Яркость 200 кд м2 что. В каких единицах измеряется яркость. Форматы стандартов высокой четкости

Выбор любого компьютера или какого-либо комплектующего начинается с определения критериев, коими в данном случае
являются технические характеристики. Согласитесь, при покупке, например, монитора определения «чтобы хорошо показывал» мало, надо знать, какого размера нужен дисплей, с каким разрешением, как он будет подключаться, для каких целей использоваться (для игр, офисной работы). Чтобы ответить на эти и целый ряд других вопросов надо знать, какие характеристики мониторов есть, какие важны, какие не очень, а о чем обычно в официальных спецификациях умалчивается.

Давайте кратко перечислим те характеристики, которыми обладает каждый монитор без исключения. Сделаем небольшой гайд с кратким описанием, что это такое, насколько важен параметр, на что влияет и к каким значениям желательно стремиться.

К сожалению, отнюдь не все характеристики можно встретить в описаниях на монитор, будь то экран ноутбука или дисплей для стационарного ПК. В то же время среди тех параметров, которые обычно скрываются, есть весьма интересные, которые могут повлиять на качество изображения.

1. Тип матрицы

2. Разрешение экрана

Это размер экрана по вертикали и горизонтали в точках (пикселях). Наиболее популярные и часто встречающиеся в ноутбуках экраны имеют разрешение FullHD (1920×1080). Помимо этого, есть еще большое количество других разрешений, некоторые из которых встречаются чаще, некоторые реже.

Физически эта характеристика означает количество пикселей на экране, из которых состоит изображение. Чем больше пикселей на единицу площади экрана, тем, в теории, более качественная картинка, т. к. пиксели становятся меньше и все менее и менее заметными. Пропадает «зернистость» изображения.

В то же время не следует забывать и про стоимость. Чем больше разрешение, тем выше цена (в данном случае я оперирую неким усредненным дисплеем, и не сравниваю высококачественный экран с меньшим разрешением с бюджетным, но с более высоким разрешением).

Если речь идет об игровом ноутбуке или мониторе, то следует учитывать и другой момент. При использовании видеокарт класса GTX 1070/1080 практически в любой игре вы сможете выставить настройки графики на максимум или близко к нему.

Если же экран имеет разрешение 4K (3840 х 2160), то для того, чтобы получить удовольствие в играх от картинки на максимальных настройках графики, видеокарт GTX 1070/1080 уже может и не хватить. Может понадобиться установка пары таких видеокарт, а то и больше.

3. Яркость

Указывается в спецификациях на любой монитор. Это величина, измеряемая в кд/м 2 , (канделах на квадратный метр). Собственно, что это за характеристика, понятно из названия. Строго говоря, чем выше значение этого параметра — тем лучше. Отрегулировать экран, снизив его яркость, не составляет труда.

Что касается экранов ноутбуков, то этот параметр важен еще по той причине, что сама конструкция этого вида компьютера допускает использование его не только в условиях офиса или дома, но и в поездках, на улице, где яркое солнце или иной источник освещения будет засвечивать изображение на экране.

При небольших значениях яркости пользоваться таким экраном при ярком свете будет сложно. Если максимальное значение соответствует 300 кд/м 2 или даже выше, то это означает, что яркий солнечный свет не станет помехой. В конце концов, лучше иметь запас по яркости, т. к. ее всегда можно уменьшить, а вот добавить того, чего нет – увы.

4. Контрастность

Этот параметр отражает отношение уровня яркости белого цвета к черному. Обычно его указывают в качестве отношения, например, 1000:1. Как и с яркостью, чем выше это значение – тем лучше. Изображение будет более естественным.

Контрастность зависит от технологии изготовления матрицы. Так, IPS экраны уступают по этому параметру экранам, выполненным по технологии VA, не говоря уже об OLED, квантовых точках и т. п.

Условно можно принять, что экраны с контрастностью 500:1 и менее можно отнести к посредственным. Лучше ориентироваться на значения 1000:1 и выше. Особенно если в своей работе вам приходится иметь дело с редактированием изображений, колоризацией и т. п.

5. Динамическая контрастность

Этот параметр указывается почти всегда, по крайней мере для обычных, не ноутбучных, мониторов. Согласитесь, что не привести в спецификации, например, значение 100000000:1 –упущение. Большие цифры привлекают внимание и нравятся потенциальным покупателям (при условии, что это не цена).

Что означает эта характеристика? Это результат работы электроники монитора по подстройке изображения в каждый момент времени с целью улучшения «картинки». Происходит управление яркостью ламп с целью добиться высокой контрастности изображения.

Я бы не стал обращать особого внимания на этот параметр, т. к. это скорее маркетинг, чем реальная характеристика, говорящая о достоинствах того или иного монитора. Тем более, что какой дисплей не выбери, количество нулей в значении динамической контрастности сосчитать трудно, да и не надо.

6. Глубина черного цвета

А вот этот параметр редко указывается в технических характеристиках, хотя на качество изображения влияет. При использовании монитора в обычных условиях, при дневном свете или искусственном освещении, оценить этот параметр может оказаться сложно.

Другое дело, если вывести на экран картинку черного цвета, то при низком уровне внешнего освещения, или в полной темноте станет заметно, что черный цвет какой-то не совсем черный, а может даже больше походить на серый. Некоторые области экрана могут оказаться ярче соседних.

Это все связано с тем, что для получения изображения на экране ЖК мониторов используется подсветка, и для отображения черного цвета она не выключается, а блокируется поворотом кристаллов таким образом, что они не пропускают свет.

К сожалению, свет они ПОЧТИ не пропускают, часть света все же преодолевает этот барьер. На приведенной выше картинке можно заметить, что черный цвет имеет все же какой-то серый оттенок.

