Смысл разгона ЦПУ. Супер скалярный блок плавающей точки FPT

Введение

Первые процессоры с архитектурой AMD64 стали появляться ещё в апреля 2003 года. Это были процессоры Opteron серии 200, которые продемонстрировали довольно неплохой уровень производительность благодаря своей отличной архитектуре. Серверный рынок сам по себе имеет довольно маленький процент, от общего рынка процессоров, поэтому анонс настольных процессоров с архитектурой AMD64 для высокопроизводительных ПК не заставил себя долго ждать, так 23 сентября 2003 года были официально представлены модели: AMD Athlon 64 3200+ и AMD Athlon 64 FX-51, а затем и AMD Athlon 64 3400+. В преддверии нового года, поклонников продукции AMD также ждал сюрприз: без какого-либо ажиотажа свет увидел новый процессор Athlon 64 3000+, который направлен на массовый рынок, и о котором пойдёт речь в сегодняшнем материале.

Линейка процессоров AMD 8-го поколения

Компания AMD выпускает несколько моделей процессоров 8-го поколения, предназначенных для определённых секторов рынка.

  • Athlon 64 FX-51

Для лучшего представления и удобства восприятия материала приведём небольшую табличку в которой собраны технические характеристики вышеперечисленных процессоров.

Opteron 144

Athlon 64 FX-51

Athlon 64 3400+

Athlon 64 3200+

Athlon 64 3000+

Корпусировка

Частота

Тех.процесс

0.13 мкм, SOI

0.13 мкм, SOI

0.13 мкм, SOI

0.13 мкм, SOI

0.13 мкм, SOI

Число транзисторов

Площадь ядра

Номинальное напряжение

Контроллер памяти

Двуканальный, 128-битный

Двуканальный, 128-битный

Одноканальный, 64-битный

Одноканальный, 64-битный

Одноканальный, 64-битный

Типы памяти

Регистровая DDR400/ DDR333/ DDR266 SDRAM

DDR400/ DDR333/ DDR266 SDRAM

DDR400/ DDR333/ DDR266 SDRAM

DDR400/ DDR333/ DDR266 SDRAM

L1 кеш

128 Кбайт (по 64 Кбайта на код и данные)

128 Кбайт (по 64 Кбайта на код и данные)

128 Кбайт (по 64 Кбайта на код и данные)

128 Кбайт (по 64 Кбайта на код и данные)

L2 кеш

1024 Кбайт (эксклюзивный)

1024 Кбайт (эксклюзивный)

1024 Кбайт (эксклюзивный)

1024 Кбайт (эксклюзивный)

512 Кбайт (эксклюзивный)

Cool’n’Quiet

AMD Athlon 64 3 0 00+

Слухи о том, что AMD готовит новый процессор Athlon 64 с рейтингом 3000+, поползли по сети быстро. Большинство обозревателей, тестеров и экспертов предполагали, что новая бюджетная модель будет отличатся лишь тактовой частотой. Сомнений ни у кого не осталось, что может быть иначе, особенно, если посмотреть на модельный ряд мобильных процессоров Athlon 64, так модель с рейтингом 3200+ имеет частоту 2000 Мгц, а 3000+ - 1800 Мгц. Официальный релиз компании расставил все точки над I. Новый настольный процессор AMD Athlon 64 3000+ имеет такую же тактовую частоту, что и более дорогая модель с рейтингом 3200+. Изменения коснулись кэш-памяти второго уровня, объём которой у Athlon 64 3000+ уменьшился, по сравнению с Athlon 64 3200+,вдвое и составил 512 Кбайт против 1 Мбайта у модели 3200+. Вашему вниманию мы представляем скриншот из программы CPU-Z.

Такое решение компании AMD имеет логическое объяснение. Процессоры семейства Athlon 64 имеют довольно большую площадь кристалла, что делает их производство довольно дорогим т.к. количество брака достаточно велико. Большой процент брака приходится именно на кеш-память, по причине того, что последняя занимает 50% площади кристалла. Таким образом, компания AMD уже в не первый раз пытается убить двух зайцев одним выстрелом, вспомним ситуацию с ядрами Barton и Thorton. Таким образом, компании удалось:

Теоретически, исходя из ситуации сложившийся с Barton и Thorton, а также с Pentium 4 и Pentium 4 Extreme Edition, можно предположить, что производительность у Athlon 64 3000+, в сравнении с Athlon 64 3200+, упадёт не сильно. Само по себе снижение или увеличение объёма кэш-памяти не даёт значительного снижение или увеличения производительности, яркими тому примерами являются процессоры AMD Athlon на ядрах Barton и Thorton, а также процессоры Pentium 4 и Pentium 4 Extreme Edition. Но теория теорией, а практика практикой, поэтому отложим наши выводы до объективного тестирования.

AMD Athlon 64 3000+ также как и старшие модели, поддерживает технологию Cool’n’Quiet – интеллектуальная технология понижения тепловыделение. По сути Cool’n’Quiet является усовершенствованной технологией PowerNow!, которая уже большое количество времени используется в “мобильных” процессорах от AMD. Принцип работы технологии достаточно простой: посредством драйвера, который сбрасывает или повышает тактовую частоту процессора, определяется степень загрузки центрального процессора, и в соответствии с полученными данными, оптимизируется рабочая частота процессора и соответственно напряжение на процессоре. Здесь можно представить вполне логичную ситуацию: пользователь работает Word, соответственно степень загрузки процессора незначительна, драйвер снижает рабочую частоту и напряжение на ядре процессора. Ситуация кардинально меняется, если вы запускаете современную компьютерную игру или другое ресурсоёмкое приложение. Опять же драйвер определяет степень загрузки, которая стала максимальной, после чего увеличивается рабочая частота процессора и соответственно напряжения на ядре процессора.

Давайте от теории перейдём к практике. При запуске обычных офисных приложений, тактовая частота процессора снизилась до 800 Мгц, а напряжение на ядре – до 1.3В. Также стоит отметить, что снижение рабочей частоты процессора, происходит за счёт изменения множителя, так в нашем случаи, при частоте в 800 Мгц, множитель составил 4х.

После того, как нагрузка на процессор увеличивается, рабочая точка меняется и процессор работает на частоте 1800 Мгц, а напряжение и множитель составляет 1,4В и 9х соответственно.

Помимо этого процессоры AMD Athlon 64 могут переходить в так называемый “ждущий режим” (Halt/Stop Grant).

Для удобства представления рабочих точек и количества тепловыделения на той или иной рабочей частоте приведём небольшую таблицу.

Коробка, кулер, наклейка…

Процессор AMD Athlon 64 3000+ попал на тестирование в боксовом варианте. В коробке небольших размеров помимо Athlon 64 3000+ ещё находились: кулер, устройство для крепления CPU к материнской плате и наклейка с логотипом процессора.

Стоит сказать несколько о кулере, идущим в комплекте с процессорами AMD Athlon 64. Кулер имеет основание из сплава с большим процентом содержанием меди, к которому прикреплено большое количество тонких ребёр. Вентилятор, на двух шарикоподшипниках со встроенным температурным датчиком, имеет скорость вращения 3050 об/мин - 6000 об/мин (варьируется в зависимости от температуры процессора, порогом является 42 градуса по Цельсию (ниже 42 - 3050 об/мин, выше 42 - <=6000 об/мин). Уровень шума не высок: субъективно он значительно ниже нежели у кулеров, поставляемых с процессорами Intel Pentium 4.

Тестирование

Тестовые испытания проводились на тестовом стенде следующей конфигурации:

    Материнские платы: MicroStar K8T Neo (VIA K8T800) и ASUS P4C800 Deluxe (Intel 875P)

    Процессор: AMD Athlon 64 3000+ и Intel Pentium 4 3000 Мгц (800 Мгц FSB, Northwood)

    Память: 2x256 Мбайт PC3200 Hynix DDR SDRAM CL 2.0

    Видеокарта: ASUS V9560 Ultra (NVIDIA GeForce FX 5600 Ultra)

    Жёсткий диск: Seagate Barracuda 7, 80 Гбайт

Конечно же было бы неплохо сравнить производительность AMD Athlon 64 3000+ с другими процессорами из линейки Athlon 64, но этой возможности нет по причине отсутствия таковых процессоров. Поэтому пришлось ограничится сравнением AMD Athlon 64 3000+ с его главным конкурентом Intel Pentium 4 3000 Мгц.

На тестовом стенде были установлены операционная система Microsoft Windows XP Service Pack 1, а также тестовые программы и реальные игровые приложения:

Тайминги памяти на обеих платах были выставлены как 2.0/5/3/3.

Синтетические тесты 3DMark 2001 SE и 3DMark 2003, а также игровой бенчмарк GunMetal BenchMark использовали максимальную детализацию, разрешение 640х480 и 32-х битный цвет.

При архивации данных использовались архиватор WinRAR 3.20 и папка с данными (PCBench) из тестового пакета ZD Winstone 2004. Данная папка была выбрана, потому что она имеет большой размер и в ней содержатся практически все типы файлов.

Тесты на сжатия видео проводились при помощи программы VirtualDub 1.5.1 и кодека DivX codec 5.05a Pro. Сжимаемый видеофайл имел размер 74,5 мегабайта.

Тесты на кодирование Mp3 проводились при помощи кодера RazorLame 1.1.5.1342 и кодека Lame codec 3.93.1. Файла в формате Wave, а именно програбленный альбом “Master Of Puppets” группы Metallica сжимался в Mp3-файлы с битрейтом 128 кб/с и частотой дискретизации 41 КГц.

Реальные игровые приложения использовали 32-х битный цвет и разрешение 800x600. VSync отключался. Компрессия текстур отключалась непосредственно в игровых приложениях. Все игровые приложения настраивались на максимальную детализацию.

С каждой новой тестируемой платой, заново устанавливались операционные системы и все тестовые приложения.

