведомствах, то реализация защищенного документооборота с учетом сформулированных факторов требует выполнения следующих мероприятий:

· унификации формата документов в различных ведомствах;

· согласование политик безопасности в различных ведомствах.

Разумеется, что отмеченные требования могут быть решены частично и использованием шлюзов между взаимодействующими системами.

Удостоверяющие центры по своей сути представляют собой распределенную базу данных, обеспечивающих реализацию цифровой подписи в системе документооборота. Несанкционированный доступ к информационным ресурсам этой базы данных полностью разрушает свойство защищенности электронного документооборота. Отсюда вытекают основные особенности системы защиты информации на удостоверяющих центрах:

· управление доступом к ресурсам базы данных удостоверяющих центров (защита от НСД к ресурсам);

· обеспечение устойчивой работы удостоверяющих центров в условиях возможных отказов и сбоев, аварийных ситуациях (защита от разрушения информации баз данных).

Реализация указанных механизмов может быть выполнена в два этапа: на первом этапе механизмы защиты реализуются с использованием организационно-технических мер защиты и режимных мероприятий, включая использование отечественной сертифицированной операционной системы, а на втором - производится интеграция криптографических способов защиты в аппаратно-программные средства при хранении и обработке информации на удостоверяющих центрах.

Особенности защиты трафика различного вида, передаваемого в ИТС, (телефонного трафика, данных и трафика видеоконференцсвязи), можно разделить на два класса:

· особенности защиты абонентского оборудования, которые определяются необходимостью защиты информации различного типа в том числе и одновременно (видеоинформация и речь, а, возможно, и данные), а также необходимостью защиты информации различного типа от утечки в технические каналы.

· особенности защиты оборудования системы передачи информации определенного вида, которые определяются необходимостью защиты от несанкционированного доступа к услугам телефонной связи, передачи данных, конференцсвязи и ее ресурсам.

Для указанных классов базовыми механизмами защиты являются:

· технические средства защиты информации от утечки в технические каналы, реализуемые стандартными средствами;

· управление доступом к ресурсам, обеспечивающим организацию связи различных видов, в основе которого лежит идентификация и аутентификация возможных подключений различных пользователей и оборудования к оборудованию связи.

Особенностью защищенной подсистемы официального информирования является наличие потоков информации в двух направлениях - от ИТС к внешним системам, включая отдельных граждан страны, а также от внешних систем к ИТС (информационный обмен с незащищенными объектами).

На основе информации, поступающей от внешних систем, вырабатываются решения в интересах как отдельных организаций, ведомств и регионов, так и государства в целом, а от информации, поступающих во внешние системы, зависит исполнение выработанных решений также на всех уровнях государственного управления.

Поэтому, в первом случае основными требованиями, предъявляемыми к функционированию системы с точки зрения ее безопасности являются целостность предоставляемой информации, оперативность предоставления информации, включая ее обновление, достоверность источника информации, контроль доведения информации до получателя.

Во втором случае - достоверность предоставляемой информации, достоверность источника информации, оперативность доведения информации, а также контроль доведения информации до получателя. В основном перечисленные требования обеспечиваются стандартными механизмами защиты (криптографические способы контроля целостности информации, идентификации и аутентификации абонентов и информации).

Отличительной особенностью, характерной для данной подсистемы является необходимость контроля достоверности информации, поступающей от внешних систем и являющейся исходным материалом для выработки решений, в том числе и в интересах государства. Эта задача решается с использованием аналитических методов контроля достоверности информации, обеспечивающих устойчивость выработанных решений в условиях поступления недостоверной информации, и организационно-технических мер, обеспечивающих подтверждение поступающей информации.

Главными целями системы защиты информации на сайте руководителей федерального и регионального уровней являются исключение попадания на сайт информации, не предназначенной для этого, а также обеспечение целостности информации, представленной на сайте.

Базовый механизм защиты, реализованный на сайте должен обеспечивать управление доступом к сайту со стороны внутренней системы, обеспечивающей предоставление информации на сайт, а также управление доступом со стороны внешних систем к ресурсам сайта.

Реализация защиты основана на создании «демилитаризованной» зоны на основе межсетевых экранов (шлюзов), обеспечивающих:

Фильтрацию информации в направлении от внутренней системы к сайту с контролем доступа к сайту со стороны внутренней системы (идентификацией и аутентификацией источника информации) и фильтрацию информации с использованием меток безопасности;

Контроль целостности информационных ресурсов на сайте и обеспечение устойчивой работы сайта в условиях возможных искажений информации;

контроль доступа со стороны внешних систем к ресурсам сайта;

фильтрацию запросов, поступающих на сайт со стороны внешних систем.

Одним из важнейших вопросов при решении задач обеспечения безопасности информации является совершенствование нормативной базы в части безопасности информации.

Необходимость совершенствования нормативной базы определяется двумя основными факторами - наличием информационного обмена между различными ведомствами, наличием большого количества видов и типов информации, циркулирующей в ИТС.

В части обеспечения безопасности информации в ИТС совершенствование нормативной базы необходимо проводить по следующим направлениям:

· создание единых требований по обеспечению безопасности информации и на их основе единой концепции обеспечения безопасности, обеспечивающей возможность согласования политик безопасности в различных ведомствах и ИТС в целом, включая различные периоды эксплуатации;

· создание единого стандарта на документальную информацию, обеспечивающего внедрение унифицированных меток безопасности и снижающего затраты на трансляцию документов при межведомственном взаимодействии;

· создание положений межведомственного взаимодействия, обеспечивающих постоянный мониторинг безопасности информации при межведомственном взаимодействии.

Заключение

В данной курсовой работе были рассмотрены следующие принципы:

· архитектура ИТС и базовые технологии обработки информации в ИТС должны создаваться с учетом эволюционного перехода на средства отечественной разработки;

· автоматизированные рабочие места ИТС системы безопасности информации должны создаваться на аппаратно-программной платформе отечественного производства (ЭВМ отечественной сборки, отечественная операционная система, отечественные программные средства);

· архитектура ИТС и базовые технологии обработки информации в ИТС должны создаваться с учетом возможности использования на первом этапе действующих аппаратно-программных средств защиты с последующей заменой их на перспективные средства защиты информации.

Выполнение этих требований обеспечит непрерывность и заданную эффективность защиты информации в переходный период от использования в ИТС технологий обработки информации в сочетании с технологиями защиты информации к использованию в ИТС защищенных технологий обработки информации.

Список используемой литературы

1. Константин Кузовкин. Удаленный доступ к информационным ресурсам. Аутентификация. // Директор информационной службы - 2003 - №9.

2. Константин Кузовкин. Защищенная платформа для Web-приложений. // Открытые системы - 2001 - №4.

Алексей Лукацкий. Неизвестная VPN. // Компьютер-Пресс - 2001 - №10.

Интернет-ресурсы: http://www.niia.ru/document/Buk_1, www.i-teco.ru/article37.html.