Полупроводниковые приборы. Транзисторы. Транзистор и биполярный транзистор, расчёт транзисторного каскада

Подборка справочных данных на отечественные биполярные транзисторы малой, средней и большой мощности. В основном производства советского союза



Полупроводниковые приборы малой мощности имеют допустимую мощность рассеяния в коллекторном переходе до 0,3 Вт . (Под мощностью в данной классификации подразумевается мощность, выделяемая на коллекторном переходе полупроводника) Отвод тепла от коллекторного перехода к корпусу у них происходит вдоль тонкой пластины базы, имеющей малую теплопроводность. Рассчитываются для работы без специальных теплоотводящих устройств (радиаторов).Все внешние выводы расположены по диаметру донышка и в обычно средний вывод является базовым, а эмиттерный расположен чкть ближе к базовому, чем коллекторный.

К этим полупроводникам относят приборы с рассеиваемой мощностью в интервале от 0,3 до 1,5 Вт

Для транзисторов большой мощности рассеиваемая мощность превышает 1,5 Вт.

Типы корпусов зарубежных и отечественных транзисторов

Корпус - это основная и самая габаритная часть конструкции абсолютно любого транзистора, выполняющая защитную функцию от внешних воздействий и используемая также для соединения с внешними схемами с помощью металлических выводов. Типы корпусов зарубежных транзисторов стандартизованы для простоты процесса изготовления и применения изделий в радиолюбительской практике. Число типовых транзисторов в настоящее время исчисляется сотнями.


Каждый полупроводниковый прибор, в том числе и транзистор, имеет свое уникальное обозначение, по которой можно его идентифицировать из кучи других радиокомпонентов и деталей.

Основным элементом двухпереходного биполярного транзистора является монокристалл полупроводника типа п или р, в котором с помощью примесей созданы три области с электронной и дырочной электропроводимостью, разделенные двумя p-n переходами (смотри рисунок в верхней части страницы). Если средняя область имеет электронную проводимость типа п, а две крайние дырочную типа р, то такой транзистор имеет структуру р-п-р в отличие от транзисторов п-р-п, имеющих среднюю область с дырочной, а крайние области с электронной проводимостями.

Средняя область 1 кристалла полупроводника с n-проводимостью называется базой. Одна крайняя область 2 с р-проводимостью, инжектирующая (эмиттирующая) неосновные носители заряда, называется эмиттером, а другая 3, осуществляющая экстракцию (выведение) носителей заряда из базы, - коллектором. База отделена от эмиттера и коллектора эмиттерным 4 и коллекторным 5 р-п-переходами. От базы 1, эмиттера 2 и коллектора 3 сделаны металлические выводы (Б, Э, К), которые проходят через изоляторы в дне корпуса.

Транзисторы изготовляют в герметичных металлостеклянных, металлокерамических или пластмассовых корпусах, а также без корпусов. Бескорпусные транзисторы защищены от влияния внешней среды слоем лака, смолы, легкоплавкого стекла и герметизируются совместно с устройством, в котором они предварительно монтируются. настоящее время большинство транзисторов, в том числе транзисторы интегральных схем, выполняют на основе кремния с плоскостным типом перехода. Применение точечных переходов из-за нестабильности работы ограничено. Базовая область транзисторов выполняется с очень малой толщиной (от 1 до 25 мкм). Различна степень легирования областей. Концентрация примесей в эмиттере на несколько порядков выше, чем в базе. Степень легирования базы и коллектора зависит от типа транзистора.

В рабочем режиме к электродам транзисторов подключают постоянные напряжения внешних источников энергии. Помимо постоянных напряжений, к электродам подводят сигналы, подлежащие преобразованию. В связи с этим различают входную цепь, в которую подводят сигнал, и выходную, в которой с нагрузки снимают сигнал. В зависимости от того, какой из электродов при включении транзистора является общим для входной и выходной цепей, различают схемы с общей базой ОБ, общим эмиттером ОЭ и общим коллектором ОК. В схеме с ОБ входной цепью является цепь эмиттера, а выходной - цепь коллектора. В схеме с ОЭ входной является цепь базы, а выходной- цепь коллектора. В схеме с ОК входной является цепь базы, а выходной - цепь эмиттера.