Результаты тестирования

Тестовые приложения

AMD Athlon 64 3000+

Intel Pentium 4 3000 Мгц

Превосходство/отстование AMD Athlon 64 3000+ (%)

Business Winstone 2004

Content Creation Winstone 2004

SiSoftware Sandra 2003, CPU BenchMark, Dhrystone ALU, MIPS

SiSoftware Sandra 2003, CPU BenchMark, Whetstone FPU, MPFLOPS

SiSoftware Sandra 2003, Memory BenchMark, Int, MB/s

SiSoftware Sandra 2003, Memory BenchMark, Floaut, MB/s

PCMark 2004, Score

PCMark 2004, CPU score

PCMark 2004, Memory Score

PCMark2004, File Compression, MB/s

PCMark2004, File Encryption, MB/s

PCMark2004, File Decompression, MB/s

PCMark2004, Image Processing, MPixels/s

PCMark2004, Virus Scanning, MB/s

PCMark2004, Grammar Check, KB/s

PCMark2004, File Decryption, MB/s

PCMark2004, Audio Conversion, KB/s

PCMark2004, WMV Video Compression, fps

PCMark2004, DivX Video Compression, fps

PCMark2004, Physics Calculation and 3D, fps

PCMark2004, Graphics Memory - 64 Lines, fps

Архивация: WinRAR 3.11, seconds

Кодирование видео: VirtualDub 1.5.1 + DivX codec 5.05a Pro, seconds

Кодирование звука MP3: RazorLame 1.1.5.1342 + Lame codec 3.93.1, seconds

CINEMA 4D, CINEBENCH 2003

Hardware Lighting Test, Scene 1, fps

Hardware Lighting Test, Scene 2, fps

Software Lighting Test, Scene 1, fps

Shading Test, Scene 1, fps

Shading Test, Scene 2, fps

Single CPU Render Test, sec

800x600x32

Unreal Tournament 2003 (Direct3D), fps

Return to Castle Wolfenstein (OpenGL), fps

Serious Sam 2 The Second Encounter (OpenGL), fps

Quake3 Arena (OpenGL), fps

Unreal II: The Awakening (Direct3D), fps

Comanche 4 (Direct3D), fps

Tomb Raider - Angel Of Darkness (Direct3D), Demo: Paris3c, fps

HALO: Combat Evolved 1.2 (Direct3D), fps

X2: The Threat Demo (Direct3D), fps

Call of Duty (OpenGL), fps

AquaMark 3 (Direct3D), Default, fps

AquaMark 3 (Direct3D), Default, CPU, fps

GunMetal BenchMark 1 (Direct3D), 640x480x32, fps

GunMetal BenchMark 2 (Direct3D), 640x480x32, fps

Тестовые приложения

AMD Athlon 64 3000+

Intel Pentium 4 3000 Мгц

Intel Pentium 4 3000 Мгц

Производительность в офисных и мультимедиа приложениях

В тестовом пакете ZD Winstone 2004 производительность системы на Athlon 64 выше, нежели производительность системы, в основу которой лёг микропроцессор Intel Pentium 4.

Производительность в синтетических тестах

Бенчмарк микропроцессора из тестового пакета Sandra 2003 говорит о отставании микропроцессора AMD от продукта Intel. Однако не стоит принимать результаты этого теста близко к сердцу: общеизвестный факт, что тестовый пакет SiSoftware Sandra очень уже лояльно относится к продуктам Intel.

Тесты памяти демонстрируют нам аналогичную картину.

Результаты PCMark 2004 говорят о полном разгроме Athlon 64 3000+. Результаты получились действительно разгромные, а в мозге закралась мыслишка о оптимизации этого теста под архитектуру микропроцессора Pentium 4. Попробуем разобраться в сложившийся ситуации, для этого давайте посмотрим на подробные результаты тестов из пакета PCMark 2004. Первые шесть тестов запускают по два вычислительных потока синхронно, а здесь технология Hyper-Threading делает своё дело.

Остальные тесты, в основном, относятся к задачам кодирования, а с этим, действительно, лучше справляется Intel Pentium 4. Athlon 64 выигрывает лишь в тестах проверки грамматики и физического моделирования.

Полусинтетический пакет 3DMark 2001SE показывает превосходство AMD Athlon 64 3000+. Результаты же 3DMark 2003 говорят о практически идентичной производительности обоих процессоров, что говорит о том, что данный тестовый пакет очень сильно зависит от производительности видеоподсистемы.

Производительность в тестах на сжатие данных, кодирование/декодирование аудио и видео

Архивация данных критична к производительности подсистемы памяти и как мы видим, подсистема памяти у платформы на Athlon 64 организована лучше.

В кодировании видео, производительность контроллера памяти также играет не последнюю роль, и мы видим идентичную незначительное отставание Athlon 64.

А вот кодирование Mp3 напротив: относится к подсистеме памяти очень даже лояльно, но категорично – к производительности центрального процессора, и как мы видим здесь побеждает процессор Intel Pentium 4 3000 Мгц с довольно большим отрывом.

Производительность в профессиональных приложениях

С профессиональными задачами как мы видим, лучше справляется AMD Athlon 64.

Производительность в реальных игровых приложениях

В компьютерных играх AMD Athlon 64 3000+ показывает себя с наилучшей стороны: практически во всех приложениях, Athlon 64 показал большую производительность нежели Pentium 4. Исключение составляют игровые приложения в основу которых лёг движок или модифицированная версия движка Quake 3 Arena, как известна последний намного лучше обрабатывается системами с процессорами Intel Pentium 4.

Производительность в полусинтетических псевдо DirectX 9 бенчмарках

Опять же, мы наблюдаем превосходство платформы, построенной на базе микропроцессора AMD Athlon 64 3000+.

Выводы

У компании AMD получился отличный продукт. Процессор AMD Athlon 64 3000+ обладает отличной производительность за частую более высокой чем у главного конкурента Intel Pentium 4 3000 Мгц. Об абсолютном превосходстве Athlon 64 3000+ говорит не приходится, по причине того, что процессор хорош не во всех тестах, так например в задачам кодирования и тестах с двумя вычислительными потоками побеждает Intel Pentium 4. И тем не менее, учитывая то, что на данный момент нет 64-х битной ОС Windows XP и 64-х битных приложений, AMD представила замечательный продукт у которого несомненно будет успех, учитывая его официальную (в прайсе AMD) цену в 212 у.е. По этой цене конкурент в лице компании Intel может предложить лишь микропроцессор Intel Pentium 2800 Мгц. Однако давайте посмотрим на наши Минские цены: AMD Athlon 64 3000+ стоит у нас порядка 275-280 у.е, а что за эту цену можно купить от Intel? Лишь Intel Pentium 4 2800 Мгц. А если учесть цены на материнские платы на VIA K8T800 и на платы, в основу которых лёг Intel 875P… По-моему далее лишние слова излишни…

Автор выражает благодарность компании GreenLine – официальному дистрибьютору продукции MSI на территории РБ за предоставленные для тестирования центральный процессор AMD Athlon 64 3000+ и системную плату MicroStar K8T Neo

ВведениеНаши читатели нередко задают нам один и тот же вопрос: сколько вычислительных ядер должен иметь современный процессор? К сожалению, однозначно ответить на него мы не можем, целесообразность применения многоядерных процессоров в том или ином случае сильно варьируется и зависит в первую очередь от того рода задач, с которым собирается иметь дело пользователь. Как показывают тесты, четырёхъядерные процессоры оказываются весьма эффективны при рендеринге или кодировании видео, но большинство игр, офисные приложения или даже графические редакторы не могут полностью загрузить работой четыре вычислительных ядра одновременно. Более того, существует немалая доля приложений, создатели которых и вовсе не считают нужным распараллеливать вычислительную нагрузку. Например, некоторые звуковые кодеки, ряд игр, интернет-браузеры и даже Adobe Flash Player используют лишь одно процессорное ядро. Именно поэтому правильный выбор процессора во многих случаях оказывается не столь уж и простой задачей, особенно если принять во внимание тот факт, что в среднем ценовом сегменте производители процессоров одновременно предлагают модели с различным количеством ядер: двумя, тремя и четырьмя.

Тем не менее, именно двухъядерные процессоры следует сегодня считать наиболее универсальным вариантом. Работа для двух вычислительных ядер найдётся практически в любом компьютере: если даже активное приложение использует лишь однопоточные алгоритмы, второе ядро, свободное от нагрузки, окажется как нельзя кстати для нужд операционной системы, которая благодаря ему сможет обеспечить более быструю реакцию на действия пользователя. В пользу двухъядерных процессоров говорит и статистика: почти половина современных компьютеров оснащена ими. И хотя доля таких ПК в последнее время демонстрирует тенденцию к сокращению под давлением понижения цен на процессоры с большим числом ядер, число компьютеров с двухъядерными процессорами почти вдвое больше, чем с процессорами с четырьмя ядрами.

Иными словами, именно двухъядерные процессоры продолжают оставаться на пике внимания современных пользователей. Говоря же в этом ключе о конкретных предложениях производителей, следует заметить, что более выгодно смотрится линейка двухъядерных продуктов компании Intel. Микропроцессорный гигант предлагает гораздо более широкий спектр решений, включающий целых три класса двухъядерных процессоров разных ценовых диапазонов: Celeron, Pentium и Core 2 Duo. Компания AMD пока может ответить на это лишь двухъядерными Sempron и Athlon X2, которые с точки зрения своих потребительских качеств никак не могут быть противопоставлены линейке Core 2 Duo.

Таким образом, вопрос о выборе оптимального двухъядерного процессора на альтернативной основе оказывается уместен только в том случае, если речь идёт о предложениях дешевле трёх тысяч рублей . Именно такие недорогие двухъядерные процессоры семейств Athlon X2 и Pentium в сегодняшних условиях оказываются востребованы весьма значительной группой пользователей, приобретающих или собирающих системные блоки общей стоимостью в пределах 15 тыс. рублей. Этой категории покупателей мы и адресуем нашу сегодняшнюю статью, в которой речь пойдёт о противостоянии процессорных семейств AMD Athlon X2 и Intel Pentium Dual-Core.

AMD Athlon X2

В рядах двухъядерных процессоров, предлагаемых компаний AMD, не так давно произошли значительные изменения. Так, этот производитель сместил акценты на Athlon X2 серии 7000 – процессоры, в основе которых лежит ядро Kuma. В результате, в дополнение к Athlon X2 7750, на рынке теперь доступна и более быстрая модель, процессор Athlon X2 7850, частота которого достигает 2,8 ГГц. Вместе с этим, основная масса процессоров Athlon X2 с ядрами Windsor и Brisbane отправлена на свалку истории. Причины этих изменений весьма прозаичны: производить ядра специально для дешёвых двухъядерных моделей становится накладно, поэтому большее распространение находят процессоры, в основе которых используются бракованные четырехъядерные полупроводниковые заготовки.

Таким образом, в ассортименте AMD число двухъядерных процессоров с микроархитектурой K10 (Stars), обладающих, среди прочего, и кэш-памятью третьего уровня объёмом 2 Мбайта, неуклонно увеличивается. При этом следует иметь в виду, что Athlon X2 серии 7000 представляют собой производную от процессоров Phenom X4 ещё первого поколения, с ядром Agena, для выпуска которых используется старый 65-нм технологический процесс. Это означает, что Athlon X2 серии 7000 работают только в Socket AM2/AM2+ материнских платах и поддерживают лишь DDR2 память. Впрочем, так как предназначены они для использования в недорогих компьютерах, такие ограничения вполне разумны.