Опять-таки, многое зависит от технологии изготовления матрицы. Черный цвет на экранах VA более похож на черный, чем, например, на IPS. Конечно, многое зависит от качества используемой матрицы, настроек, регулировок, но в целом это так. Лучше всех с черным цветом справляются экраны OLED, на квантовых точках и прочих новых технологиях.

С определенной долей погрешности уровень черного можно вычислить, если поделить яркость на контрастность. Например, при яркости экрана 300 кд/м 2 и контрастности 1000:1 получаем значение 0.3. Это означает, что пиксели черного цвета будут светиться (в теории, они вообще не должны светиться, и только в этом случае можно говорить про действительно черный цвет) с яркостью 0.3 кд/м 2 .

Надеюсь, понятно, что чем ниже это значение – тем лучше, тем «чернее» будет черный цвет, уж простите за тавтологию.

7. Тип поверхности экрана

Рассматривая сами мониторы, можно заметить, что некоторые из них глянцевые, поверхность блестит, имеет зеркальный эффект. Другие же экраны наоборот, практически ничего не отражают и хорошо справляются с бликами. Различают два типа поверхности — глянцевую и матовую. Можно встретить и полуглянцевые модели, но это попытки скомбинировать достоинства обоих типов, уменьшив недостатки, присущие каждому из них.

Так, к несомненным достоинствам глянца можно отнести лучшую яркость и контрастность, лучшую цветопередачу, изображение воспринимается более четким. Тем, кто работает с изображениями, лучше предпочесть именно этот тип.

Есть и недостатки у глянцевых экранов. Это, конечно же, блики и отражения ярких предметов – светильников, светлых окон и т. п. Это может утомлять глаза. Такие экраны плохо подходят для ноутбуков, которыми часто пользуются на улице, при ярком солнце. Еще одна неприятная черта – несанкционированный сбор отпечатков пальцев экранами с такой поверхностью, как и других загрязнений. Лучше не тыкать в экран пальцами, дабы постоянно не оттирать остающиеся следы.

Матовые экраны «по определению» не бликуют, лучше ведут себя при ярком свете, но дается это за счет ухудшения контрастности, цветопередачи. Есть и еще один недостаток, характерный для матовых экранов, это «кристаллический эффект». Проявляется он в том, что отображаемая точка не имеет четких границ, а может иметь некие неровные края с различными оттенками.

Насколько он заметен – зависит от особенностей зрения. Кому-то такие «кристаллы» буквально бросаются в глаза, а кто-то их и не замечает. Тем не менее четкость изображения от этого страдает.

8. Время отклика

Параметр, который почти всегда указывается. Для тех, кто любит игры, это один из основных параметров экрана. От времени отклика зависит то, насколько четкой будет картинка в динамичных сценах. Проявляется он, например, в виде шлейфов, которые тянутся за быстро перемещающимся по экрану элементами изображения. Чем меньше время отклика – тем лучше.

Этот параметр зависит от технологии изготовления применяемой в том или ином дисплее матрицы. Так, наиболее «скоростные» — TN экраны, и это едва ли не единственная (если не брать стоимость) причина того, что этот тип дисплеев еще не «умер». IPS – более медленные, а VA находятся между этими типами матриц по скорости отклика.

Если экран выбирается для офисной работы, для серфинга в интернете, просмотра видеороликов, работы с изображениями, то этот параметр не сильно важен. Вот если вы истинный любитель виртуальных баталий, то экран с минимальным временем отклика – обязательное требование. И тут даже можно смириться с худшей цветопередачей, неважными углами обзора у TN матриц. Время отклика у них самое маленькое.

9. Углы обзора

Как можно понять из названия, это означает, под каким углом можно смотреть на экран, при котором изображение не теряет цветности, яркости, не ухудшается качество картинки. Тут явный аутсайдер – это TN матрицы. Особенности технологии таковы, что приблизиться к максимальным значениям не удается.

Зато с этим хорошо у IPS панелей. Углы обзора в 178° как по вертикали, так и по горизонтали – обычное явление. Откровенно говоря, при столь большом угле изображение все же ухудшается, но столь катастрофических последствий, как у TN, тут нет. VA матрицы ближе к IPS, хотя немного и уступают им.

Насколько важен этот параметр – зависит от того, как используется монитор. Если вы не собираетесь большой компанией просматривать ролики из ютуба или снятые на последней вечеринке, а используете монитор в гордом одиночестве, то углы обзора не столь важны.

10. ШИМ

Характеристика, которая практически никогда не указывается. (англ. — PWM)? Это Широтно-Импульсная Модуляция, которая используется для регулировки яркости экрана. В чем суть возникающей проблемы?

Как я уже упоминал при разговоре про глубину черного, в ЖК мониторах используется подсветка. Далеко не всегда нужна максимальная яркость свечения экрана, и ее требуется уменьшить. Как это можно сделать? Как минимум двумя способами:

  • Снизить яркость свечения ламп/светодиодов подсветки.
  • Заставить источники света включаться и выключаться, подавая на них импульсы с определенной частотой и скважностью, что воспринимается как снижение яркости свечения.

Второй вариант и является ШИМ управлением яркостью. Чем он плох? Вот этим самым мерцанием ламп. Хорошо, если частота мерцания высока и составляет десятки кГц. Неплохо, если амплитуда импульсов невелика. Хуже, когда частота мерцания низкая, и это может стать заметным «на глаз».

Принцип действия состоит в следующем. Для снижения яркости экрана импульсы на лампы подсветки подаются таким образом, что они часть времени включены, а часть – выключены. Например, при 50% яркости ламы половину времени горят, а половину времени нет.

Результирующим значением отношения времени, когда подсветка включена, ко времени, когда выключена, будет тот или иной уровень яркости экрана. При дальнейшем снижении яркости время свечения ламп уменьшается, а время, когда они находятся в выключенном состоянии, увеличивается. Мерцание становится более заметным.

Естественно, многое зависит от индивидуальных особенностей зрения. Кто-то мало реагирует на такое мерцание, а у кого-то через пару часов, фигурально выражаясь, глаза начинают «вытекать».

