Шпаргалка по общей электронике и электротехнике. Особенности исполнения магнитопровода трансформатора Действующего значения эдс первичной обмотки трансформатора

Принцип действия трансформатора основан на явлении электромагнитной индукции (взаимоиндукции). Взаимная индукция состоит в наведении ЭДС в индуктивной катушке при изменении тока другой катушке.

Под воздействием переменного тока в первичной обмотке в магнитопроводе создается переменный магнитный поток

который пронизывает первичную и вторичную обмотки и индуктирует в них ЭДС

где – амплитудные значения ЭДС.

Действующее значение ЭДС в обмотках равны

; .

Отношение ЭДС обмоток называется коэффициентом трансформации

Если , то вторичная ЭДС меньше первичной и трансформатор называ­ется понижающим, при– трансформатор повышающий.

Вопрос 8 . Векторная диаграмма холостого хода идеального трансформатора.

Так как мы рассматриваем идеальный трансформатор, т.е. без рассеяния и потерь мощности, то ток х.х. является чисто намагничивающим – , т.е. он создаёт намагничивающую силу, которая создаёт поток, где– магнитное сопротивление сердечника, состоящее из сопротивления стали и сопротивления в стыках сердечника. Как амплитуда, так и форма кривой тока зависят от степени насыщения магнитной системы. Если поток изменяется синусоидально, то при ненасыщенной стали кривая тока холостого хода практически тоже синусоидальна. Но при насыщении стали кривая тока всё более отличается от синусоиды (рис. 2.7.) Кривую тока х.х. можно разложить на гармоники. Так как кривая симметрична относительно оси абсцисс, то ряд содержит гармонические только нечётного порядка. Первая гармоника токаi ( 01) совпадает по фазе с основным потоком. Из высших гармоник сильнее всего выражена третья гармоника тока i ( 03) .

Рис 2.7 Кривая тока Х.Х

Действующее значение тока холостого хода:

. (2.22)

Здесь I 1 m , I 3 m , I 5 m – амплитуды первой, третьей и пятой гармоник тока холостого хода.

Так как ток холостого хода отстаёт от напряжения на 90  , то активная мощность, потребляемая идеальным трансформатором из сети, тоже равна нулю, т.е. идеальный трансформатор потребляет из сети чисто реактивную мощность и намагничивающий ток.

Векторная диаграмма идеального трансформатора представлена на рис. 2.8.

Рис. 2.8. Векторная диаграмма идеального трансформатора

Вопрос 9 Векторная диаграмма холостого хода реального трансформатора.

В реальном трансформаторе существуют рассеяние, и потери в стали и в меди. Эти потери покрываются за счёт мощности Р 0 , поступающей в трансформатор из сети.

где I 0а – действующее значение активной составляющей тока холостого хода.

Следовательно, ток холостого хода реального трансформатора имеет две оставляющие: намагничивающую – , создающую основной потокФ и совпадающую с ним по фазе, и активную:

Векторная диаграмма реального трансформатора представлена на рис. 2.9.

Обычно , поэтому на величину тока холостого хода эта составляющая влияет мало, а больше влияет на форму кривой тока и его фазу. Кривая тока холостого хода явно несинусоидальна, и сдвинута во времени относительно кривой потока на угол, называемый углом магнитного запаздывания

При замене действительной кривой тока холостого хода эквивалентной синусоидой, можно написать уравнение напряжений в комплексной форме, где все величины изменяются синусоидально:

Учитывая, что ЭДС рассеяния,

Рис. 2.9. Векторная диаграмма реального трансформатора

Рис. 2.11. Векторная диаграмма напряжений трансформатора, режим холостого хода

ЛР 5. Исследование режимов работы однофазного трансформатора

Назвать основные элементы конструкции однофазного трансформатора.

Однофазный трансформатор состоит из магнитопровода (сердечника) и двух обмоток, уложенных на нём. Обмотка, подсоединяемая к сети, называется первичной, а обмотка, к которой подсоединяется приемник электроэнергии - вторичная. Магнитопровод выполняется из ферромагнитного материала и служит для усиления магнитного поля и по нему замыкается магнитный поток.

Особенности исполнения магнитопровода трансформатора.