Основные характеристики процессоров Athlon X2 с микроархитектурой K10 (Stars) можно почерпнуть, например, из приведённого ниже скриншота диагностической утилиты CPU-Z.


Никаких неожиданностей здесь нет: старшая модель Athlon X2 7850 оказалась лишь на 100 МГц быстрее рассмотренной нами ранее предшественницы и работает на частоте 2,8 ГГц. Всё остальное так и осталось по-старому. Поэтому, от Athlon X2 серии 7000 ждать чудес явно не следует: производительность этой линейки отличается от быстродействия Athlon X2 с микроархитектурой K8 незначительно, разгоняются такие процессоры достаточно плохо, их тепловыделение сравнительно высоко. Но, тем не менее, выбирать не приходится, и тем, кто решится связаться с двухъядерными процессорами AMD сегодня, придётся мириться со всеми этими недостатками, по крайней мере, до тех пор, пока компания не предложит двухъядерные процессоры, использующие более новые 45-нм ядра.

Intel Pentium

В отличие от AMD, компания Intel давно внедрила 45-нм технологический процесс при производстве практически всех своих моделей, за исключением разве только совсем бюджетных процессоров Celeron. Что же касается интересующих нас в первую очередь Pentium, то все представители этой линейки с процессорными номерами E5000 основываются на 45-нм ядре Wolfdale-2M, получающемся при отключении части кэш-памяти в полноценных ядрах Wolfdale, которые используются в процессорах серии Core 2 Duo.

В итоге двухъядерные процессоры, противостоящие (по крайней мере, с точки зрения цены) семейству Athlon X2, обладают кэш-памятью второго уровня объёмом 2 Мбайта, что в три раза меньше кэш-памяти «полноценных» Wolfdale. Но это далеко не единственная характеристика, претерпевшая ухудшение при получении из Core 2 Duo в 3-4 раза более дешёвого процессора. Pentium серии E5000 используют медленную 800-мегагерцовую FSB и имеют более низкие, чем Core 2 Duo, тактовые частоты.

В результате, основные характеристики процессора Pentium E5400, венчающего модельный ряд E5000, отображаются на скриншоте диагностической утилиты CPU-Z следующим образом:


Говоря о семействе процессоров Pentium, хочется подчеркнуть ещё две их особенности, о которых частенько забывают покупатели. Во-первых, в отличие от всех других LGA775-процессоров с 45-нм ядрами поколения Core, Pentium Dual-Core не имеют поддержки набора команд SSE4.1. Напомним, что этот набор инструкций включает в себя 47 команд и используется некоторыми современными видеокодеками. Впрочем, особо расстраиваться по этому поводу явно не следует - как минимум из-за того, что семейство Athlon X2 также SSE4.1 не поддерживает.

Вторым же, более серьёзным недостатком процессоров Pentium является отсутствие поддержки технологии виртуализации. И если раньше этот факт мало волновал большинство пользователей, то теперь ситуация вполне может поменяться на противоположную. Дело в том, что технология виртуализации используется режимом эмуляции Windows XP в грядущей операционной системе Windows 7, предназначенном для обеспечения работы приложений, по каким-либо причинам с Windows 7 несовместимых. Отсутствие же у процессора соответствующего свойства ставит крест на возможности запуска в будущей операционной системе виртуальной машины со стареющей, но, тем не менее, широко распространённой ОС. Впрочем, вряд ли несовместимых приложений будет много - как показывает практика, в основном это либо старые игры, либо какое-то узкоспециализированное и малораспространённое ПО.

Основные характеристики протестированных процессоров

Ставя перед собой цель сравнения актуальных двухъядерных процессоров стоимостью порядка 2-3 тысяч рублей, мы сосредоточили внимание на Athlon X2 7850 и 7750, а также семействе Pentium E5000. К сожалению, пока мы не смогли получить в нашу лабораторию новый процессор Pentium E6300, так что тесты этой модели временно откладываются. Зато в число соперников мы добавили старый процессор AMD, Athlon X2 6000, который, несмотря на свою принадлежность к микроархитектуре K8 и отсутствие в официальном прайс-листе AMD, всё ещё способен тряхнуть стариной и продемонстрировать уровень производительности, вполне укладывающийся в рамки, определяемые интересующей нас ценовой категорией. Итак, представляем вашему вниманию полный перечень протестированных моделей.



Надо заметить, что, хотя официальные цены ниже у AMD, на практике на момент подготовки статьи в нашем прайс-листе Pentium DC E5200 был на семьдесят рублей дешевле, нежели Athlon X2 7750.

Мы не стали добавлять в наше сравнение двухъядерные Intel Celeron, так как и с точки зрения потребительских характеристик, и с точки зрения цены они находятся на более низкой ступени процессорной иерархии.

Описание тестовой платформы

Для тестирования перечисленных в приведённой таблице продуктов были собраны две аналогичные платформы, предназначенные для Socket AM2 и LGA775 процессоров соответственно. В этих платформах использовались следующие компоненты:

Материнские платы:

ASUS P5Q Pro (LGA775, Intel P45 Express, DDR2 SDRAM);
Gigabyte MA790GP-DS4H (Socket AM2+, AMD 790GX + SB750, DDR2 SDRAM).


Оперативная память: GEIL GX24GB8500C5UDC (2 x 2Гбайт, DDR2-800 SDRAM, 5-5-5-15).
Графическая карта: ATI Radeon HD 4890.
Жёсткий диск: Western Digital WD1500AHFD.
Операционная система: Microsoft Windows Vista x64 SP1.
Драйверы:

Intel Chipset Software Installation Utility 9.1.0.1007;
ATI Catalyst 9.4 Display Driver.

Несмотря на то, что процессоры AMD Athlon X2 7850 и 7750 могут работать с DDR2-1067 памятью, их тестирование, также как и всех остальных участников, мы выполняли c DDR2-800 SDRAM. Такое решение обусловлено не столько желанием поместить все рассматриваемые процессоры в аналогичные условия, сколько экономической целесообразностью. Скорость памяти мало влияет на итоговое быстродействие системы, поэтому при сборке недорогих компьютеров разумнее использовать более дешёвую, а не более высокочастотную память.

Производительность

Общая производительность















Результаты, показываемые процессорами при измерении комплексной производительности в типичных наборах приложений, не преподносят никаких сюрпризов. В целом, процессоры располагаются на диаграммах сообразно их стоимости. Отметить разве только стоит превосходство Athlon X2 в тестовом сценарии «Productivity», что говорит о востребованности большого объёма кэш-памяти в типичных офисных приложениях, а также преимущество моделей с микроархитектурой Core при построении и обработке трёхмерных изображений.

Кстати, отдельного упоминания заслуживает ощутимое превосходство новых Athlon X2 с ядром Kuma над процессором старого поколения Athlon X2 6000. Этот факт может служить яркой иллюстрацией превосходства микроархитектуры K10 (Stars) над предшествующей ей микроархитектурой K8. Впрочем, величина этого превосходства явно недостаточна для того, чтобы предлагаемые AMD двухъядерные процессоры смогли бы конкурировать с семейством Core 2 Duo - они проигрывают по быстродействию даже старшим представителям модельного ряда Pentium.

Игровая производительность












Производительность в современных играх в первую очередь определяется мощностью графического ускорителя. А процессоры со стоимостью 2-3 тысячи рублей, как можно видеть по полученным результатам, вполне справляются с той нагрузкой, которая может возлагаться на них в игровых приложениях, и обеспечивают приемлемую скорость. Это значит, что для недорогих игровых систем процессоры Athlon X2 и Pentium подходят хорошо, а свободные деньги лучше направить на покупку более серьёзной видеокарты.

Впрочем, семейство Pentium в целом демонстрирует всё же чуть более высокие показатели, чем Athlon X2 серии 7000, которые, хотя это и выглядит странным, проигрывают выпущенному почти два с половиной года назад Athlon X2 6000.

Производительность при кодировании видео






В очередной раз мы убеждаемся в том, что кодек DivX лучше оптимизирован для процессоров с микроархитектурой Core. Зато при использовании набирающего популярность кодека x264 победа оказывается на стороне процессоров Athlon X2, являющихся носителями микроархитектуры K10 (Stars).

Прочие приложения



Скорость выполнения финального рендеринга в 3ds max оказывается значительно выше, если сердцем системы является процессор семейства Pentium. Очевидно, что микроархитектура Core, предполагающая обработку четырёх, а не трёх команд за такт, более приспособлена для тяжёлой вычислительной работы.



Такой же вывод можно сделать и при измерении скорости компьютерного моделирования процесса свёртывания белков, выполняемого клиентом популярной системы распределённых вычислений Folding@Home.



Не лучше для двухъядерных процессоров AMD обстоит дело и со скоростью работы в Adobe Photoshop. Athlon X2 поколения K10 (Stars) хоть и увеличили своё быстродействие по сравнению с предшественниками, для успешной конкуренции с процессорами Intel с микроархитектурой Core этого всё ещё недостаточно. Впрочем, откровением для наших читателей это не является: Photoshop, 3ds max и Folding@Home давно зарекомендовали себя как задачи, неблагоприятные для любых процессоров, предлагаемых компаний AMD.



Ещё одним таким приложением является Excel, счёт в котором выполняется процессорами Intel почти в два раза быстрее. Кстати, Excel относится и к тем приложениям, в которых новые Athlon X2 7850 и 7750 проигрывают в производительности и своим предшественникам с микроархитектурой K8.



Не порадуют приверженцев продукции компании AMD и результаты в WinRAR. При переходе к новой архитектуре архивация стала выполняться процессорами этого производителя медленнее. В результате, если ранее в тестах WinRAR процессоры Athlon X2 смотрелись значительно лучше конкурирующих предложений Intel, то теперь речь идёт лишь о мизерном преимуществе.

Энергопотребление

Процессоры Phenom, выпускавшиеся по 65-нм технологическому процессу, не могли похвастать хорошими показателями экономичности. По этому параметру они существенно проигрывали даже четырёхъядерным процессорам Intel, оснащённым 65-нм ядрами. Теперь же AMD предлагает нам сопоставить то же самое ядро старых Phenom, правда, усечённое до двухъядерного варианта, с современными 45-нм процессорами Intel, в основе которых лежит изначально двухъядерный полупроводниковый кристалл. Совершенно очевидно, что ничего хорошего из этого не получится, и исход сравнения энергопотребления Athlon X2 и Pentium предрешён. Тем не менее, мы решили всё-таки взглянуть на цифры, чтобы оценить «масштабы бедствия».