Как бы то ни было, наличие ШИМ – это минус монитора. К сожалению, узнать о наличии или отсутствии этого неприятного эффекта можно либо из обзоров или отзывов на тот или иной дисплей, либо проверить это самостоятельно. Можно провести простую проверку, которая получила название «карандашный тест».

Суть в том, что надо взять обычный карандаш и в плоскости экрана помахать им как веером. Естественно, дисплей должен быть включен. Если при быстром перемещении контуры карандаша видны, то, к сожалению, мерцание есть. Если же контуры не видны, то мерцания нет. Следует повторить тест на меньших значениях яркости.

Если в выбранном мониторе ШИМ присутствует, то при наличии подробных обзоров, лучше узнать, как он действует. Если частота импульсов большая, или ШИМ задействован только при небольших значениях яркости, например, от 0 до 25-30%, а дальше используется непосредственное управление яркостью свечения ламп подсветки, то это не так плохо.


Сейчас, если посмотреть на предлагаемые модели мониторов, у некоторых из них можно встретить обозначение «Flicker free», т. е. отсутствие мерцания. У ноутбуков я такое обозначение не встречал, но вот у обычных мониторов встречается. Такая маркировка означает, что мерцания нет, и это дополнительный плюсик к модели дисплея.

11. Цветовой охват

Еще одна характеристика, которая далеко не всегда указывается в спецификациях на монитор, но значение которой может оказаться одним из решающих аргументов в пользу той или иной модели. Чаще всего она указывается, когда производитель хочет подчеркнуть высокое качество установленной в ноутбук или монитор матрицы.

Думаю, этому вопросу есть смысл посвятить отдельный материал, но сейчас расскажу кратко. Наверняка в обзорах на ноутбуки или мониторы вы видели подобную картинку. Это диаграмма цветового охвата экрана ноутбука Dell XPS 15.

Эта разноцветная область – то, что видит человеческий глаз, те цвета и оттенки, которые мы можем различить. Треугольники внутри – диапазон отображаемых цветов конкретным монитором, а также границы, соответствующие принятым стандартам цветового пространства для компьютерного оборудования: мониторов, принтеров и т. п.

Чаще всего используются два цветовых пространства:

  • sRGB – стандарт, разработанный в 1996-м году компаниями HP и Microsoft. Охватывает небольшую часть цветового пространства, доступного человеческому зрению.
  • Adobe RGB – стандарт, который шире sRGB и покрывает большее количество цветов.

Обычно цветовой охват выражается в процентах от того или иного стандарта. Так, экран, покрывающий порядка 60% sRGB можно назвать посредственным, т. к. достоверную передачу цветов на нем получить сложно. Для офисной работы годится, серфить в интернете тоже, а для редактирования изображений такой монитор не подходит. Тут нужны дисплеи с цветовым охватом порядка 100% sRGB и выше.

Как вывод, если хотите хорошую картинку с натуральным цветами, то цветовой охват нужен как можно шире, значение – чем больше, тем лучше.

12. Глубина цвета

Еще один параметр, который сложно найти в спецификациях на тот или иной монитор, но такая информация есть в характеристиках используемой матрицы. Если выражаться проще, то это – количество отображаемых цветов. Часто можно встретить, что монитор отображает 16.7 млн цветов. Это наиболее часто встречающееся значение данного параметра. Проблема в том, что достигаться это может разными способами.

Напомню, что любой цвет формируется из трех основных – красный, синий, зеленый. Соответственно, матрица монитора имеет определенную разрядность на каждый такой цвет, измеряемую в битах. Если на каждый цвет имеется 8 бит, то получаем 256 оттенков каждого цвета, что в комбинации дает 16.7 млн цветов. Все хорошо, монитор показывает отлично, можно брать.

А если каждый цвет кодируется не 8-ю битами? В дешевых дисплеях часто применяют 6-битовые матрицы, но в дополнение еще указывается аббревиатура «+FRC». Что означают эти буквы?

Для начала надо учесть, что при 6-битном кодировании цвета можно получить 262 тыс. цветов. Как же получаются итоговые 16 миллионов? Вот именно за счет технологии FRC (Frame rate control).

Суть состоит в том, чтобы получить «недостающие» полутона за счет показа промежуточного кадра с двумя другими цветами, которые в итоге дают те оттенки, которые недоступны для 6-битной матрицы. Фактически, имеем еще одно мерцание.

Наличие FRC это плохо? Опять-таки, многое зависит от тех задач, которые выполняются на мониторе, и от особенностей зрения. Кто-то не замечает FRC, кого-то наоборот, это раздражает. Да и чисто субъективно, если приходится работать с цветом, то лучше бы иметь монитор с «честной» 8-битовой матрицей.

Для профессионалов выпускаются мониторы с 10-битовой матрицей, позволяющей выводить более миллиарда оттенков. Думаю, не надо говорить, что стоимость таких мониторов не самая маленькая, и для офисного/домашнего/игрового применения вполне сгодится 8-битовый монитор или даже 6 бит+FRC, если мерцание не заметно и к экрану не предъявляются высокие требования.

13. Частота обновления экрана

В отличие от старых ЭЛТ мониторов, этот параметр не столь важен для дисплеев, выполненных по технологии ЖК, особенно, если все ограничивается офисной работой, серфингом в сети, просмотром видео. Если матрица выдает 60-75 Гц, этого более чем достаточно.

На этот параметр следует обратить внимание тем, кто играет в игры, особенно с быстрым перемещением объектов на экране. Важно еще и то, какая видеокарта используется в данном случае. Если она способна выдавать большое количество FPS, то было бы лучше, чтобы и частота обновления экрана была выше.