Магнитопровод трансформатора находится в магнитном поле переменного тока, а, следовательно, в процессе работы происходит его непрерывное перемагничивание и в нем индуктируются вихревые токи, на что затрачивается энергия, которая идет на нагрев магнитопровода. Для уменьшения потерь энергии на перемагничивание магнитопровод изготавливают из магнитомягкого ферромагнетика, который имеет малую остаточную индукцию и легко перемагничивается, а для уменьшения вихревых токов, а, следовательно, и степени нагрева магнитопровода, магнитопровод набирают из отдельных пластин электротехнической стали изолированных друг относительно друга.

3. Как определяются ЭДС обмоток трансформатора, от чего они зависят?

ЭДС обмоток трансформатора определяются по формулам:Е 1 =4,44*Фм*f*N 1 и Е 2 =4,44*Фм*f*N 2

где Фм – максимальное значение магнитного потока,

f - частота переменного тока,

N 1 и N 2 – соответственно количество витков первичной и вторичной обмоток.

Т.о., ЭДС обмоток трансформатора зависят от магнитного потока, частоты переменного тока и количества витков обмоток, а соотношение между ЭДС зависит от соотношения количества витков обмоток.

4. Назвать виды потерь энергии в трансформаторе, от чего они зависят?

При работе трансформатора в нем возникают два вида потерь энергии:

1. Магнитные потери – это потери энергии, возникающие в магнитопроводе. Эти потери пропорциональны напряжению сети. Энергия в данном случае затрачивается на перемагничивание магнитопровода и на создание вихревых токов и преобразуется в тепловую энергию, выделяемую в магнитопроводе.

2. Электрические потери – это потери энергии, возникающие в обмотках трансформатора. Вызываются эти потери токами, протекающими в обмотах, и определяются: Рэ = I 2 1 R 1 + I 2 2 R 2.

Т.о. электрические потери пропорциональны квадратам токов протекающих в обмотках трансформатора. В данном случае энергия затрачивается на нагрев обмоток.

5. Как определяются магнитные потери в трансформаторе, от чего они зависят?

Для определения магнитных потерь в трансформаторе проводится опыт ХХ, при котором ток во вторичной обмотке равен нулю, а в первичной обмотке ток не превышает 10% от I ном . Т.к. при проведении этого опыта электроприемник отключен, то вся мощность, измеренная ваттметром, включенным в цепь первичной обмотки трансформатора, является мощностью электрических и магнитных потерь. Магнитные потери пропорциональны напряжению, подводимому к первичной обмотке. Т.к. при проведении опыта ХХ к первичной обмотке подводится U ном , то и магнитные потери будут такими же, как и в номинальном режиме. Электрические потери зависят от токов в обмотках, а т.к. ток во вторичной обмотке равен нулю, а в первичной обмотке ток не превышает 10% от номинального то и электрические потери незначительны. Т.о., пренебрегая незначительными электрическими потерями, считаем, что вся мощность, измеренная при проведении опыта ХХ, является мощностью магнитных потерь.



6. Как определяются электрические потери в трансформаторе, от чего они зависят?

Для определения электрических потерь в трансформаторе проводится опыт КЗ. Для этого необходимо снизить напряжение на вторичной обмотке до нуля, замкнуть вторичные зажимы между собой и повышать напряжение до тех пор, пока в обмотках установятся номинальные токи. Напряжение, при котором в обмотках устанавливаются номинальные токи, называют напряжением КЗ. Как правило, напряжение КЗ незначительно и не превышает 10% от номинального.

Электрические потери в трансформаторе в ходе опыта КЗ определятся:Рэ= I 2 1ном R 1 + I 2 2ном R 2.

Т.к. при проведении опыта КЗ в обмотках трансформатора устанавливаются номинальные токи, то и электрические потери в них будут такими же как и в номинальном режиме. Магнитные потери пропорциональны напряжению на первичной обмотке, а т.к. в опыте КЗ к первичной обмотке подводится незначительное напряжение, то и магнитные потери незначительны. Т.о., пренебрегая незначительными магнитными потерями, можно считать, что вся мощность измеренная в опыте КЗ является мощностью электрических потерь.

В 1876 г. П.И. Яблочков предложил пользоваться трансформатором для питания свечей. В дальнейшем конструкции трансформаторов разрабатывал другой русский изобретатель, механик И.Ф. Усагин, который предложил применять трансформаторы для питания не только свечей Яблочкова, но и других потребителей электрической энергии.

Трансформатор представляет собой электрический аппарат, основанный на явлении взаимоиндукции и предназначенный для преобразования переменного тока одного напряжения в переменный ток другого напряжения, но той же самой частоты. Простейший трансформатор имеет стальной сердечник и две обмотки, изолированные как от сердечника, так и друг от друга.