Приводимые ниже цифры представляют собой полное энергопотребления тестовых платформ в сборе (без монитора) «от розетки». Во время измерений нагрузка на процессоры создавалась 64-битной версией утилиты LinX 0.5.8. Кроме того, для правильной оценки энергопотребления в простое мы активировали все энергосберегающие технологии: C1E, Cool"n"Quiet и Enhanced Intel SpeedStep.



В состоянии покоя активируются все процессорные технологии энергосбережения, поэтому энергопотребление систем различается не так сильно. Тем не менее, превосходство процессоров, ядра которых производятся по более современному технологическому процессу, очевидно даже в этом случае.



Под нагрузкой же картина усугубляется. Соперничать по характеристике «производительность на ватт» с Pentium бесполезно, недаром эти процессоры так часто используются в качестве основы HTPC. Системы на базе Athlon X2 с 65-нм ядром проигрывают им более чем ощутимо, разница достигает десятков ватт, поэтому, если энергопотребление и тепловыделение системы для вас не безразличны, на двухъядерных процессорах AMD можно смело поставить крест.

Разгон

Фиаско, которое терпят процессоры Athlon X2 при сопоставлении их энергопотребления с энергопотреблением конкурирующих предложений, сопровождается и плачевными результатами разгона. Виной тому, естественно, всё то же старое 65-нм ядро Kuma, которое уже неоднократно подтверждало свою враждебность разгону.

В данном случае мы проверили разгонные возможности серии Athlon X2 7000, попытавшись достичь максимальной тактовой частоты в системе со старшим в модельном ряду процессором Athlon X2 7850. Разгон проводился на той же тестовой платформе, что и тесты производительности. В качестве системы охлаждения был использован воздушный кулер Scythe Mugen.

Впрочем, даже использование сравнительно мощного кулера и повышение напряжения питания процессора со штатных 1,3 до 1,475 В не позволило добиться стабильной работы на частоте выше, чем скромные 3,25 ГГц.


Поэтому тот факт, что процессоры Athlon X2 7850 и 7750 относятся к серии Black Edition и потому имеют незаблокированный множитель – утешение слабое. В реальности эти процессоры оказываются способны лишь на небольшое увеличение частоты при разгоне, не превышающее 20-25 %.

Другое дело Intel Pentium. Лежащее в основе этих моделей 45-нм ядро Wolfdale является одним из лучших вариантов в плане разгона на сегодняшний день. В результате, повышение напряжения питания с 1,25 до 1,45 В дало нам возможность без особых осложнений разогнать процессор Pentium E5400 до частоты 4,0 ГГц с использованием для отвода тепла того же Scythe Mugen.


Следует подчеркнуть, что невысокая частота FSB, используемая процессорами Pentium в номинальном режиме, играет на руку оверклокерам. Так как двухъядерные процессоры Intel лишены свободного множителя, орудовать при разгоне приходится исключительно частотой шины. Но даже в нашем случае, когда частота процессора в разгоне была увеличена почти на 50 %, частота FSB достигла лишь 297 МГц, что, вне всяких сомнений, под силу любым материнским платам, включая и недорогие продукты, основанные на «урезанных» наборах логики, например, Intel P43.

Таким образом, разгонять Pentium лишь немногим сложнее, чем процессоры Athlon X2, относящиеся к серии Black Edition. А вот результат их разгона оказывается куда весомее: на фоне семейства Pentium мы бы вообще не стали причислять Athlon X2 к процессорам, способным вызвать интерес у энтузиастов.

Выводы

Если тестирование производительности и способно оставить какие-то вопросы о том, какой из двухъядерных процессоров стоимостью в районе 2-3 тысяч рублей следует считать оптимальным выбором, то измерение энергопотребление и тесты на разгон отметают всякие сомнения. С сожалением мы вынуждены констатировать, что компания AMD сегодня предлагает неконкурентоспособные двухъядерные модели, уступающие процессорам Pentium практически по всем потребительским качествам.

Но даже если сосредоточиться только на быстродействии и закрыть глаза на всё остальное, выводы от этого вряд ли поменяются. Во многих приложениях Athlon X2 серии 7000 заметно уступают конкурентам, число же задач, где они демонстрируют лучшую, чем Pentium E5000, производительность, невелико. Именно поэтому предлагаемые сегодня компанией AMD двухъядерные процессоры способны заинтересовать хоть кого-то только лишь в одном случае – когда речь идёт об обновлении старой Socket AM2 системы. Собирать же новый компьютер, выбирая за основу Athlon X2, пусть даже с микроархитектурой K10 (Stars), совершенно иррационально.

Иными словами, ответ на вопрос, поставленный нами в начале этой статьи, совершенно однозначен: сегодня Intel предлагает лучшие двухъядерные процессоры, даже если они относятся к серии Pentium, во многом дискредитировавшей себя в эпоху господства микроархитектуры NetBurst. Ведь современные процессоры Pentium не имеют ничего общего со старыми Pentium 4 и Pentium D, они обладают той же микроархитектурой, что и Core 2 Duo, отличаясь от них лишь размером L2-кэша, частотой шины и тактовой частотой. В результате, современная серия Pentium Dual-Core выглядит весьма соблазнительно, предлагая отличное сочетание цены, производительности и энергопотребления. И плюс к тому, процессоры Pentium – это прекрасный плацдарм для оверклокерских экспериментов.

Но всё-таки на этом мы бы не стали ставить финальную точку в рассмотрении двухъядерных процессоров. Дело в том, что уже через две недели нас ожидает встреча с принципиально новыми двухъядерными моделями AMD, которые будут использовать в своей основе современные ядра, выпускаемые по 45-нм технологическому процессу. И эти процессоры, известные сегодня под кодовыми именами Callisto и Regor, очевидно, будут противопоставлены более дорогим двухъядерным процессорам Intel, чем Pentium. Хочется надеяться, что их соперничество с интеловскими конкурентами окажется более успешным. По крайней мере, определённые предпосылки к этому есть: перспективные процессоры не просто получат новые ядра, производимые с использованием более современного техпроцесса, но и смогут похвастать более высокими частотами, большим объёмом кэш-памяти и поддержкой DDR3 SDRAM.

Другие материалы по данной теме


Новый степпинг Intel Core i7: знакомимся с i7-975 XE
Intel Core 2 Duo под ударом: обзор процессора AMD Phenom II X3 720 Black Edition
Знакомимся с Socket AM3: обзор процессора AMD Phenom II X4 810

Инструкция

Необходимо помнить при этом, что процесс разгонки процессора довольно опасен и при отсутствии должной аккуратности и внимательности может привести к нестабильной работе, сбоям и даже к выходу системы из строя. Если вы новичок в теме оверклокинга (от англ. overclocking - разгон) вам необходимо разобраться с инструкцией к вашему процессору и другому оборудованию, желательно также найти перемычки/джамперы/пункты меню BIOS, отвечающие за частоту FSB, шины памяти, коэффициента умножения, делителя для PCI и AGP.

«Начинка» процессора AMD Athlon 64 X2 представляет собой кристалл, объединяющий в себе два ядра, каждое из которых обладает собственным кэшем L2. Для процессоров AMD Athlon актуальным является , основанный на увеличении коэффициента умножения.

Для тестирования процессора после разгонки вам понадобится программа S&M или подобная ей. Ее легко можно найти в интернете. Скачайте программу и установите ее.

Процесс разгонки начинается в BIOS. Для входа в BIOS нажмите клавишу DEL при начальной стадии загрузки системы. Откройте вкладку Power Bios Setup, в ней выберите пункт Memory Frequency и установите значение DDR400 (200Mhz). Снижение частоты памяти позволит вам снизить уровень лимитирования разгона процессора. Далее сохраните изменения с помощью опции Save changes and exit и перезагрузите компьютер.

После перезагрузки вновь зайдите в BIOS. Откройте вкладку Advanced Chipset Features и выберите пункт DRAM Configuration. В открывшемся окне в каждом пункте, вместо Auto, установите значения, которые находятся справа от знака slash (/). Этим вы ещё дальше отодвинете предел стабильной работы для вашей памяти.

Снова выйдите в меню Advanced Chipset Features и найдите пункт HyperTransport Frequency. Этот параметр также может называться HT Frequency или LDT Frequency. Выберите его и уменьшите частоту до 400 или 600 МГц (х2 или х3). Далее перейдите в меню Power Bios Setup, выберите пункт Memory Frequency и установите значение DDR200 (100Mhz). Снова сохраните настройки (Save changes and exit). После перезапуска - снова в BIOS.

Начинается самая интересная часть - непосредственно разгон процессора. Откройте меню Power Bios Setup, выберите CPU Frequency. Далее вам необходимо выбрать пункт, который, в зависимости от версии BIOS, может иметь названия CPU Host Frequency, CPU/Clock Speed или External Clock. Повысьте значение с 200 до 250 MHz - этим вы непосредственно разгоняете процессор. Снова сохраните настройки и загрузите операционную систему. Запустите программу S&M и в главном меню нажмите кнопку «Начать». Если в результате проверки система покажет высокую стабильность, увеличьте значение CPU Host Frequency еще на несколько пунктов и снова проведите . Повторяйте действия до тех пор, пока не найдете оптимальный баланс между разгоном системы и ее стабильностью. Вы достигли цели - ваш процессор разогнан.

Обратите внимание

Не забывайте контролировать температуру процессора, очень нежелательно превышать 60°.

Источники:

  • как разогнать процессор amd athlon 64 x2
  • Ситуация со старшими Socket 939 Athlon 64 FX/Athlon 64 X2

Процесс разгона процессора – процедура не такая уж и сложная, как может показаться на первый взгляд. В процессе выполнения этой задачи следует соблюдать некоторые меры предосторожности и быть очень внимательным, чтобы не переборщить и не «убить» системную плату.

Вам понадобится

  • Инструкция к материнской плате компьютера, утилиты для проведения анализа и теста системы (например Everest), термопаста для процессора (может понадобиться в некоторых случаях), программа для разгона процессора (в случае программного разгона процессора).

Инструкция

Перед тем, как приступить непосредственно к процедуре разгона , необходимо изучить некоторую техническую документации, а именно инструкцию, прилагаемую к материнской плате. Необходимо это для того, чтобы найти в BIOS, соответствующие разделы.