Если посмотреть на модели дисплеев, в том числе в игровых ноутбуках, то можно заметить, что предлагаются экраны с частотой обновления 120, 144 Гц или даже выше. В этом случае быстрое движение на экране будет более плавным и с меньшим размером шлейфов, тянущихся за перемещаемыми объектами.

Строго говоря, в данном случае не только частота обновления, но и скорость матрицы важна. Пиксели, из которых состоит изображение, должны успевать изменять параметры свечения в зависимости от смены отображаемого изображения. Кстати, малое время отклика в сочетании с высокой скоростью обновления – реальные аргументы в пользу того, что технология TN по-прежнему актуальна для игровых мониторов.

Надо упомянуть и то, что высокая скорость обновления экрана это неплохо, она позволяет снизить остроту проблемы рассинхронизации частоты кадров, которую выдает видеокарта, и скорости обновления картинки на мониторе. Это актуально для игр, и решать эту проблему помогает следующий параметр.

14. NVidia G-Sync и AMD FreeSync

Для начала кратко опишем проблему. Идеальная ситуация – это когда видеокарта формирует и выдает монитору каждый кадр с частотой, равной частоте обновления экрана. К сожалению, в каждый момент времени видеочипу приходится обсчитывать совершенно разные сцены, одни из которых более «легкие», и на них уходит меньше времени», другие же требуют заметно большего времени на рендеринг.

В результате, кадры подаются на монитор с частотой выше или ниже скорости обновления экрана. При этом если видеокарта успевает обсчитать, выдать кадр, да еще и немного отдохнуть перед рендерингом следующего в ожидании очередного цикла обновления экрана, то особых проблем нет.

Другое дело, если в игре выставлены высокие настройки графики и для расчетов сцены видеопроцессору приходится напрягать все свои кремниевые силы. Если же на расчет уходит много времени и кадр не готов к началу цикла обновления, тут возможны два сценария:

  • Цикл пропускается.
  • Отрисовка начинается тогда, когда кадр готов и подан на монитор.

В первом случае необходимо задействовать режим вертикальной синхронизации V-Sync. Если к началу обновления экрана новый кадр не подготовлен, то продолжает отображаться предыдущий. Результат – появляющиеся микрозадержки изображения, подергивания. Зато картинка полноценная.

Если режим V-Sync отключить, то движение станет более плавным, но может появиться другая проблема – если кадр подготовлен где-то внутри цикла обновления экрана, то кадр будет состоять из двух частей, старого и нового, который начнет отрисовываться с момента его подачи на монитор. Визуально это выражается в горизонтальных разрывах изображения, ступеньках.

Более высокая частота обновления снижает остроту проблемы. Но полностью ее не решает. Помочь избавиться от этих неприятных проблем с изображением позволяют технологии NVidia G-Sync и AMD FreeSync.

Как следует из названия, они предложены производителями видеокарт. Поэтому, при выборе монитора, в котором есть одна из этих технологий, следует учитывать, какая видеокарта стоит в вашем компьютере, или какую собираетесь поставить. Неразумно к видеокарте AMD покупать монитор с G-Sync и наоборот. Пустая трата денег на то, что использоваться не будет.

Теперь о самих этих технологиях. Принцип действия их схож, но методы решения различаются. NVidia использует собственный программно-аппаратный способ, т. е. в мониторе есть специальный блок, отвечающий за работу G-Sync, а AMD обходится средствами протокола DisplayPort Adaptive-Sync, т. е. без установки дополнительных аппаратных блоков в монитор.

В данном случае не важно, какими средствами решается проблема, важно то, что можно получить в итоге. Если кратко, то принцип действия G-Sync и аналога от AMD таков.

Частота обновления экрана не фиксирована, а привязана к скорости рендеринга видеокарты. Изображение на мониторе появляется в тот момент, как кадр готов к показу. В результате, мы получаем не фиксированные, например, 60 Гц обновления экрана, а плавающее значение. Один кадр обсчитан быстро – и он сразу появляется на экране. Второй рендерится дольше – матрица дисплея ждет и не обновляет изображение, пока кадр не будет готов.

В итоге имеем плавное изображение без разрывов и прочих артефактов. Таким образом, в случае с монитором, выбираемом для игр, идеальным вариантом является модель с наличием одной из этих двух технологий (с учетом совпадения производителя видеокарты в компьютере) и, желательно, с частотой обновления 120 Гц и выше. Правда, дешевым такой дисплей точно не будет.

15. Интерфейсы

Тут я подробно останавливаться не буду, т. к., думаю, и так понятно. Это установленные в мониторе разъемы для подключения к видеокарте. Для ноутбуков параметр вообще неактуальный, т. к. дисплей идет «в комплекте» и подключен изначально.

Остальное

Думаю, такие характеристик, как вес, размер, тип блока питания (встроенный или выносной), потребляемая мощность при работе и в простое, наличие встроенных динамиков, возможность крепления на стену и т. п. не является чем-то сложным и непонятным. Потому и описывать их я не буду.

Заключение. Характеристики мониторов — какие важны больше, какие — меньше

Надеюсь, я ничего важного не упустил, и если вдруг про что-то забыл написать – укажите это в комментариях, дополню, расширю, углублю. По результатам же сказанного становится ясно, что выбор монитора – это не только решение вопросов, связанных с требуемой диагональю, типом матрицы и разрешением.

Для офиса этого, может, и хватит, но если дисплей выбирается для домашнего пользования, для игр, обработки изображений или других специфических задач, то для того, чтобы не разочароваться в покупке, приходится глубже влезать в характеристики монитора.

Осложняется дело и тем, что свои корректировки вносит собственное зрение, которому не нравится, например, наличие мерцания, недостатки матового покрытия или заметна на глаз работа FRC. И не учитывать это нельзя, ибо глаза у нас одни и новых не будет.

Есть и еще один «тонкий» момент – изначальная настройка монитора производителем. То, что он показывает «как-то не так» не означает, что он не может показывать лучше. Впрочем, калибровка монитора – дело кропотливое, и, порой, требующее специального оборудования. Как минимум, можно попробовать настроить параметры «на глаз», попытаться получить то изображение, которое будет нравиться визуально.