Обмотка трансформатора, которая подключается к источнику напряжения, называется первичной обмоткой, а та обмотка, к которой подключаются потребители или линии передач, ведущие к потребителям, называется вторичной обмоткой.

Переменный ток, проходя по первичной обмотке, создает переменный магнитный поток, который сцепляется с витками вторичной обмотки и наводит в них ЭДС.

Так как магнитный поток переменный, то индуктированная ЭДС во вторичной обмотке трансформатора также переменная и частота ее равна частоте тока в первичной обмотке.

Переменный магнитный поток, проходящий по сердечнику трансформатора, пересекает не только вторичную обмотку, но и первичную обмотку трансформатора. Поэтому в первичной обмотке также будут индуктироваться ЭДС.

Величины ЭДС, индуктирующихся в обмотках трансформатора, зависят от частоты переменного тока, числа витков каждой обмотки и величины магнитного потока в сердечнике. При определенной частоте и неизменном магнитном потоке величина ЭДС каждой обмотки зависит только от числа витков этой обмотки. Эту зависимость между величинами ЭДС и числами витков обмоток трансформатора можно выразить формулой: ?1 / ?2 = N1 / N2, где?1 и?2 – ЭДС первичной и вторичной обмоток, N1 и N2 – числа витков первичной и вторичной обмоток.

Разница между ЭДС и напряжением так мала, что зависимость между напряжениями и числами витков обеих обмоток можно выразить формулой: U1 / U2 = = N1 /N2. Разница между ЭДС и напряжением в первичной обмотке трансформатора становится особенно малой тогда, когда вторичная обмотка разомкнута и ток в ней равен нулю (холостая работа), а в первичной обмотке протекает только небольшой ток, называемый током холостого хода. При этом напряжение на зажимах вторичной обмотки равно наводимой в ней ЭДС.

Число, показывающее, во сколько раз напряжение в первичной обмотке больше (или меньше) напряжения во вторичной обмотке, называется коэффициентом трансформации и обозначается буквой k. k = U1 / U2 ? N1 / N2.

Номинальное напряжение обмоток высшего и низшего напряжений, указанное на заводском щитке трансформатора, относится к режиму холостого хода.

Трансформаторы, которые служат для повышения напряжения, называют повышающими; коэффициент трансформации у них меньше единицы. Понижающие трансформаторы понижают напряжение; коэффициент трансформации у них больше единицы.

Режим, при котором вторичная обмотка трансформатора разомкнута, а на зажимы первичной обмотки подано переменное напряжение, называется холостым ходом или холостой работой трансформатора.

Возьмем катушку с ферромагнитным сердечником и вынесем отдельным элементом омическое сопротивление обмотки как это показано на рисунке 1.


Рисунок 1. Катушка индуктивности с ферромагнитным сердечником

При подаче переменного напряжения e c в катушке, cогласно закону электромагнитной индукции, возникает ЭДС самоиндукции е L .

(1) где ψ — потокосцепление, W — число витков в обмотке, Ф — основной магнитный поток.

Потоком рассеяния пренебрегаем. Приложенное к катушке напряжение и наведённая ЭДС уравновешиваются. По второму закону Кирхгофа для входной цепи можно записать:

е c + е L = i × R обм, (2)

где R обм — активное сопротивление обмотки.

Поскольку е L >> i × R обм, то падением напряжения на омическом сопротивлении пренебрегаем, тогда е c ≈ −e L . Если напряжение сети гармоническое, е с = E m cosωt , то:

(3)

Найдем из этой формулы магнитный поток. Для этого перенесем количество витков в обмотке в левую часть, а магнитный поток Ф в правую:

(4)

Теперь возьмем неопределённый интеграл от правой и левой частей:

(5)

Так как магнитопровод считаем линейным, то в цепи протекает только гармонический ток и нет постоянного магнита или постоянной составляющей магнитного потока, то постоянная интегрирования с = 0 . Тогда дробь перед синусом является амплитудой магнитного потока

(6)

откуда выразим амплитуду входной ЭДС

E m = Ф m × W × ω (7)

Его действующее значение равно

(8) (9)

Выражение (9) называют основной формулой трансформаторной ЭДС , которая справедлива только для гармонического напряжения. При негармоническом напряжении её видоизменяют и вводят так называемый коэффициент формы, равный отношению действующего значения к среднему:

(10)

Найдем коэффициент формы для гармонического сигнала, при этом среднее значение находим на интервале от 0 до π/2

(11)

Тогда коэффициент формы равен и основная формула трансформаторной ЭДС принимает окончательный вид:

(12)

Если сигнал является последовательностью прямоугольных импульсов одинаковой длительности (меандр), то амплитудное, действующее и среднее значения за половину периода равны между собой и его k ф = 1 . Можно найти коэффициент формы и для других сигналов. Основная формула трансформаторной ЭДС будет справедлива.