Затем следует определиться, каким их способов будет выполняться процедура. Существует два способа – программный (при помощи специальных программ, предназначенных для этого) и аппаратный (способ разгона посредствам стандартных средств BIOS). Программный способ разгона процессора в данной статье рассматриваться не будет, ввиду того, что с программами, как правило, идут подробные инструкции.

Перед началом разгона необходимо проверить состояние . В случае, если она , ее необходимо заменить. Затем нужно почистить и обеспечить поступление как можно большего количества воздуха в системный блок (для этого одна из боковых крышек). Затем необходимо зайти в BIOS (делается это при помощи нажатия клавиши F2 или Del при загрузке системы). Теперь в Биосе необходимо найти функцию, определяющую частоту работы памяти, и установить ее минимальное значение (делается это для того, чтобы процесс разгона процессора не лимитировался памятью). Находиться эта функция может в разделах, которые к разгону процессора или к разгона и тайминга памяти, в большинстве случаев она носит одно из приведенных названий: Advanced Chipset Features, либо Memclock index value, или Advanced, или POWER BIOS Features, либо System Memory Frequency, или же Memory Frequency.

Далее заходим в меню Frequency/Voltage Control (POWER BIOS Features, либо JumperFree Configuration, или?Guru Utility – другие варианты названия). Здесь необходимо найти пункт, определяющий значение частоты FSB (варианты названия пункта: CPU Host Frequency, либо CPU/Clock Speed,или External Clock). После того, как нужный пункт , его нужно плавно повышать. Вот здесь необходимо проявить внимательность и терпение. При повышении показаний пункта не нужно увеличивать их на много, а по чуть-чуть. После каждого увеличения необходимо сохранить настройки (соответствующий запрос из Биоса) и перезагрузить компьютер. После этого нужно при помощи определенных утилит проверить, разогнался ли , а также стабильность работы системы.

Видео по теме

Разгон («оверклокинг») процессора подразумевает программное или аппаратное изменение качества его работы. Производители интегральной электроники (AMD, Intel и др.) во избежание произвольного увеличения тактовой частоты ставят ограничители и снимают свои продукты с гарантийного обслуживания. Пользователи в свою очередь хотят почти за бесплатно заставить работать железо на грани возможного. Поэтому имеет смысл на примере процессора AMD Athlon ознакомиться с некоторыми нюансами типичного «оверклокинга».

Вам понадобится

  • Компьютер, процессор AMD Athlon, дополнительный кулер, программы Everest Ultimate Edition и CPU-Z

Инструкция

В первую очередь, подготовьте систему. Позаботьтесь об охлаждении процессора Athlon. Установите один для своевременного теплообмена с внешней средой. Иногда лишние 10-15° С уменьшают рабочие ресурсы этого процессора в два и более раза. Поэтому качественная вентиляция крайне необходима. В редких случаях энтузиасты даже срезают верхнюю часть системного корпуса и устанавливают еще один кулер для прохладного воздуха к основному вентилятору.

Загрузите программы Everest Ultimate Edition и CPU-Z последних версий. Они необходимы для тестов и мониторинга системы. После того как собрали все необходимые данные о и материнской плате, а также о рабочих характеристиках системы, перезагрузите компьютер.

При начальной загрузке нажмите «Delete» либо «F2» (в зависимости от того, какая у вас материнская плата). Настройте BIOS следующим образом: CPU Host Clock Control – (ручной режим); CPU Frequency – (частоту системной шины прибавляйте постепенно, по 10-15 MHz); HT Frequency – (частота обмена данными по шине HyperTransport); Set memory clock – (режим оперативной памяти – ручной); Memory clock – (оперативная ); System Voltage Control – (при выставлении ручного режима замигает надпись-предупреждение); CPU Voltage Control – (при слишком высоком значение процессор изнашивается ). Сохраните вышеупомянутые пропорции и перезагрузите компьютер.

После запуска дайте полностью загрузиться вашей операционной системе. Откройте программы CPU-Z и Everest Ultimate Edition и убедитесь в увеличении измененных в BIOS параметров и рабочей температуры процессора (с 32° до 40°). Стоит заметить, что для разных моделей материнских плат настройки будут незначительно отличаться. Поэтому будьте внимательны.

Видео по теме

Полезный совет

Аппаратные модификации сложнее и опаснее не только для процессора, но и для любого находящегося в системном блоке устройства. Поэтому, рискнуть и проверить максимальные возможности своего микропроцессора или осторожничать и обеспечить постоянную работу на высоких скоростях, решать вам.

Источники:

  • сравнительные характеристики процессоров AMD Athlon
  • как разогнать атлон

Разгон комплектующих (оверклокинг) позволяет получить от компьютера, куда большую производительность, чем есть изначально. Данную процедуру не рекомендуется проводить неопытным пользователям, чтобы не повредить детали компьютера.

Вам понадобится

  • - компьютер;
  • - программа S&M.

Инструкция

Далее перейдите в меню Power Bios Setup, выберите пункт меню Memory Frequency, установите значение DDR400 (200Mhz), чтобы разогнать процессор. Щелкните клавишу Esc, чтобы выйти из данного подменю. Затем перейдите к пункту AMD K8 Cool & Quiet, установите в нем значение Disable, если такая опция имеется. Далее сохраните изменения и перезагрузите компьютер. Для этого нажмите Escape, после появления сообщения о сохранении настроек введите Y, нажмите клавишу Enter.

Перезагрузите систему, снова зайдите в Bios, перейдите к вкладке вкладку Advanced Chipset Features, выберите опцию DRAM Configuration, эта вкладка предназначена для того, чтобі отредактировать параметры таймингов памяти. В каждой строчке замените значение Auto следующими числами: для опции HT Frequency – 3х, для пункта Power Bios Setup – DDR200 (100Mhz). Этот пункт содержит делитель частоты памяти. Снова сохраните изменения, выйдите из Bios, чтобы продолжить разгон процессора Amd, зайдите в Bios после перезагрузки компьютера.

Перейдите в пункт меню Power Bios Setup, далее выберите опцию CPU Frequency, повысьте значение параметра HTT до 250, можно и больше. Далее сохраните изменения, загрузите операционную систему. Запустите программу S&M, чтобы проверить стабильность процессора.

Перейдите в пункт «Настройки», установите следующие параметры теста: время «Долго» либо «Норма», далее Load – 100%, снимите все флажки во вкладке «Процессор», оставьте только тест CPU. Запустите тест. Если не возникает проблем, постепенно повышайте частоту, выполняя действие, описанное в начале данного шага. Таким образом, вы можете разогнать процессор Amd до оптимального значения.

Видео по теме

Совет 5: Как разогнать процессор intel pentium dual-core

Производительность большинства современных компьютеров можно увеличить без установки нового оборудования. Такой процесс называется «разгон». Выполнять его необходимо крайне аккуратно.

Вам понадобится

  • Программа Clock Gen.

Инструкция

Начинать лучше с разгона центрального процессора . Производительность этого устройства напрямую влияет на скорость работы всего компьютера. Все необходимые манипуляции можно выполнить через меню BIOS материнской платы. Перезагрузите компьютер и откройте это меню, нажав клавишу Delete.

Перейдите в меню Advanced Chipset Setup и найдите пункты, отвечающие за параметры работы центрального процессора . В данном случае вас интересует три параметра: напряжение, частота шины и множитель. Самый простой способ увеличить общую тактовую частоту работы ЦП – изменить показатель множителя. К сожалению, данный метод не всегда дает желаемый прирост производительности остальных устройств. Начните с увеличения частоты шины.

Поднимите этот показатель на 50-60 МГц. Будьте крайне внимательными при настройке двухъядерного процессора . Если система позволяет изменять параметры работы каждого ядра отдельно, то выбирайте идентичные значения. Это положительно скажется на работе ЦП. После увеличения частоты шины измените показатель напряжения. Лучше первоначально повысить уровень напряжения на 0.1-0.2 Вольт.

Вернитесь в главное меню BIOS и выделите пункт Save & Exit. Нажмите клавишу Enter и дождитесь перезагрузки компьютера. Установите утилиту Clock Gen для проверки состояния работы центрального процессора и оценки его производительности. Повторяйте алгоритм повышения частоты шины ЦП и проверки его работы до тех пор, пока утилита не выявит ошибок.

Установите оптимальные параметры. Проверяйте температуру процессора , чтобы предотвратить перегрев данного устройства. Для этого используйте утилиты Everest или Speed Fan. При помощи второй программы настройте работу кулеров, чтобы обеспечить максимальное охлаждение персонального компьютера.

Почти каждый пользователь смартфона на базе Android сталкивался с такой проблемой, как «зависание» телефона, если открыть сразу несколько приложений или задать смартфону несколько задач одновременно. А если любимый телефон не может справиться с понравившейся новой игрушкой? - огорчению нет предела. С этой задачей поможет справиться разгон процессора Android до более высокой частоты.

Оригинальный смартфон на Android имеет встроенный процессор от компании Linux. Он адаптирован специально под OC Android и изменение частоты не предусмотрено производителем. Поэтому разгонять процессор нужно с помощью специальных программ. Самыми простыми по работе и интерфейсу являются программы SetCPU и Antutu CPU Master. Эти программы можно легко скачать в Google Play. Чтобы использовать их необходимо иметь Root–права.

Разгон процессора с помощью SetCPU

Когда приложение SetCPU загрузится, на экране смартфона появится окно, в котором необходимо выбрать режим сканирования устройства. Режима всего два: «рекомендуемый» - для обычных пользователей и «ручная настройка» - для более продвинутых пользователей. При выборе рекомендуемого режима сканирования, программа сразу выдает базовую частоту и режим активности процессора. Повышаем значение частоты в два раза. Выбираем режим работы процессора ondemand и ставим галочку напротив «set on boot». Ставя галочку напротив «set on boot», мы подтверждаем наши действия и система сможет сразу принять настройки после перезагрузки. Повышать максимальную частоту лучше всего в несколько этапов. По прошествии нескольких дней необходимо повторить процедуру, тогда максимальная частота повысится в 4 раза, причинив наименьший вред устройству.

Разгон процессора с помощью Antutu CPU Master Pro

Эта программа имеет бесплатную версию, что выгодно отличает ее от платной SetCPU. Интерфейс программы практически аналогичен SetCPU. При ее запуске на экране появляется окно программы с указанием максимальной и минимальной частоты процессора. Внизу представлена шкала с ползунком для регулировки этих частот.

Для того чтобы смартфон хорошо справлялся с 3D играми с высококачественной графикой и быстрым геймплеем необходимо увеличить максимальную частоту процессора. Для повышения скорости работы интерфейса и приложений нужно увеличить минимальную частоту процессора.