Я сам недавно купил себе монитор, правда выбирал что-то недорогое на IPS или VA, и игровые «примочки» мне были не важны. Тем не менее, отсутствие мерцания было одним из основных критериев.

Хороших вам покупок и пусть глаза кажут «спасибо» за правильно выбранный монитор.

КАНДЕЛА НА КВАДРАТНЫЙ МЕТР

КАНДЕЛА НА КВАДРАТНЫЙ МЕТР

(кд/м2, cd/m2), единица СИ яркости; равна яркости светящейся плоской поверхности площадью 1 м2 в перпендикулярном к ней направлении при силе света 1 кд. 1 кд/м2=10-4 = p 10-4 . Прежнее наименование ед.- .

Физический энциклопедический словарь. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .


Смотреть что такое "КАНДЕЛА НА КВАДРАТНЫЙ МЕТР" в других словарях:

    кандела на квадратный метр

    - (Systeme International d Unites), система единиц физ. величин, принятая 11 й Генеральной конференцией по мерам и весам (1960). Сокр. обозначение системы SI (в рус. транскрипции СИ). М. с. е. разработана с целью замены сложной совокупности систем… … Физическая энциклопедия

    Важнейшие единицы лучистых и световых величин оптического излучения - Величина Наименование Размерность Обозначения Содержит единиц СИ русское международное Длина волны метр L М m Длительность периода (период) секунда Т с (сек.) s Скорость распространения электромагнитных волн (скорость света) метр в секунду … Ветеринарный энциклопедический словарь

    - | | Единица | | … … Энциклопедический словарь

    яркость - 3.1 яркость: Поток, посылаемый в данном направлении единицей видимой поверхности в единичном телесном угле; отношение силы света в данном направлении к площади проекции излучающей поверхности на плоскость, перпендикулярную к данному направлениюСловарь-справочник терминов нормативно-технической документации

    Характеристика светящихся тел, равная отношению силы света в каком либо направлении к площади проекции светящейся поверхности на плоскость, перпендикулярную к этому направлению. Единица Я. в СИ кандела на квадратный метр (кд/м2) … Астрономический словарь

    ЯРКОСТЬ - характеристика светящихся тел, равная отношению силы света в каком л. направлении к площади проекции светящейся поверхности на плоскость, перпендикулярную этому направлению. Единица Я. в СИ кандела на квадратный метр (кд/м2) … Российская энциклопедия по охране труда

    Candela pro Quadratmeter - kandela kvadratiniam metrui statusas T sritis Standartizacija ir metrologija apibrėžtis SI skaisčio matavimo vienetas: cd/m². atitikmenys: angl. candela per square metre vok. Candela pro Quadratmeter, f rus. кандела на квадратный метр, f pranc.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    candela par mètre carré - kandela kvadratiniam metrui statusas T sritis Standartizacija ir metrologija apibrėžtis SI skaisčio matavimo vienetas: cd/m². atitikmenys: angl. candela per square metre vok. Candela pro Quadratmeter, f rus. кандела на квадратный метр, f pranc.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    candela per square metre - kandela kvadratiniam metrui statusas T sritis Standartizacija ir metrologija apibrėžtis SI skaisčio matavimo vienetas: cd/m². atitikmenys: angl. candela per square metre vok. Candela pro Quadratmeter, f rus. кандела на квадратный метр, f pranc.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

© 2013 сайт

Световые и экспозиционные числа (LV и EV) – это условные фотографические величины, характеризующие условия освещения и необходимые для съёмки в этих условиях, параметры экспозиции . Они позволяют указать как на яркость снимаемых объектов, так и на соответствующую этой яркости экспозицию не прибегая к конкретным значениям выдержки и диафрагмы, которые сами по себе (без учёта освещения) не имеют никакого смысла.

Световые числа

Световое число (LV – Light Value) однозначно характеризует яркость какого-либо объекта или сцены в целом. Световое число указывает на абсолютную, реальную яркость безотносительно экспозиции. Речь идёт именно о яркости, измеряемой в канделах на квадратный метр, а не об освещённости, измеряемой в люксах. Нас не интересует, сколько света падает на объект, для нас важно, сколько света объект отражает или излучает. Две кошки, белая и чёрная, греясь на солнце, получают одинаковое количество люксов, но отражают они свет по-разному, и потому яркость белой кошки будет выше яркости чёрной.

Когда говорят о световом числе какой-то сцены, имеют в виду усреднённую яркость всех её объектов.

Шкала световых чисел логарифмическая, т.е. каждое световое число обозначает яркость вдвое большую яркости предшествующего числа и вдвое меньшую яркости последующего. Например LV 11 означает яркость в 256 кд/м 2 , а LV 12 уже 512 кд/м 2 , т.е. в два раза больше.

Ниже приведены значения яркости и типичные фотографические ситуации для световых чисел от -8 до 18. Шкала световых чисел может быть продлена в обе стороны, однако фотограф на практике редко сталкивается со значениями LV меньше или больше значений, представленных в таблице.