Физические процессы, протекающие в транзисторах со структурой р-п-р и п-р-п, одинаковы. В транзисторах п-р-п в отличие от транзисторов р-п-р подается напряжение обратной полярности и токи имеют противоположное направление.

В зависимости от полярности напряжений, приложенных к эмиттерному и коллекторному переходам, различают активный, отсечки, насыщения и инверсный режимы включения транзистора.

Активный режим используется при усилении слабых сигналов. В этом режиме на эмиттерный переход подается прямое, а на коллекторный- обратное напряжение. В активном режиме эмиттер инжектирует в область базы неосновные для нее носители, а коллектор производит экстракцию (выведение) неосновных носителей из базовой области.

В режиме отсечки к обоим переходам подводятся обратные напряжения, при которых ток через транзистор ничтожно мал. В режиме насыщения оба перехода транзистора находятся под прямым напряжением; в обоих переходах происходит инжекция носителей; транзистор превращается в двойной диод; ток в выходной цепи максимален при выбранном значении нагрузки и не управляется током входной цепи; транзистор полностью открыт.

В режимах отсечки и насыщения обычно используется транзистор в схемах электронных переключателей. В инверсном режиме меняют функции эмиттера и коллектора, подключив к коллекторному переходу прямое, а к эмиттерному--обратное напряжение. Однако из-за несимметрии структуры и различия концентрации носителей в областях коллектора и эмиттера инверсное включение транзистора неравноценно его нормальному включению в активном режиме.

Одним из значительных изобретений XX века по праву считается изобретение транзистора , пришедшего на замену электронным лампам.

Долгое время лампы были единственным активным компонентом всех радиоэлектронных устройств, хотя и имели множество недостатков. Прежде всего, это большая потребляемая мощность, большие габариты, малый срок службы и малая механическая прочность. Эти недостатки все острее ощущались по мере усовершенствования и усложнения электронной аппаратуры.

Революционный переворот в радиотехнике произошел, когда на смену устаревшим лампам пришли полупроводниковые усилительные приборы - транзисторы, лишенные всех упомянутых недостатков.

Первый работоспособный транзистор появился на свет в 1947 году, благодаря стараниям сотрудников американской фирмы Bell Telephone Laboratories. Их имена теперь известны всему миру. Это ученые - физики У. Шокли, Д. Бардин и У. Брайтен. Уже в 1956 году за это изобретение все трое были удостоены нобелевской премии по физике.

Но, как и многие великие изобретения, транзистор был замечен не сразу. Лишь в одной из американских газет было упомянуто, что фирма Bell Telephone Laboratories продемонстрировала созданный ею прибор под названием транзистор. Там же было сказано, что его можно использовать в некоторых областях электротехники вместо электронных ламп.

Показанный транзистор имел форму маленького металлического цилиндрика длиной 13 мм и демонстрировался в приемнике, не имевшем электронных ламп. Ко всему прочему, фирма уверяла, что прибор может использоваться не только для усиления, но и для генерации или преобразования электрического сигнала.

Рис. 1. Первый транзистор

Рис. 2. Джон Бардин, Уильям Шокли и Уолтер Браттейн. За сотрудничество в разработке первого в мире действующего транзистора в 1948 году они разделили Нобелевскую премию 1956 года.

Но возможности транзистора, как, впрочем, и многих других великих открытий, были поняты и оценены не сразу. Чтобы вызвать интерес к новому прибору, фирма Bell усиленно рекламировала его на семинарах и в статьях, и предоставляла всем желающим лицензии на его производство.