Построим векторную диаграмму катушки с ферромагнитным сердечником. При синусоидальном напряжении на зажимах катушки её магнитный поток тоже синусоидальный и отстаёт по фазе от напряжения на угол π/2 как показано на рисунке 2.

  • Вопрос 1 Конструкция сердечников трансформатора.
  • Вопрос 2 Конструкция обмоток трансформатора.
  • Вопрос 3 Конструкция бака трансформатора.
  • Вопрос 4 Охлаждение трансформаторов.
  • Вопрос 5 Принцип действия трансформатора.
  • Вопрос 6 Холостой ход трансформатора.
  • Вопрос 7 . Эдс обмоток трансформатора.
  • Вопрос 8 . Векторная диаграмма холостого хода идеального трансформатора.
  • Вопрос 9 Векторная диаграмма холостого хода реального трансформатора.
  • Вопрос 10 Уравнение намагничивающих токов трансформатора.
  • 11 Режим нагрузки реального трансформатора. Основные уравнения.
  • 12 Векторная диаграмма нагруженного реального трансформатора.
  • 13 Автоматическое саморегулирование трансформатора.
  • 14 Внешняя характеристика трансформатора.
  • 15 Конструкция магнитной системы 3-х фазного трансформатора.
  • 16. Приведенный трансформатор. Пересчет параметров вторичной обмотки к числу витков первичной.
  • 17. Т- образная схема замещения трансформатора.
  • 18. Расчет параметров схемы замещения трансформатора по его паспортным данным.
  • Вопрос 19. Способы соединения обмоток 3-х фазного трансформатора.
  • 20. Составляющие прямой обратной и нулевой последовательности эдс обмоток трансформатора.
  • Вопрос 21. Понятие группы соединения обмоток однофазного трансформатора.
  • Вопрос 22. Понятие группы соединения обмоток трехфазного трансформатора
  • Вопрос 23. Опыты холостого хода и короткого замыкания трансформатора. Кпд трансформатора.
  • 24 Условия параллельной работы трансформаторов:
  • №25 Анализ влияния несовпадения коэффициентов трансформации на уравнительный ток при включении
  • Вопрос №26. Влияние несовпадения группы соединения трансформаторов на уравнительный ток при параллельном включении.
  • 27 Параллельная работа трансформаторов
  • 28. Автотрансформатор
  • 29 Специальные типы трансформаторов
  • 30 Обозначение и паспортные данные
  • 31. Устройство трёхфазной асинхронной машины
  • 32 Конструкция ад с короткозамкнутым ротором
  • 33 Конструкция ад с фазным ротором
  • 34 Вращающееся магнитное поле
  • 35. Принцип действия асинхронной машины.
  • 36. Скольжение асинхронного двигателя.
  • 37. Регулирование частоты вращения асинхронных двигателей
  • 38. Механическая характеристика двигателя.
  • 39.Основные точки механической характеристики: критическое сколь­жение и частота, максимальный момент, пусковой момент, номинальный момент.
  • 40.Конструкция обмоток статора. Однослойные и двухслойные петле­вые обмотки.
  • 41. Обмотки статора. Однослойные и двухслойные волновые обмотки
  • 42. Схемы замещения асинхронной машины. Т-образные и г-образные схемы замещения
  • 43. Приведение обмотки ротора к обмотке статора.
  • 44. Механический момент и механическая мощность ад
  • 45. Схемы пуска асинхронного двигателя с короткозамкнутым ротором.
  • 46.Пуск двигателя с фазным ротором.
  • 47. Регулирование скорости вращения асинхронного двигателя с фазным ротором.
  • 48.Включение ад в однофазную цепь.
  • 49.Вращающееся магнитное поле двухфазного тока.
  • 50.Конденсаторные асинхронные двигатели.
  • 51. Асинхронные исполнительные двигатели
  • 52. Оператор поворота вектора
  • 53.Разложение 3-х фазного не синусоидального тока на вектора прямой, обратной и нулевой последовательности.
  • 54.Метод симметричных составляющих. Применение метода для ана­лиза несимметричных режимов. Однофазное кз. Метод симметричных составляющих.
  • 55.Потери мощности и кпд асинхронного двигателя.
  • 56.0. Двухклеточные и глубокопазные ад
  • 56.1. Глубокопазные двигатели
  • 56.2. Двухклеточные двигатели
  • 57.Рабочие характеристики.
  • 58. Динамическое торможение асинхронного двигателя.
  • 59. Торможение асинхронного двигателя методом противовключения.
  • 60.Магнитное поле и мдс катушек и катушечных групп обмоток статора
  • Вопрос 7 . Эдс обмоток трансформатора.