Разгон процессора на Android довольно опасен. Наиболее безопасным для смартфона является увеличение частоты до 30-40%, так как при этом не сильно увеличивается напряжение на процессоре. В любом случае при увеличении частоты процессора смартфон будет быстрее расходовать заряд аккумулятора.

Видео по теме

Длительное время Advanced Micro Devices, подобно Cyrix, производила центральные процессоры 286, 386 и 486, которые были основаны на разработках Intel. К5 был первым независимо созданным х86 процессором, на который AMD возлагала большие надежды.

Однако, покупка компанией AMD основанного в Калифорнии конкурента весной 1996 года, кажется, создала возможность лучше подготовиться к своей следующей атаке на Intel. К6 начал жизнь как Nx686, будучи переименованным после приобретения NextGen. Серия ММХ-совместимых процессоров К6 была запущена в середине 1997 года, за несколько недель до Cyrix 6х86МХ, и сразу была одобрена пользователями.

Изготовленный по 5-слойной 0.35-мкм технологии, К6 был почти на 20 % меньше, чем Pentium Pro и при этом содержал на 3.3 миллионов транзисторов больше (8.8 против 5.5 миллионов). Большинство этих дополнительных транзисторов находилось в кэше первого уровня на 64 Кбайт (на кэш команд 32 Кбайт и на кэш данных 32 Кбайт). Это равносильно четырем Pentium Pro или двум Pentium ММХ и Pentium 2.

Центральный процессор К6 поддерживал технологию ММХ Intel, включая 57 новых х86 команд, разработанных для развития мультимедийного программного обеспечения. Как и Pentium Pro, К6 был многим обязан классическим технологиям RISC. Используя суперскалярную микроархитектуру AMD RISC86, чип декодировал каждую х86-инструкцию в ряд более простых действий, которые могли быть обработаны, используя типичные принципы RISC - такие, как выполнение вне естественного порядка, переименование регистров, предсказание переходов, спекулятивное исполнение, опережающая выборка данных.

Центральный процессор К6 начинал с версий 166.200 и 233 МГц. Уровень его производительности был очень схож с Pentium Pro соответствующих частот с его максимальным 512 Кбайт кэшем второго уровня. Общее с чипом Cyrix MX (но в несколько меньшей степени) - работа с плавающей запятой - была областью относительной слабости по сравнению с Pentium Pro или Pentium 2. Однако проникновению процессора на рынок в конце 1997 - начале 1998 года препятствовали проблемы, которые возникли у AMD при перемещении ее нового производственного 0.25-мкм процесса из лабораторий на заводы-изготовители. Это привело к падению производства центральных процессоров на 200 и 233 МГц, задержке введения чипа 266 МГц и отмене чипа 300 МГц.

Процессор AMD К6-2

Процессоры AMD К6-2 с 9.3 миллионами транзисторов производились по 0.25-микронной технологии AMD. Процессор был упакован в 100 МГц Sирег7-совместимую, 321-контактную керамическую плату (ceramic pin grid array (CPGA) package).

K6-2 включает инновационную эффективную микроархитектуру RISC86, большой (64 Кбайт) кэш первого уровня (двухпортовый кэш данных на 32 Кбайт, кэш команд на 32 Кбайт с дополнительным предрасшифровывающим кэшем на 20 Кбайт), а также улучшенный модуль работы с плавающей запятой. Эффективная производительность при его запуске в середине 1998 года была оценена в 300 МГц, к началу 1999 года самым быстрым из доступных процессоров была версия 450 МГц.

Трехмерные возможности К6-2 представляли другое важное достижение. Они были воплощены в AMD технологии 3DNow!, как новый набор из 21 команды, который дополнял стандартные команды ММХ, уже включенные в архитектуру К6, что ускоряло обработку трехмерных приложений.

Процессор AMD K6-3

В феврале 1999 года AMD объявила о начале выпуска партии 400 МГц AMD К6-lll процессора под кодовым названием «Sharptooth» и опробовала 450 МГц версию. Ключевой особенностью этого нового процессора была инновационная разработка - «Трехуровневый кэш».

Традиционно процессоры персональных компьютеров использовали два уровня кэша:

  • кэш первого уровня (L1), который обычно расположен на кристалле;
  • кэш второго уровня (L2), который мог располагаться либо вне центрального процессора, на материнской плате или слоте, либо непосредственно на чипе центрального процессора.

Общее эмпирическое правило при проектировании подсистемы кэша - чем больше и быстрее кэш, тем выше производительность (ядро центрального процессора может быстрее получить доступ к инструкциям и данным).

Признавая выгоды большого и быстрого кэша в удовлетворении потребностей приложений, все более требовательных к производительности персональные компьютеры, «Трехуровневый кэш» компании AMD вводил архитектурные новшества кэша, разработанные для увеличения производительности персонального компьютера на основе платформы Super7:

  • внутренний L2-кэш (256 Кбайт), работающий на полной скорости процессора AMD-K6-3 и дополняющий кэш L1 (64 Кбайт), который был стандартен для всего семейства процессоров AMD-K6;
  • многопортовый внутренний кэш, позволяющий одновременное 64-битовое чтение и запись как кэшу L1, так и L2;
  • первичную процессорную шину (100 МГц), обеспечивающую соединение с резидентной кэш памятью на системной плате, расширяемой от 512 до 2048 Кбайт.

Таблица основных характеристик процессоров AMD

Тип процессора Архитектура Год выпуска Кодовое наименование Количество транзисторов, млн Ядро, мм L1 -кэш, Кбайт L2-кэш, Кбайт
AMD K5 K5 1996 SSA/5 4.3 271-161 8+16 Внешн.
1996 Godot 4.3 181 8+16 Внешн.
AMD К6 К6 1997 Nx686 (Model 6) 8.8 162 32+32 Внешн.
1998 Little Foot 8.8 88 32+32 Внешн.
K6-2 1998-2001 Chompers 9.3 81 64 Внешн.
К6 3 1999 Sharptooth 21.3 118 64 256
Athlon К7 1999 Argon 22.0 184 128 512
2000 Pluto 22.0 102 128 512
2000-2001 Thunderbird 37.0 120 64+64 256
Duron 2000-2001 Spitfire 25.0 100 64(|) + 64(D) 64-128
2001-2002 Morgan 25.18 106 128 64
2003 Applebred 37.2 85 128 64
Athlon ХР/МР 2001-2002 Palomino 37.5 130 128 256
2002 Thoroughbred 37.2 85 128 256
2003-2004 Barton 54.3 101 64+64 512
Sempron К7 2004 Thorton 54.3 101 128 256
2004 Thoroubred 37.2 85 128 256
2005 Winchester 68.5 84 128 128
Sempron К7 2005 Palermo 68-75 84 64+64 128-256
2006 Manila 103 81 128 128-256
Athlon 64 К8 2003-2004 Clawhammer 105.9 193 128 512-1024
2004 Newcastle 68.5 144 128 512
2004 Winchester 68.5 84 128 512
2005 Venice 76 84 128 512
2005 San Diego 114 115 128 512-1024
2006 Orleans 129 125 128 512
2006 Manchester 154 147 128 512
Opteron 2003 Sledgehammer 64+64 1024
2005 Venus, Troy, Athens 64+64 1024
Athlon 64 x 2 2-ядерные 2005 Manchester 154 147 128 x 2 512 x 2
2005 Toledo 233 199 128 x 2 512 x 2
2006 Windsor 243 220 128 x 2 512 x 2
2006 Brisbane 153.6 183 128 x 2 1024 x 2
Тип процессора Архитектура Размер минимальной структуры, мкм Тактовая частота шины, МГц Тактовая частота процессора, МГц Потребляемая мощность, Вт Интерфейс
AMD K5 K5 0.5-0.35 50-66 75-100 11-15 Socket 5/7
0.35 60-66 90-115 12-16 Socket 5/7
AMD К6 К6 0.35 CMOS 66 166-300 13-28 Socket 7
0.25 66 200-300 13-28 Socket 7
K6-2 0.25 66-100 266-550 15-30 Super7(321 p)
К6 3 0.25 100 400-450 18-30 Super7
Athlon К7 0.25 200 500-700 36-54 Slot A(575 p)
0.18 200 550-950 31-62 Slot A
0.18 200 700-1.4 ГГц 38-72 Socket A/Slot A
Duron 0.18 200 600-950 27-41 Socket A (Socket 462)
0.18 200 900-1.3 ГГц 44-60 S 462
0.13 266 1.4-1.8 57 S 462
Athlon ХР/МР 0.18 266 1.4-1.7 62-72 Socket 462
0.13 266 1.4-2.25 49-74 S 462
0.13 266-400 1.86-2.33 66-77 Socket A
Sempron К7 0.13 333 1.5-2.0 62 S 754/S 939
0.13 333 1.5-2.0 62 S462
0.09 400 1.6 62 S 754
Sempron К7 0.09 400 1.6-1.8 59-64.0 Socket А/ Socket 754
0.09 400 1.6-2.0 35-62 AM2
Athlon 64 К8 0.13 400 1.8-2.4 89 S 754
0.09 400 1.6-2.4 89 S754
0.09 400 1.8-2.2 67 S 939
0.09 400 2.0-2.4 16-89 S 754
0.09 400 2.2 89 S 939
0.09 400 1.8-2.4 35-62 AM2
0.09 400 2.0-2.2 67 S 939
Opteron 0.13 800/НТ 1.4-2.4 55-95 S 940
0.09 1000/НТ 1.6-3.0 55-95 S 940
Athlon 64 x 2 2-ядерные 0.09 667-800 2.0-2.4 69-110 S939
0.09 2.0-2.4 89-110 S 939
0.09 2.0-2.6 65-89 AM2
0.09 2.0-2.8 65-89 AM2

Проект многопортового внутреннего кэша процессора AMD-K6-3 позволил как кэшу L1 (64 Кбайт), так и кэшу L2 (256 Кбайт) выполнять одновременное 64-битовое чтение и запись операций за один такт процессора. В дополнение к этому многопортовому проекту кэша ядро процессора AMD-K6-I11 было в состоянии получить доступ к кэшам L1 и L2 одновременно, что увеличивало общую пропускную способность центрального процессора.

Процессор AMD Athlon

Выпуск процессора Athlon летом 1999 года был наиболее удачным ходом AMD. Это позволило им гордиться тем, что они произвели первый процессор седьмого поколения (у него было достаточно много радикальных архитектурных отличий от Pentium ll/lll и К6-3, чтобы заслужить название процессора следующего поколения), и это означало также, что они вырвали технологическое лидерство у Intel.