Производители электронных ламп не видели в транзисторе серьезного конкурента, ведь нельзя было так сразу, одним махом, сбросить со счетов тридцатилетнюю историю производства ламп нескольких сотен конструкций, и многомиллионные денежные вложения в их развитие и производство. Поэтому транзистор вошел в электронику не так быстро, поскольку эпоха электронных ламп еще продолжалась.

Рис. 3. Транзистор и электронная лампа

Первые шаги к полупроводникам

С давних времен в электротехнике использовались в основном два вида материалов - проводники и диэлектрики (изоляторы). Способностью проводить ток обладают металлы, растворы солей, некоторые газы. Эта способность обусловлена наличием в проводниках свободных носителей заряда - электронов. В проводниках электроны достаточно легко отрываются от атома, но для передачи электрической энергии наиболее пригодны те металлы, которые обладают низким сопротивлением (медь, алюминий, серебро, золото).

К изоляторам относятся вещества с высоким сопротивлением, у них электроны очень крепко связаны с атомом. Это фарфор, стекло, резина, керамика, пластик. Поэтому свободных зарядов в этих веществах нет, а значит нет и электрического тока.

Здесь уместно вспомнить формулировку из учебников физики, что электрический ток это есть направленное движение электрически заряженных частиц под действием электрического поля. В изоляторах двигаться под действием электрического поля просто нечему.

Однако, в процессе исследования электрических явлений в различных материалах некоторым исследователям удавалось «нащупать» полупроводниковые эффекты. Например, первый кристаллический детектор (диод) создал в 1874 году немецкий физик Карл Фердинанд Браун на основе контакта свинца и пирита. (Пирит - железный колчедан, при ударе о кресало высекается искра, отчего и получил название от греческого «пир» - огонь). Позднее этот детектор с успехом заменил когерер в первых приемниках, что значительно повысило их чувствительность.

В 1907 году Беддекер, исследуя проводимость йодистой меди обнаружил, что ее проводимость возрастает в 24 раза при наличии примеси йода, хотя сам йод проводником не является. Но все это были случайные открытия, которым не могли дать научного обоснования. Систематическое изучение полупроводников началось лишь в 1920 - 1930 годы.

На заре производства транзисторов основным полупроводником являлся германий (Ge). В плане энергозатрат он весьма экономичен, напряжение отпирания его pn - перехода составляет всего 0,1…0,3В, но вот многие параметры нестабильны, поэтому на замену ему пришел кремний (Si).

Температура, при которой работоспособны германиевые транзисторы не более 60 градусов, в то время, как кремниевые транзисторы могут продолжать работать при 150. Кремний, как полупроводник, превосходит германий и по другим свойствам, прежде всего по частотным.

Кроме того, запасы кремния (обычный песок на пляже) в природе безграничны, а технология его очистки и обработки проще и дешевле, нежели редкого в природе элемента германия. Первый кремниевый транзистор появился вскоре после первого германиевого - в 1954 году. Это событие даже повлекло за собой новое название «кремниевый век», не надо путать с каменным!

Рис. 4. Эволюция транзисторов

Микропроцессоры и полупроводники. Закат «кремниевого века»

Вы никогда не задумывались над тем, почему в последнее время практически все компьютеры стали многоядерными? Термины двухъядерный или четырехъядерный у всех на слуху. Дело в том, что увеличение производительности микропроцессоров методом повышения тактовой частоты, и увеличения количества транзисторов в одном корпусе, для кремниевых структур практически приблизилось к пределу.

Увеличение количества полупроводников в одном корпусе достигается за счет уменьшения их физических размеров. В 2011 году фирма INTEL уже разработала 32 нм техпроцесс, при котором длина канала транзистора всего 20 нм. Однако, такое уменьшение не приносит ощутимого прироста тактовой частоты, как это было вплоть до 90 нм технологий. Совершенно очевидно, что пора переходить на что-то принципиально новое.

Транзистор (transistor) – полупроводниковый элемент с тремя выводами (обычно), на один из которых (коллектор ) подаётся сильный ток, а на другой (база ) подаётся слабый (управляющий ток ). При определённой силе управляющего тока,как бы «открывается клапан» и ток с коллектора начинает течь на третий вывод (эмиттер ).