Световое число (LV) Яркость, кд/м 2 Примеры
18 32 768 Блики, в т.ч. на поверхности воды и металлических предметах.
17 16 384 Белые объекты, освещённые солнцем
16 8 192 Светло-серые объекты, песок или светлая кожа, освещённые солнцем.
15 4 096 Серая карта в прямом солнечном свете. Диск яркой полной луны. Типичная экспозиция для фронтально освещённых полуденных сцен.
14 2 048 Сцены с боковым освещением в ясный солнечный день. Полупрозрачные облака или дымка. Диск Луны над горизонтом.
13 1 024 Лёгкая облачность.
12 512 Небо затянуто облаками. Объекты в тени ясным днём. Рассветы и закаты.
11 256 Тёмный, пасмурный день.
10 128 Грозовые облака.
9 64 Спустя 10 минут после заката.
8 32 Хорошо освещённая комната. Витрины магазинов.
7 16 Яркие сцены ночного города. Сцена театра. Лесная чаща днём.
6 8 Типичный свет в помещении.
5 4 Городские улицы ночью. Свет от костра.
4 2 Интерьер при свечах.
3 1 Фейерверк.
2 0,5 Слабоосвещённые городские сцены ночью. Разряд молнии.
1 0,25 Далёкие очертания ночного города.
0 0,125 Очень слабый искусственный свет. При чувствительности ISO 100 требуется выдержка в 1 с и диафрагма f/1 при массе фотоаппарата 1 кг и высоте штатива 1м.
- 1 0,063
- 2 0,031 Снег в ярком лунном свете.
- 3 0,016 Пейзаж, освещённый полной луной.
- 4 0,008
- 5 0,004 Пейзаж, освещённый низкой или неполной луной.
- 6 0,002
- 7 0,001
- 8 0,0005 Звёздное небо.

Экспозиционные числа

Экспозиционное число (EV – Exposure Value) указывает на необходимые для съёмки некой сцены параметры экспозиции (выдержку и диафрагму) при заданной чувствительности ISO.

Экспозиционное число определяется по формуле:

N = log 2 (L · S ⁄ K) , где

N – экспозиционное число (EV);

L – яркость объекта, S – чувствительность фотоматериала (ISO);

K – экспонометрическая постоянная, равная для фотоаппаратов Nikon и Canon 12,5.

Очевидно, что при чувствительности ISO 100 экспозиционное число равно световому числу. Это записывается следующим образом: EV 100 = LV.

При изменении чувствительности будет изменяться и EV. Например, при ISO 100 световому числу 14 соответствует экспозиционное число 14 (f/8*1/250 c). Если же чувствительность увеличить, скажем, до ISO 400, т.е. на два шага, то для получения прежней экспозиции следует взять экспозиционное число, соответствующее световому числу 16 (f/11*1/500 с), т.е. EV 400 = LV + 2. К счастью, сегодня вам не обязательно это помнить. Все необходимые вычисления экспонометр камеры совершает автоматически.

Обратите внимание, что чем больше число, тем выше яркость и, соответственно, тем меньше экспозиция. Таким образом, экспозиционные числа указывают на параметры, необходимые для получения нормальной экспозиции при любом освещении. Это значит, что при бездумном следовании указаниям экспонометра белый сервиз на белой скатерти может получиться на фотографии серым и столь же серой выйдет чёрная шляпа, если она занимает достаточно места в кадре. Следовательно, если основной объект съёмки должен быть светлее или темнее нейтрального тона, т.е. если требуется экспозиция, отличная от нормальной, необходимо использовать меньшие (для увеличения экспозиции) или большие (для уменьшения экспозиции) экспозиционные числа по сравнению с теми, что рекомендует экспонометр.

Кстати, в технических характеристиках фотоаппаратов экспозиционные числа (EV 100) используются для указания допустимого диапазона яркости, в котором возможна корректная работа экспонометра и автофокуса.

Важно помнить, что каждое экспозиционное число указывает не на конкретное сочетание диафрагмы и выдержки, а на все возможные эквивалентные сочетания, которые позволяют получить данную конкретную экспозицию.

EV 0 обозначает выдержку в 1 с при диафрагме f/1, однако, согласно закону взаимозаместимости, ту же экспозицию можно получить используя выдержку в 2 с и диафрагму f/1,4. Такая экспопара всё равно даст EV 0. Точно также EV 15 можно получить, используя f/16*1/125 с, f/11*1/250 с, f/8*1/500 с или любую другую эквивалентную комбинацию.

В приведённой ниже таблице показаны возможные сочетания выдержки и диафрагмы для различных экспозиционных чисел.

Выдержка, с Диафрагма
f/1 f/1,4 f/2 f/2,8 f/4 f/5,6 f/8 f/11 f/16 f/22 f/32
30 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5
15 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6
8 - 3 - 2 - 1 0 1 2 3 4 5 6 7
4 - 2 - 1 0 1 2 3 4 5 6 7 8
2 - 1 0 1 2 3 4 5 6 7 8 9
1 0 1 2 3 4 5 6 7 8 9 10
1/2 1 2 3 4 5 6 7 8 9 10 11
1/4 2 3 4 5 6 7 8 9 10 11 12
1/8 3 4 5 6 7 8 9 10 11 12 13
1/15 4 5 6 7 8 9 10 11 12 13 14
1/30 5 6 7 8 9 10 11 12 13 14 15
1/60 6 7 8 9 10 11 12 13 14 15 16
1/125 7 8 9 10 11 12 13 14 15 16 17
1/250 8 9 10 11 12 13 14 15 16 17 18
1/500 9 10 11 12 13 14 15 16 17 18 19
1/1000 10 11 12 13 14 15 16 17 18 19 20
1/2000 11 12 13 14 15 16 17 18 19 20 21
1/4000 12 13 14 15 16 17 18 19 20 21 22
1/8000 13 14 15 16 17 18 19 20 21 22 23

Голубым цветом обозначены экспопары, автоматически выбираемые фотоаппаратом в программном режиме определения экспозиции (режим P). Видно, что упираясь в предельные для данного объектива значения диафрагмы (f/1,4 – f/16), программа вынуждена регулировать экспозицию, меняя лишь выдержку, но, опять же, только в пределах диапазона скоростей затвора конкретного фотоаппарата (1/8000 – 30 с).

Выдержки длиннее 30 с обычно недоступны в автоматических режимах, но могут быть установлены вручную.