Древнегреческое слово Athlon означает «трофей», или «игры». Athlon - процессор, с помощью которого AMD надеялась увеличить реальное конкурентоспособное присутствие в корпоративном секторе, помимо его традиционного преимущества на потребительском рынке и рынке трехмерных игр. Ядро размещается на кристалле в 102 квадратных миллиметров и содержит приблизительно 22 миллиона транзисторов.

Основные элементы ядра Athlon

Многократные декодеры

Три полных декодера переводят х86-команды в макрооперации (MacroOPs) с фиксированной длиной для более высокой пропускной способности команд и увеличения мощности обработки. Вместо того чтобы выполнять х86 команды с длиной 1-15 байтов, процессор Athlon выполняет макрооперации фиксированной длины.

Блок контроля команд

Как только макрооперация расшифрована, за цикл посылаются до трех макроопераций блоку управления инструкциями (ICU). Это буфер перенаправления макроопераций с 72 входами (ROB), который управляет выполнением каждой макрооперации в целом, осуществляет переименование регистра для операндов, управляет любыми условиями исключения и действиями команды. ICU посылает макрооперацию планировщику исполнения.

Конвейеры исполнения

Athlon содержит 18-разрядный планировщик макроопераций и 36-разрядный планировщик операций мультимедиа и ПТ. Эти планировщики распределяют MacroOPs по девяти независимым конвейерам - три для вычислений с ФТ, три для вычисления адресов и три для выполнения команд ММХ, 3DNow! и операций ПТ для х87.

Супер скалярный блок плавающей точки FPT

Предыдущие центральные процессоры AMD были недостаточно производительными при работе с ПТ по сравнению с Intel. К этому недостатку более чем ответственно отнеслись в Athlon, который характеризуется суперскалярной архитектурой, включающей три конвейера выполнения команд с ПТ вне естественного порядка - FMUL (перемножение с ПТ), FADD (сложение с ПТ) и FSTORE (запись с ПТ). «Суперскалярность» означает способность центрального процессора выполнять более одной команды за такт процессора. Athlon же может выполнять одну операцию над 32-битовым числом с ПТ за такт процессора, что дает производительность в 2.4 Гфлопс при частоте в 600 МГц.

Прогнозирование переходов

Процессор Athlon предлагает сложную динамическую логику прогнозирования ветвления, чтобы минимизировать или устранить задержки из-за команд перехода, широко распространенные в программном обеспечении х86.

Системная шина

Системная шина Athlon - первая системная шина на 200 МГц для х86-платформ. Основанная на протоколе Digital Alpha EV6, первичная шина (FSB) - потенциально расширяемая до 400 МГц и более и, в отличие от разделяемой шины SMP (Symmetric Multi-Processing) проекта Pentium 3, использует архитектуру «точка-точка», чтобы обеспечить широкую полосу пропускания для одно- и многопроцессорных х86 платформ.

Архитектура кэша

Архитектура кэша Athlon существенно превосходит обычные центральные процессоры шестого поколения - полноценный кэш первого уровня 128 Кбайт, в 4 раза больший, чем у Pentium 3, и быстродействующий 64-битовый контроллер вторичного кэша 2-го уровня, поддерживающий от 512 Кбайт до 8 Мбайт.

Расширенный 3D Now

В ответ на Streaming SIMD Extensions (Intel Pentium 3) реализация 3DNow! в Athlon была модернизирована добавлением 24 новых команд к исходной 21 инструкции 3DNow!

Athlon был первоначально доступен в диапазонах скорости 500.550 и 600 МГц и 650 МГц немного позднее (все изготовлены по 0.25-мкм технологии). К концу 1999 года AMD еще более повысила частоту: его ядро К75 (750 МГц) является первым процессором, построенным с использованием алюминиевой 6-слойной технологии 0.18-мкм компании AMD.

Утверждение о том, что это был самый быстрый х86 совместимый центральный процессора тысячелетия, спорно, поскольку Intel быстро ответила объявлением 800 МГц Pentium 3. Однако AMD вскоре вернула лидерство в 2000 году выпуском версий на 800 и 850 МГц и преуспела в опережении Intel в преодолении барьера 1 ГГц буквально через несколько недель.

Процессор Thunderbird

В середине 2000 года была выпущена улучшенная версия Athlon с кодовым названием «Thunderbird».

Технология 0.18-мкм, кэш память 2-го уровня (L2) размером в 256 Кбайт расположена на плате процессора и работает на полной частоте процессора (первые процессоры Athlon имели кэш L2, работавшую на меньших частотах, например при частоте в 1 ГГЦ, память L2 работала на 330 МГц).

Интерфейсы - 462-контактный Socket А и Slot А. Частоты от 0.75 до 1 ГГц. Размещение 256 Кбайт памяти на кристалле привело к увеличению его размера до 120 квадратных миллиметров (102 квадратных миллиметров для ядра). Однако он меньше исходного (0.25-micron) К7 Athlon, который занимает 184 квадратных миллиметров. Добавление 256 Кбайт к L2-кэшу на кристалле весьма увеличивает число транзисторов. Центральный процессор Thunderbird включает 37 миллионов транзисторов, то есть 15 миллионов добавились для размещения кэша L2.

Осенью 2000 года был выпущен чипсет AMD760, обеспечивающий поддержку для памяти DDR SDRAM РС1600 (200 МГц FSB) и РС2100 (266 МГц FSB). Другие особенности - AGP 4-х, 4 порта USB , адресация памяти 8 Гбайт на 4 DIMM и поддержка АТА-100. С этого момента процессоры Athlon выпускались только для разъемов Socket А. Последние из процессоров Athlon/Thunderbird были выпущены летом 2001 года, достигнув частоты 1.4 ГГц.

Процессор Duron

В середине 2000 года был выпущен процессор Duron, предназначенный для дома и офиса. Название происходит от латинского «durare» - «вечный», «длительный». Кэш-память L1 (128 Кбайт) и L2 (64 Кбайт) размещается на плате. Первичная системная шина работает на частоте 200 МГц. Поддерживается улучшенная технология 3DNow! Технология 0.18-мкм, частоты 600.650 и 700 МГц. Интерфейс - 462-контактный разъем Socket А.

Процессор Palomino (Athlon ХР - EXtra Performance)

Процессор выполнен по 0.18-мкм технологии с использованием медных проводников на плате (вместо алюминия), содержит 37.5 миллионов транзисторов на кристалле в 128 квадратных миллиметров. Достигнуто понижение на 20 % энергопотребления сравнительно с Thunderbird. Введен ряд новшеств, в совокупности именуемых AMD как «QuantiSpeed Architecture»:

  • введение дополнительного буфера - буфера быстрого преобразования адреса (БПА, TLB - Processor`s Transition Lookaside Buffer). Это дополнительная кэш память, расположенная между L1 и L2. В частности, TLB содержит данные, которые используются для перевода виртуальных адресов в физические и наоборот;
  • поддержка SSE технологии Intel. В Palomino добавлены еще 52 новые команды SIMD по отношению к ранее имевшимся. Удвоено количество исходных 21 SIMD-команд, реализующих «3DNow!», и получена технология «Enhanced 3DNow!» («3DNow! Professional»);
  • использование технологии упаковки OPGA (organic PGA) для замещения CPGA (ceramic PGA), которая использовалась ранее. Использование пластмасс вместо керамики технологичнее, платы оказываются легче и обладают лучшими тепловыми свойствами. Кроме того, можно плотнее размещать навесные элементы, что уменьшает наводки и помехи. OPGA размещаются на уже известном разъеме Socket А.

Процессор Morgan

Morgan первоначально представлял собой ядро Palomino c удаленными 3/4 кэша L2 (64 Кбайт вместо 256 Кбайт). Размер кристалла - 106 квадратных миллиметров, число транзисторов - 25.18 миллионов. Напряжение питания было изменено с 1.6 до 1.75 В.

Процессор Thoroughbred

Летом 2002 года AMD начала поставлять первый процессор с 0.13-мкм технологией и медными соединениями. Площадь кристалла - 80 квадратных миллиметров (у его предшественников - 128 квадратных миллиметров). Питание - 1.65 В, размеры кэша на кристалле - 128 Кбайт для L1 и 256 Кбайт для L2, разъем - Socket А. Эквивалентная производительность Athlon ХР - 2400+ или 2600+.

Однако ядро Thoroughbred рассматривать как простую переделку Palomino с учетом новых норм технологического процесса все же не совсем верно. Thoroughbred по своей внутренней структуре значительно отличается от Palomino, в чем можно убедиться по микроснимкам процессорных ядер.

  • а - Palomino.
  • б - Thoroughbred.

Процессор Sempron

Летом 2004 года AMD объявила о выходе центрального процессора семейства Sempron. Первоначально задуманный как преемник успешного центрального процессора Duron и прямой конкурент процессору Celeron D (Intel, 90 нм), диапазон применения Sempron фактически перекрыл диапазон Athlon AMD ХР и поставил фирмы, выпускающие настольные и мобильные персональные компьютеры, перед выбором - либо Sempron, либо Athlon 64.

Все первые центральные процессоры базировались на 130 нанометровой технологии AMD. Наиболее мощные образцы (3100+) выпускаются в формате интерфейса Socket 754 (Athlon 64 - в формате Socket 939). Другие участники семейства - от 2 ГГц (2800+) до 1.5 ГГц (2200+) - используют Socket А.

В дальнейшем Sempron предполагается перевести на 90 нанометровую технологию и интерфейс Socket 939.

Архитектура процессора К8

Эта архитектура используется во всех современных серверных, настольных и мобильных процессорах AMD (Opteron, Athlon 64 и Athlon 64 Х2). Первым из процессоров К8 являлся Hammer (середина 2000 года).

Одним из главных новшеств К8 является 64-разрядная архитектура х86-64 ISA. Примером 64-разрядных процессоров (IA-64) является Intel Itanium. Однако между 64-разрядными архитектурами процессоров Itanium и К8 мало общего. Itanium - процессор, несовместимый с системой команд х86, тогда как К8, напротив, таковым является.

Стратегия AMD на 64 бита (х86-64) заключается в следующем - за основу взято производительное х86-ядро и расширен набор инструкций для возможности адресации 64-битового пространства памяти. Особенности архитектуры х86-64 (AMD64):

  • обратная совместимость с инструкциями х86;
  • 8 новых 64-битовых РОН плюс 64-битовые версии прежних 8 РОН х86 (доступны лишь в 64-битовом «длинном» режиме);
  • поддержка SSE и SSE2 помимо восьми новых регистров SSE2;
  • увеличен объем адресуемой памяти для приложений, работающих с большими объемами данных (доступно лишь в «длинном» режиме);
  • высокая производительность 32-битовых приложений плюс поддержка появляющихся 64-битовых приложений, хороший вариант переходного процессора.