То есть транзистор – это своеобразный клапан , который при определённой силе тока, резко уменьшает сопротивление и пускает ток дальше (с коллектора на эмиттер).Происходит это потому, что при определенных условиях, дырки имеющие электрон, теряют его принимая новый и так по кругу. Если к базе не прилагать электрический ток, то транзистор будет находиться в уравновешенном состоянии и не пропускать ток на эмиттер.

В современных электронных чипах, количество транзисторов исчисляется миллиардами . Используются они преимущественно для вычислений и состоят из сложных связей.

Полупроводниковые материалы, преимущественно применяемые в транзисторах это: кремний , арсенид галлия и германий . Также существуют транзисторы на углеродных нанотрубках , прозрачные для дисплеев LCD и полимерные (наиболее перспективные).

Разновидности транзисторов:

Биполярные – транзисторы в которых носителями зарядов могут быть как электроны, так и «дырки». Ток может течь, как в сторону эмиттера , так и в сторону коллектора . Для управления потоком применяются определённые токи управления.

– распротранёные устройства в которых управление электрическим потоком происходит посредством электрического поля. То есть когда образуется большее поле – больше электронов захватываются им и не могут передать заряды дальше. То есть это своеобразный вентиль, который может менять количество передаваемого заряда (если полевой транзисторс управляемым p — n переходом). Отличительной особенностью данных транзисторов являются высокое входное напряжение и высокий коэффи­циент усиления по напряжению.

Комбинированные – транзисторы с совмещёнными резисторами, либо другими транзисторами в одном корпусе. Служат для различных целей, но в основном для повышения коэффициента усиления по току.

Подтипы:

Био-транзисторы – основаны на биологических полимерах, которые можно использовать в медицине, биотехнике без вреда для живых организмов. Проводились исследования на основе металлопротеинов, хлорофилла А (полученного из шпината), вируса табачной мозаики.

Одноэлектронные транзисторы – впервые были созданы российскими учёными в 1996 году . Могли работать при комнатной температуре в отличии от предшественников. Принцип работы схож с полевым транзистором, но более тонкий. Передатчиком сигнала является один или несколько электронов. Данный транзистор также называют нано- и квантовый транзистор. С помощью данной технологии, в будущем рассчитывают создавать транзисторы с размером меньше 10 нм , на основе графена .

Для чего используются транзисторы?

Используются транзисторы в усилительных схемах , лампах , электродвигателях и других приборах где необходимо быстрое изменение силы тока или положение вкл выкл . Транзистор умеет ограничивать силу тока либо плавно , либо методом импульс пауза . Второй чаще используется для -управления. Используя мощный источник питания, он проводит его через себя, регулируя слабым током.

Если силы тока недостаточно для включения цепи транзистора, то используются несколько транзисторов с большей чувствительностью, соединённые каскадным способом.

Мощные транзисторы соединённые в один или несколько корпусов, используются в полностью цифровых усилителях на основе . Часто им требуется дополнительное охлаждение . В большинстве схем, они работают в режиме ключа (в режиме переключателя).

Применяются транзисторы также в системах питания , как цифровых, так и аналоговых (материнские платы , видеокарты , блоки питания & etc ).

Центральные процессоры , тоже состоят из миллионов и миллиардов транзисторов, соединённых в определённом порядке для специализированных вычислений .

Каждая группа транзисторов, определённым образом кодирует сигнал и передаёт его дальше на обработку. Все виды и ПЗУ памяти, тоже состоят из транзисторов.

Все достижения микроэлектроники были бы практически невозможны без изобретения и использования транзисторов. Трудно представить хоть один электронный прибор без хотя бы одного транзистора.

В конце позапрошлого века немецкий химик К.А. Винклер открыл элемент, существование которого заранее было предсказано Д.И. Менделеевым. А 1 июля 1948 г. в подвале газеты «Нью-Йорк Таймс» появилась короткая заметка под заголовком «Создание транзистора». В ней сообщалось об изобретении «электронного прибора, способного заменить в радиотехнике обычные электровакуумные лампы».