Внимательный читатель мог заметить, что на участке программной линии от EV 4 до EV 18 не хватает нечётных экспозиционных чисел. Разумеется, экспонометр через них вовсе не прыгает, а изменяет экспозицию плавно и последовательно. Просто в моей таблице для краткости указаны значения выдержки и диафрагмы с шагом в одну ступень, в то время как на деле, обе составляющие экспопары изменяются, как правило, с шагом в 1/3 ступени. Например, в диапазоне от EV 12 до EV 16 полная последовательность будет выглядеть так:

Выдержка, с Диафрагма
f/5,6 f/6,3 f/7,1 f/8 f/9 f/10 f/11
1/125 12 12,3 12,7 13 13,3 13,7 14
1/160 12,3 12,7 13 13,3 13,7 14 14,3
1/200 12,7 13 13,3 13,7 14 14,3 14,7
1/250 13 13,3 13,7 14 14,3 14,7 15
1/320 13,3 13,7 14 14,3 14,7 15 15,3
1/400 13,7 14 14,3 14,7 15 15,3 15,7
1/500 14 14,3 14,7 15 15,3 15,7 16

Для управления автоматическим определением экспозиции служит экспокоррекция, позволяющая выбирать большие или меньшие экспозиционные числа относительно предлагаемых автоматикой. Сдвиг же программы даёт возможность, оставаясь в пределах заданного экспозиционного числа, выбирать эквивалентные сочетания выдержки и диафрагмы отличные от стандартных.

Несложно понять, как работают прочие автоматические режимы определения экспозиции. В режиме приоритета диафрагмы (A или Av) вы устанавливаете нужную вам диафрагму, а экспонометр определяет экспозиционное число и выбирает соответствующую выдержку. В режиме же приоритета выдержки (S или Tv) вы устанавливаете скорость затвора, а камера выбирает подходящую диафрагму.

В цифровой фотографии закон взаимозаместимости действует безоговорочно, однако традиционная фотографическая плёнка, в отличие от цифровой матрицы, при длительных выдержках (свыше 1 с) подвержена явлению невзаимозаместимости или эффекту Шварцшильда, в результате которого увеличение экспозиции вдвое (т.е. на 1 ступень) может потребовать более чем двукратного увеличения выдержки. Чем длиннее выдержка, тем значительнее расхождение между показаниями экспонометра и выдержкой, необходимой в действительности. Это явление неодинаково для разных плёнок и должно учитываться при расчёте экспозиции.

Спасибо за внимание!

Василий А.

Post scriptum

Если статья оказалась для вас полезной и познавательной, вы можете любезно поддержать проект , внеся вклад в его развитие. Если же статья вам не понравилась, но у вас есть мысли о том, как сделать её лучше, ваша критика будет принята с не меньшей благодарностью.

Не забывайте о том, что данная статья является объектом авторского права. Перепечатка и цитирование допустимы при наличии действующей ссылки на первоисточник, причём используемый текст не должен ни коим образом искажаться или модифицироваться.

Для того чтобы монитор в меньшей степени оказывал негативное влияние на глаза, необходимо свести к минимуму воздействие его лучей и нагрузку на зрительный аппарат. Если вы решаете какой монитор лучше для глаз, обратите внимание на следующие характеристики:

  • В рабочем состоянии экраны должны отсутствовать какие-либо блики;
  • У него должен быть матовый корпус, а таже клавиатура;
  • Контрастность экрана должна иметь высокие показатели (не менее 600:1 — 700:1).

Большинство компьютерных салонов применяют маркетинговые уловки. И указывают в характеристиках контрастность 1000000:1. Это вовсе не обман. Но существует один нюанс. Эти данные являются показателем абсолютно черной или абсолютно белой картинки на экране. При добавлении любого другого цвета (что является необходимым), такая характеристика попросту невозможна.

Хорошими мониторами для глаз являются LED-экраны. Они наносят минимальный вред зрительному аппарату благодаря присутствию светодиодов. Такие экраны имеют следующие положительные характеристики:

  • Необходимая для глаз контрастность;
  • Высокая четкость картинки;
  • Высокая яркость;
  • Низкое потребление энергии;
  • Доступная стоимость;
  • Экологичность.

Если вы думаете, какой монитор лучше выбрать для здоровья глаз, то обратите внимание на жидкокристаллические экраны. На рынке ЖК стоят дороже всего. Это связано с тем, что для их производства используется цианофенил. Данное вещество хоть и находится в жидком состоянии, но все равно сохраняет все свойства кристаллов. Цена таких экранов напрямую зависит от размеров. Небольшой по размеру доступен практически каждому. Помимо того, что такой монитор практически не утомляет глаза, также он не излучает электромагнитные волны. А это положительно воздействует на общее состояние организма.

Виды матрицы

Если вы проявляете заботу о вашем зрении, то приобретите монитор с матрицей VA (MVA, PVA и прочие) или S-IPS. Они наносят наименьший вред вашим глазам.

Матрицы VA, MVA, PVA оказывают меньшее негативное воздействие на зрительный аппарат. Они позволяют экрану проецировать картинку с высокой четкостью. Но и цена на них, благодаря отличным характеристикам, не маленькая.

Матрица S-IPS встречается довольно редко. Но монитор с ней имеет достаточно высокие характеристики и наносит минимальный вред здоровью глаз. Стоимость его довольно высока. Но согласитесь, никакие деньги не заменят здоровье.

Прочие необходимые характеристики

При покупке монитора обращайте внимание также на следующие параметры:

  1. Хорошие показатели цветопередачи.
  2. Минимальное время отклика.
  3. Большой обозревательный угол.

Что необходимо для минимизации негативного воздействия

Итак, после того, как вы приобрели монитор для компьютера, следуя всем перечисленным рекомендациям - его негативное воздействие можно уменьшить еще. Для этого необходимо установить экран на определенном расстоянии.


Не садитесь слишком близко к монитору!