Таблица режимов процессоров К8

Режим Подрежим Назначение Адресуемая память, Гбайт Операционная система Примечания
«Преемственности» (Legacy Mode) Нет Работа со всеми 16- или 32-бито-выми х86-прило-жениями 4 32-раз-рядная Используются только 32 разряда в 64-разрядных регистрах. Дополнительные 64-разрядные регистры не задействованы. Перекомпиляция ПО не требуется
«Длинный» (Long Mode) Полный (64 разряда) Работа с 64-разрядными приложениями (инструкции х86-64) Более 4 64-разрядная Используются 64-разрядные основные и дополнительные регистры. Требуется перекомпиляция старых программ
Совместимости (Compatibility Mode) Запуск 32-разрядных программ в 64-разрядной операционной системы 2 в 32-битовой операционной системе. 4 в 64-битовой операционной системе Используются только 32 разряда е 64-разрядных регистрах. Дополнительные 64-разрядные регистры не задействованы. Перекомпиляция ПО не требуется

Основные недостатки:

  • процессор продолжает поддерживать архитектуру х86, которая достаточно устарела;
  • новые РОН можно использовать лишь в 64-битовом режиме, что не позволяет повысить производительность 32-битовых приложений посредством улучшения архитектуры системы команд.

Для реализации возможности работы как с 32-битовыми, так и с 64-битовыми приложениями процессоры К8 поддерживают два режима работы - Long Mode и Legacy Mode. В режиме Long Mode также предусмотрено два подрежима - 64-битовый и Compability mode (режим совместимости).

Некоторые прочие особенности К8

  • контроллер памяти интегрирован в сам процессор. Традиционно он располагается в «северном мосте» чипсета на системной плате. Собственно, контроллер памяти - это основной функциональный блок «северного моста» (в чипсетах Intel его так и называют - МСН, Memory Controller Hub); встроенный порт («линк») шины HyperTransport - универсальной шины межчипового соединения. В процессорах К8 Opteron может быть до 3-4 линков НТ, что позволяет комбинировать их в кластерные структуры

  • архитектура К8 разработана с перспективой создания многоядерных процессоров и многопроцессорных систем: если центральные процессоры Intel Хеоn может продемонстрировать лишь 11 процентов увеличения производительности при переходе к двум процессорам, то в случае с Opteron оно составляет 24 процента;
  • усовершенствован блок предсказания переходов - для увеличения точности он содержит историю 16 000 переходов, а также 2000 адресов назначения.

Исполнение инструкций на конвейере К8 начинается с блока выборки инструкций. За один такт блок выбирает из кэша 16 байт данных и выделяет из них от одной до трех инструкций х86 - сколько в выбранных данных поместилось. Поскольку средняя длина команды х86 составляет 5-6 байт, то, как правило, блоку удается выбрать три команды за такт.

На втором такте конвейера выбранные команды распределяются по трем блокам декодирования инструкций. Самые сложные команды отправляются в декодер сложных команд (VectorPath), другие - в декодеры простых команд (DirectPath).

Исходные х86-инструкции на завершающих этапах работы декодера К7/К8 переводятся в макрооперации, или МакОПы (mOPs). Большинству х86-инструкций соответствует одна МакОП, некоторые преобразуются в 2 или 3, а наиболее сложные, например деление или тригонометрические, - в последовательность из нескольких десятков МакОП. Макрооперации имеют фиксированную длину и регулярную структуру.

Условно можно считать что в определенный момент МакОп может «расщепляться» на две микрооперации (МкОП). Как правило, в К7 и в К8 МакОП содержит две МкОП - одну для АЛУ (ALU) (или блока ПЗ - FPU), другую - для УВА (устройства вычисления адреса, AGU - Address Generation Unit).

За счет конвейеризации возможны ситуации, когда одновременно в разных блоках процессора будут выполняться до двух десятков команд - и в К7, и в К8 имеется десять исполнительных устройств - три ALU, три FPU, три AGU и отдельный блок умножения.

Подобно тому, как объединение двух отдельных МкОП в одну МакОП дает явные преимущества, точно так же дела обстоят и с самими МакОП - практически везде они выступают не в виде самостоятельных единиц, а в виде группы. Группу образуют три МакОП, которые одновременно запускаются на параллельные каналы.

Вся дальнейшая работа идет не с одиночными, а с «тройками» МакОП («линиями», line). Такая «линия», с точки зрения центрального управляющего блока процессора - ICU (Instruction Control Unit) воспринимается как единое целое: все основные действия выполняются именно над «линиями», в первую очередь выделение внутренних ресурсов.

Сгенерированные «линии» от декодеров по одной за такт поступают в блок управления командами - Instructions Control Unit (ICU), где подготовленные к исполнению линии накапливаются в специальной очереди (24 линии).

Из очереди в 24 линии по три МакОП в каждой ICU выбирает в наиболее удобной для исполнения последовательности (одна-три МакОП) и пересылает их либо на АЛУ, либо на блок ПЗ в зависимости от типа микрооперации. В случае АЛУ микрооперации сразу же попадают в очередь планировщика (шесть элементов по три МакОП), который подготавливает необходимые для исполнения микрооперации ресурсы, дожидается их готовности и только потом отправляет. Причем при исполнении одной МакОП на самом деле может происходить исполнение сразу двух действий (МкОП).

Процессор Athlon 64х2

AMD снова оказалась впереди Intel, продемонстрировав действующий экспериментальный образец двухъядерного процессора летом 2004 года и поэтому Intel вызвала всеобщее удивление, все же выйдя первой на рынок с двухъядерным процессором весной 2005 года Однако, мало того, что AMD 64 Х2 был только короткое время позади Pentium Extreme Edition и Pentium D по датам выхода на рынок, он значительно опережал их по показателям эффективности.

Athlon 64 Х2 включает все возможности, заложенные в единственном ядре Athlon 64 (такие, как HyperTransport и Enhanced Virus Protection - EVP). Когда центральный процессор работает под операционной системой Windows ХР (SP2), EVP интерпретирует области системной памяти как «только данные», так что любой находящийся здесь фрагмент кода может быть либо прочитан, либо записан, но не может быть выполнен как код программы. Тем самым EVP действует как профилактическая мера против обычных злонамеренных вирусов, локализуя и обезвреживая их.

Основная архитектура ядра Х2 по существу та же, как и у Athlon 64. Различие в том, что новые чипы, размещаемые на единственном кристалле в 199 квадратных миллиметров, причем каждый содержит более чем 233 миллиона транзисторов, изготовлены по 90 нанометровой технологии AMD.

Таким образом, спецификации первоначально объявленного диапазона Athlon 64 Х2 были эквивалентны таковым из существующих центральных процессоров на 3500+, 3700+, 3800+ и 4000+ с изменением кэша L2 и тактовой частоты. Модели с 512 Кбайт кэша на ядре базируются на двойном ядре «Winchecter», в то время как версии версии кэша L2 на 1 Мбайт используют дизайн «Toledo». К лету 2005 года диапазон был расширен с появлением нового чипа (3800 +).

Athlon 64 X2 устарел, как физически, так и морально. Такие устройства
были представлены в далеком 2006 году. Это были первые многоядерные решения
компании АМД. Оценить их важность на сегодняшний день не представляет особого труда. Их выпуск стал первым эволюционным шагом данного производителя в сфере высокотехнологичных решений. Именно он существенно повлиял на развитие компьютерной индустрии. Сейчас уже никого не удивишь 8-ми ядерным ЦПУ. Это уже стало нормой. А вот тогда подобное решение произвело своеобразную революцию, плодами которой мы и по сей день пользуемся.

История

Первым 2-х ядерным ЦПУ в нише домашних ПК стал продукт извечного конкурента АМД - компании "Интел". Это был процессор "пентиум" с индексом ХЕ 840. Устанавливался он в который был в то время основным у данного производителя. Увеличение количества ядер вызвало необходимость снижения Это привело к снижению производительности в однопоточных приложениях. Аналогичный результат получил и продукт его постоянного конкурента - процессор AMD Athlon 64 X2. Но за счет того, что такие решения были изначально ориентированы под многопоточность, эффект был не настолько сильным, как у основного конкурента. По мере появления софта, который способен полностью загрузить два физических ядра, расстановка сил постепенно изменилась. И такие решения постепенно вытеснили ЦПУ с 1-им ядром из обихода. Да, сейчас еще продаются подобные устройства, но они большей часть используются для офисных ПК, где на первый план выходит работа в офисных приложениях и низкая стоимость готовой системы. А для игровых систем рекомендуется брать 4, 6 или 8 ядер. В крайнем случае можно остановить выбор и на 2-х ядрах, но это существенно скажется на качестве игры не в лучшую сторону. Такой расклад был заложен более 5 лет назад, и один из его основоположников - процессор AMD Athlon 64 X2.

Модификации

Изначально такие ЦПУ устанавливались в который был самым прогрессивным у данного производителя на то время. Сразу было представлено 4 модели процессора. Младшим из них стал именно AMD Athlon 64 X2 4200. Остальные имели схожее название, но отличались индексом. Появились модификации 4400, 4600, а флагман этой линейки имел индекс 4800. Также обязательным атрибутом обозначений этих ЦПУ был «+», который добавлялся в конце наименования. Частота базовой модели составляла 2200 МГц. Также среди архитектурных особенностей стоит отметить кеш, размер которого у младшей модели был 1Мб. При этом на каждое из ядер приходилась лишь его половина. Остальные модификации могли похвастаться более высокой частотой и увеличенным размером кеша.

Более поздние решения

Чуть позже на рынке появились и более производительные продукты. Логическим развитием в этом направлении стало появление таких ЦПУ под платформу АМ2. Размер кеша у них был аналогичным, как у предшественника. А вот частоты существенно выросли и составили, например, для ЦПУ модели AMD Athlon 64 X2 5000 - 2700 МГц. Также еще одним нововведением стала поддержка новой памяти, которая называлась DDR2. Но, в принципе, у этих процессоров, срок между появлением которых составляет чуть меньше 2-х лет, много общего.

Заключение

Процессор AMD Athlon 64 X2 является одним из родоначальников эры параллельных вычислений на одном кристалле. Если внимательно к нему присмотреться, то можно с легкостью найти много общего с новыми решениями АМД. И тут ничего удивительного, ведь они построены по схожей архитектуре, которая за последние 5 лет претерпела определенные изменения, но также и сохранила общие черты.