Разумеется, первые транзисторы были германиевыми, и именно этот элемент произвел настоящий переворот в радиотехнике. Не будем спорить, выиграли ли ценители музыки при переходе от ламп к транзисторам - дискуссии эти уже успели порядком поднадоесть. Давайте лучше зададим себе другой, не менее актуальный вопрос: пошел ли на пользу звуку следующий виток эволюции, когда кремниевые приборы пришли на смену германиевым? Век последних был недолог, и они не оставили после себя, подобно лампам, ощутимого звукового наследия. Сейчас германиевые транзисторы не выпускаются ни в одной стране, и о них уже вспоминают крайне редко. А зря. Я считаю, что любой кремниевый транзистор, будь он биполярный или полевой, высокочастотный или низкочастотный, малосигнальный или мощный, менее пригоден для высококачественного звуковоспроизведения, чем германиевый. Для начала давайте рассмотрим физические свойства обоих элементов.*

* Публикуется по H.J.Fisher, Transistortechnik fur Den Funkamateur. Перевод А.В. Безрукова, М., МРБ, 1966.

Свойства Германий Кремний
Плотность, г/см 3 5,323 2,330
Атомный вес 72,60 28,08
Количество атомов в 1 см 3 4,42*10 22 4,96*10 22
Ширина запрещенной зоны, ЭВ 0,72 1,1
Диэлектрическая постоянная 16 12
Температура плавления, °С 937,2 1420
Теплопроводность, кал/см X сек X град 0,14 0,20
Подвижность электронов, см 2 /сек*В 3800 1300
Подвижность дырок, см 2 /сек*В 1800 500
Продолжительность жизни электрона, мксек 100 - 1000 50 - 500
Длина свободного пробега электрона, см 0,3 0,1
Длина свободного пробега дырки, см 0,07 - 0,02 0,02 - 0,06

Из таблицы видно, что подвижность электронов и дырок, продолжительность жизни электронов, а также длина свободного пробега электронов и дырок значительно выше у германия, а ширина запрещенной зоны ниже, чем у кремния. Известно также, что падение напряжения на переходе p-n составляет 0,1 - 0,3 В, а на n-p - 0, 6 - 0,7 В, из чего можно сделать вывод, что германий является гораздо лучшим «проводником», чем кремний, а следовательно, и каскад усиления на транзисторе p-n-p имеет значительно меньшие потери звуковой энергии, чем аналогичный на n-p-n. Возникает вопрос: почему же выпуск германиевых полупроводников был прекращен? Прежде всего потому, что по некоторым критериям Si намного предпочтительнее, поскольку может работать при температуре до 150 град. (Ge - 85), да и частотные свойства у него несравненно лучше. Вторая причина чисто экономическая. Запасы кремния на планете практически безграничны, в то время как германий - довольно редкий элемент, технология получения и очистки которого значительно дороже.

Между тем, для применения в домашней аудиотехнике упомянутые преимущества кремния абсолютно неочевидны, а свойства германия, наоборот, крайне привлекательны. Кроме того, в нашей стране германиевых транзисторов хоть завались, да и цены на них просто смешные.**

** Предвижу, что после выхода этой статьи цены на радиорынках могут подскочить, как это уже произошло с некоторыми типами ламп и микросхем - Прим. ред.

Итак, приступим к рассмотрению схем усилителей на германиевых полупроводниках. Но сначала несколько принципов, соблюдение которых исключительно важно для получения действительно высокого качества звучания.