    Принцип действия трансформатора основан на явлении электромагнитной индукции (взаимоиндукции). Взаимная индукция состоит в наведении ЭДС в индуктивной катушке при изменении тока другой катушке.

    Под воздействием переменного тока в первичной обмотке в магнитопроводе создается переменный магнитный поток

    который пронизывает первичную и вторичную обмотки и индуктирует в них ЭДС

    где – амплитудные значения ЭДС.

    Действующее значение ЭДС в обмотках равны

    ; .

    Отношение ЭДС обмоток называется коэффициентом трансформации

    Если , то вторичная ЭДС меньше первичной и трансформатор называ­ется понижающим, при– трансформатор повышающий.

    Вопрос 8 . Векторная диаграмма холостого хода идеального трансформатора.

    Так как мы рассматриваем идеальный трансформатор, т.е. без рассеяния и потерь мощности, то ток х.х. является чисто намагничивающим – , т.е. он создаёт намагничивающую силу, которая создаёт поток, где– магнитное сопротивление сердечника, состоящее из сопротивления стали и сопротивления в стыках сердечника. Как амплитуда, так и форма кривой тока зависят от степени насыщения магнитной системы. Если поток изменяется синусоидально, то при ненасыщенной стали кривая тока холостого хода практически тоже синусоидальна. Но при насыщении стали кривая тока всё более отличается от синусоиды (рис. 2.7.) Кривую тока х.х. можно разложить на гармоники. Так как кривая симметрична относительно оси абсцисс, то ряд содержит гармонические только нечётного порядка. Первая гармоника токаi ( 01) совпадает по фазе с основным потоком. Из высших гармоник сильнее всего выражена третья гармоника тока i ( 03) .

    Рис 2.7 Кривая тока Х.Х

    Действующее значение тока холостого хода:

    . (2.22)

    Здесь I 1 m , I 3 m , I 5 m – амплитуды первой, третьей и пятой гармоник тока холостого хода.

    Так как ток холостого хода отстаёт от напряжения на 90  , то активная мощность, потребляемая идеальным трансформатором из сети, тоже равна нулю, т.е. идеальный трансформатор потребляет из сети чисто реактивную мощность и намагничивающий ток.

    Векторная диаграмма идеального трансформатора представлена на рис. 2.8.

    Рис. 2.8. Векторная диаграмма идеального трансформатора

    Вопрос 9 Векторная диаграмма холостого хода реального трансформатора.

    В реальном трансформаторе существуют рассеяние, и потери в стали и в меди. Эти потери покрываются за счёт мощности Р 0 , поступающей в трансформатор из сети.

    где I 0а – действующее значение активной составляющей тока холостого хода.

    Следовательно, ток холостого хода реального трансформатора имеет две оставляющие: намагничивающую – , создающую основной потокФ и совпадающую с ним по фазе, и активную:

    Векторная диаграмма реального трансформатора представлена на рис. 2.9.

    Обычно , поэтому на величину тока холостого хода эта составляющая влияет мало, а больше влияет на форму кривой тока и его фазу. Кривая тока холостого хода явно несинусоидальна, и сдвинута во времени относительно кривой потока на угол, называемый углом магнитного запаздывания

    При замене действительной кривой тока холостого хода эквивалентной синусоидой, можно написать уравнение напряжений в комплексной форме, где все величины изменяются синусоидально:

    Учитывая, что ЭДС рассеяния,

    Рис. 2.9. Векторная диаграмма реального трансформатора

    Рис. 2.11. Векторная диаграмма напряжений трансформатора, режим холостого хода