Итоговый выбор

Итак, изучив все характеристики экранов, наиболее лучшими для наших глаз являются экраны со следующими характеристиками:

  • Экономный вариант. Оснащен матрицей TFT-TN. Имеет яркость 200 кд/м2. Обладает контрастностью 600:1. Размер экрана составляет 17-19 дюймов.
  • Стандартный вариант. Матрица TFT-MVA. Яркость 250 кд/м2. Контрастность 800:1. Размер монитора 19-23 дюйма.
  • Высокий класс. Матрица TFT-IPS. Яркость 300 кд/м2. Контрастность 1000:1. Размер 23 дюйма и больше.

Продолжаем разбираться в современных технологиях и характеристиках телевизоров. В мы говорили о таких характеристиках, как тип экрана, диагональ и разрешение. Сейчас мы рассмотрим не менее важные характеристики телевизоров: время отклика матрицы, контрастность, яркость, углы обзора.

Параметр времени отклика матрицы стал приобретать значение с появлением телевизоров, экран которых представляет собой матрицу. При выборе плазменного телевизора на этот показатель можно не обращать внимания. Время отклика измеряется в миллисекундах (мс) и выражает время, за которое пиксель переходит из одного состояния в другое (например, переходит от белого цвета к черному, а затем - снова к белому). В среднем время отклика жк-экранов составляет от 2 до 10 мс.

Время отклика матрицы LCD/LED-экрана приобретает значение при просмотре динамичных сцен. Телевизоры с большим временем отклика выдают в таких случаях "смазанную" картинку: за быстродвижущимися объектами образуются шлейфы остаточного свечения. Чтобы впечатления от покупки не портились, подбирайте время отклика сообразно целям использования вашего телевизора. Для просмотра фильмов, передач подойдет экран со временем отклика 8-10 мс, но если вы планируете подключать компьютер, ограничьтесь значением до 5 мс.

КОНТРАСТНОСТЬ

Под контрастностью принято понимать отношение яркости светлого участка экрана телевизора к темному. Например, значение 10 000:1 означает, что белые участки ярче темных в 10 000 раз. Уровень констрастности определяется тем, насколько насыщенным выглядит темный цвет, и насколько ярко отображается белый цвет. Чем выше контрастность, тем больше деталей и оттенков можно рассмотреть на экране.

Для качественного воспроизведения видео в HD-формате собственной (статической) контрастности матрице недостаточно, поэтому производители придумали технологию, позволяющую увеличить этот показатель. Современные телевизоры автоматически регулируют яркость экрана на основе анализа содержания кадра. Для сцен с низкой освещенностью излучается меньше подсветки, это придает большую глубину темным цветам; светлые кадры, наоборот, становятся ярче.

Отсюда возникает понятие динамической контрастности , т.е. контрастности, измеренной с учетом автоматических регулировок яркости. LED-подсветка матрицы существенно увеличила контрастность, поэтому LED-телевизоры отличаются четким и глубоким изображением (в отличие от обыкновенных ЖК).

ЯРКОСТЬ

Для того, чтобы глазам было комфортно смотреть телевизор при любом освещении (естественном или искусственном) у телевизора должна быть высокая яркость. В противном случае, просмотр телевизора обернется чрезмерной нагрузкой на зрение и приведет к усталости.

Показатель яркости измеряется в силе света на кв.м. (кд/м 2). Самая большая яркость у "плазм", это очевидно, ведь сама технология плазменных телевизоров предполагает самосвечение элементов экрана. ЖК-матрицы пока не достигли таких показателей яркости, т.к. поток света, исходящий от ламп или LED-подсветки должен преодолеть слой не совсем прозрачных жидких кристаллов.

Обычно значение яркости ЖК и LED-телевизоров лежит в пределах 300-600 кд/ м 2 , в то время как яркость плазменного телевизора составляет 1000 кд/ м 2 и выше. Но не стоит спешить с выводами! Слишком высокая яркость влечет за собой потерю контрастности (однако некоторые недобросовестные производители по понятным причинам предпочитают об этом не упоминать). Во всем должна быть золотая середина.

Чтобы вам было легче подобрать оптимальное сочетание контрастности и яркости, отталкивайтесь от следующих данных:

  • бюджетный телевизор - яркость от 300 кд/ м 2 , контрастность от 1000:1;
  • телевизор средней ценовой категории - яркость от 400 кд/ м 2 , контрастность от 5000:1;
  • дорогая модель телевизора - яркость от 600 кд/ м 2 , контрастность от 20 000:1.



И, все же, слишком много яркости не бывает, тем более, ее можно легко отрегулировать. Единственное правило, которого следует придерживаться - не устанавливайте ваш телевизор напротив окон, иначе солнечный свет испортит все впечатление.

УГЛЫ ОБЗОРА

Угол обзора - это такой угол к плоскости экрана, при просмотре с которого изображение видно без искажений. Характеристика стала актуальной с появлением цифровых тв. Возможные искажения изображения связаны с самой структурой жк-матрицы. Дело в том, что подсветка экрана (лампы либо светодиоды) находится на очень маленьком, но все же расстоянии от пикселей матрицы. Из-за этого свет попадает в "зазор" между пикселями и лампами, область рассеивания ограничивается.

На практике это выражается в том, что с увеличением угла просмотра мы замечаем снижение яркости и контрастности, качество картинки постепенно ухудшается. Самое лучшее изображение мы видим, находясь перпендикулярно к экрану. В пределах +/- 60 о наблюдаем изображение приемлемого качества. Следовательно, картинка без искажений доступна при значении угла обзора равном приблизительно 120 о.

Дорогие и тонкие телевизоры имеют больший угол обзора (170-175 о). Для бюджетных моделей характерны значения около 160-170 о. Здесь есть маленькая хитрость: при правильной установке вы легко сможете избежать "неподходящих" углов! Поэтому важно подумать, куда вы собираетесь установить телевизор.

Для "плазмы" данная характеристика не столь важна. Принципиально другая технология обеспечивает большой угол обзора (175-180 о).