  1. В схеме усилителя не должно быть ни одного кремниевого полупроводника.
  2. Монтаж производится объемным навесным способом, с максимальным использованием выводов самих деталей. Печатные платы значительно ухудшают звучание.
  3. Количество транзисторов в усилителе должно быть минимально возможным.
  4. Транзисторы следует отбирать попарно не только для верхнего и нижнего плеча выходного каскада, но и для обоих каналов. Стало быть, придется отобрать по 4 экземпляра с возможно близкими значениями h21э (не менее 100) и минимальным Iко.
  5. Сердечник силового трансформатора изготавливается из пластин Ш с сечением не менее 15 см 2 . Очень желательно предусмотреть экранную обмотку, которую следует заземлить.

Схема №1, минималистская

Принцип не нов, такая схемотехника была весьма популярна в шестидесятые годы. На мой взгляд, это чуть ли не единственная конфигурация бестрансформаторного усилителя, соответствующая аудиофильским канонам. Благодаря своей простоте позволяет добиться высокого качества звучания при минимальных затратах. Автором она была лишь адаптирована к современным требованиям High End Audio.

Настройка усилителя весьма проста. Сначала устанавливаем резистором R2 половину напряжения питания на «минусе» конденсатора С7. Затем подбираем R13 так, чтобы миллиамперметр, включенный в коллекторную цепь выходных транзисторов, показал ток покоя 40 - 50 мА, не больше. При подаче сигнала на вход следует убедиться в отсутствии самовозбуждения, хотя оно и маловероятно. Если все же на экране осциллографа заметны признаки ВЧ-генерации, попробуйте увеличить емкость конденсатора С5. Для устойчивой работы усилителя при изменении температуры диоды VD1, 2, должны быть смазаны теплопроводной пастой и прижаты к одному из выходных транзисторов. Последние устанавливаются на теплоотводах площадью не менее 200 см 2 .

Схема №2, усовершенствованная

В первой схеме был квазикомплементарный выходной каскад, поскольку промышленность 40 лет назад не выпускала мощных германиевых транзисторов со структурой n-p-n. Комплементарные пары ГТ703 (p-n-p) и ГТ705 (n-p-n) появились лишь в 70-х, что позволило усовершенствовать схему выходного каскада. Но мир далек от совершенства - у перечисленных выше типов максимальный ток коллектора всего 3,5 А (у П217В Iк max = 7,5 A). Поэтому применить их в схеме можно, лишь поставив по два в плечо. Этим, собственно, и отличается №2, разве что полярность блока питания противоположна. И усилитель напряжения (VT1), соответственно, реализован на транзисторе другой проводимости.

Настраивается схема точно так же, даже ток покоя выходного каскада такой же.

Коротко о блоке питания

Для получения высокого качества звучания придется поискать в закромах 4 германиевых диода Д305. Другие категорически не рекомендуются. Соединяем их мостом, шунтируем слюдой КСО по 0,01 мкФ, а затем ставим 8 конденсаторов 1000 мкФ X 63 В (те же К50-29 или Philips), которые тоже шунтируем слюдой. Наращивать емкость не надо - тональный баланс уходит вниз, теряется воздух.

Параметры обеих схем примерно одинаковы: выходная мощность 20 Вт на нагрузке 4 Ом при искажениях 0,1 - 0,2%. Разумеется, эти цифры мало что говорят о звучании. Уверен в одном - послушав грамотно сделанный по одной из этих схем усилитель, вы вряд ли вернетесь к кремниевым транзисторам.

Апрель 2003 г.

От редакции:

Мы послушали у Жана прототип первого варианта усилителя. Первое впечатление - необычно. Звучание отчасти транзисторное (хороший контроль нагрузки, четкий бас, убедительный драйв), отчасти ламповое (отсутствие жесткости, воздух, деликатность, если хотите). Усилитель заводит, но не раздражает назойливостью. Мощности хватает, чтобы без малейших признаков клиппинга раскачать до невыносимой громкости напольную акустику с чувствительностью 90 дБ. Что интересно - тональный баланс на разных уровнях почти не меняется.

Это результат продуманной конструкции и тщательно подобранных деталей. Учитывая, что комплект транзисторов обойдется рублей в пятьдесят (хотя, если не очень повезет, для подбора пар может потребоваться несколько десятков, смотря какая партия попадется), не экономьте на других элементах, особенно конденсаторах.

Буквально за пару часов на макетной плате был собран один канал усилителя для анализа схемы. На выходе устанавливались американские германиевые транзисторы Altec AU108 с граничной частотой 3 МГц. При этом полоса пропускания по уровню 0,5 дБ была 10 Гц - 27 кГц, искажения на мощности 15 Вт примерно 0,2%. Доминировала 3-я гармоника, но наблюдались выбросы и более высоких порядков, вплоть до 11-го. С транзисторами ГТ-705Д (Fгр. = 10 кГц) ситуация была несколько иной: полоса сузилась до 18 кГц, зато гармоник выше 5-й на экране анализатора вообще не было видно. Изменилось и звучание - оно как-то потеплело, смягчилось, но искрящееся прежде «серебро» поблекло. Так что первый вариант можно рекомендовать для акустики с «мягкими» пищалками, а второй - с титановыми или пьезоизлучателями. Характер искажений зависит от качества конденсаторов С7 и С6 на схемах 1 и 2 соответственно. А вот их шунтирование слюдой и пленкой не очень заметно на слух.

К недостаткам схемы следует отнести малое входное сопротивление (около 2 кОм в верхнем положении регулятора громкости), которое может перегрузить выходной буфер источника сигнала. Второй момент - уровень искажений сильно зависит от характеристик и режима первого транзистора. Чтобы повысить линейность входного каскада, имеет смысл ввести две вольт-добавки для питания коллекторной и эмиттерной цепи T1 . Для этого делаются два дополнительных независимых стабилизатора с выходным напряжением 3 В. «Плюс» одного соединяется с шиной питания - 40 В (все пояснения даются для схемы 1, для другой схемы полярность меняется на противоположную), а «минус» подается на верхний вывод R4. Резистор R7 и конденсатор C6 из схемы исключаются. Второй источник включается так: «минус» на землю, а «плюс» - на нижние выводы резисторов R3 и R6. Конденсатор C4 при этом остается между эмиттером и землей. Возможно, стоит поэкспериментировать со стабилизированным питанием. Любые изменения в питании и самой схеме усилителя радикально влияют на звук, что открывает широкие возможности для твикинга.

Таблица 1. Детали усилителя
Сопротивления
R1 10k переменное, ALPS тип A
R2 68k подстроечное CП4-1
R3 3k9 1/4 w ВС, С1-4
R4 200 1/4 w -//-
R5 2k 1/4 w -//-
R6 100 1/4 w -//-
R7 47 1 w -//-
R8,R9 39 1 w -//-
R10, R11 1 5 w проволочные, С5 - 16МВ
R12 10k 1/4 w ВС, С1-4
R13 20 1/4 w -//- подбирается при настройке
Конденсаторы
С1 47 мкФ х 16 В К50-29, Philips
С2 100 мкФ х 63 В -//-
С3 1000 пФ КСО, СГМ
С4 220 мкФ х 16 В К50-29, Philips
С5 330 пФ
С6 1000 мкФ х 63 В К50-29, Philips
С7 4 х 1000 мкФ х 63 В -//-
Полупроводники
VD1, VD2 Д311
VT1, VT2 ГТ402Г
VT3 ГТ404Г
VT4, VT5 П214В
Таблица 2. Детали усилителя
Сопротивления
R1 10k переменное, ALPS тип A
R2 68k подстроечное, CП4-1
R3 3k9 1/4 w ВС, С1-4
R4 200 1/4 w -//-
R5 2k 1/4 w -//-
R6 100 1/4 w -//-
R7 47 1 w -//-
R8 20 1/4 w -//-, подбирается при настройке
R9 82 1 w -//-
R10 - R13 2 5 w проволочные, С5 - 16МВ
R14 10k 1/4 w ВС, С1-4
Конденсаторы
С1 47 мкФ х 16 В К50-29, Philips
С2 100 мкФ х 63 В -//-
С3 1000 мкФ х 63 В К50-29, Philips
С4 1000 пФ КСО, СГМ
С5 220 мкФ х 16 В К50-29, Philips
С6 4 х 1000 мкФ х 63 В -//-
С7 330 пФ КСО, СГМ, подбирается при настройке
Полупроводники
VD1, VD2 Д311
VT1, VT2 ГТ404Г
VT3 ГТ402Г
VT4, VT6 ГТ705Д
VT5, VT7 ГТ703Д

В настоящее время все более широкое применение в качестве основных ключевых приборов для мощной преобразовательной техники находят приборы на основе карбида кремния - мощные диоды Шоттки и MOSFET транзисторы. Карбид-кремниевая технология привнесла значительные усовершенствования в производство MOSFET, что сделало их конкурентами кремниевым IGBT-транзисторам, особенно в области высоких напряжений.

Рассмотрим 1200-В 4H-SiC MOSFET. В данном транзисторе используется высококачественная подложка, улучшено качество эпитаксиального слоя, оптимизирована конструкция под процесс производства. Также, посредством азотирования, увеличена подвижность носителей. Карбид-кремниевый транзистор превосходит кремниевые транзисторы за счет расширенной запрещенной зоны. Напряженность электрического поля, при которой происходит пробой, увеличилась в 10 раз, улучшилась теплопроводность, а, следовательно, возросли рабочие температуры. При использовании в полупроводниках с максимально допустимым рабочим напряжением 600 В и выше, карбид кремния также превосходит кремний. На сегодня 600-В и 1200-В карбид-кремниевые диоды Шоттки являются наилучшим решением в повы-шающих преобразователях. За счет более низких потерь на переключение по сравнению с кремниевыми PiN-диодами.
Если же речь идет о силовых ключах, то кремниевые MOSFET уступают 600- и 1200-В IGBT-транзисторам прежде всего из-за значительного сопротивления канала в открытом состоянии (RDSON), которое увеличивается пропорционально квадрату максимально допустимого напряжения сток-исток (VDSMAX). Сопротивление RDSON можно рассматривать как совокупность сопротивлений RJFET и RDRIFT (рис. 1).

Рис.1. Эквивалентная схема DMOSFET.

При этом сопротивление RDRIFT, отражающее дрейф свободных носителей, доминирует и его величина определяется следующим соотношением:

RDRIFT = d/qμND, где d — толщина дрейфового слоя; q — заряд электрона; ND — коэффициент легирования.

В новом поколении карбид-кремниевых MOSFET транзисторов толщина дрейфового слоя d уменьшена примерно в 10 раз; во столько же раз увеличен коэффициент N D . В результате сопротивление R DSON уменьшено почти в 100 раз по сравнению с его кремниевым аналогом.

ПРИМЕНЕНИЕ КАРБИД-КРЕМНИЕВЫХ ТРАНЗИСТОРОВ

Применение приборов данного типа рассмотрим на примере 1200-В, 20-А транзистора с RDSON = 100 мОм и 15-В уровнем управления затвором. Помимо уменьшения сопротивления RDSON при нормальных условиях в карбид-кремниевых транзисторах значительно уменьшено влияние температуры. В диапазоне 25…150°С изменение сопротивления составляет всего лишь 20%, что является весьма малым значением по сравнению с аналогичным значением составляющим 200% или даже 300% у кремниевых MOSFET. В принципе карбид-Хотя максимально допустимую температуру серийных транзисторов (в основном размещаемых в пластмассовых корпусах ТО-247) ограничивают до 150°С, карбид-кремниевые транзисторы могут работать и при температуре свыше 200°С.
По сравнению с кремниевыми IGBT-транзисторами, карбид-кремниевые MOSFET имеют и существенно меньшие потери на коммутацию. MOSFET — униполярные приборы, поэтому не имеют «хвостов» при коммутации, обусловленных рассасыванием неосновных носителей. В таблице 1 отображены значения потерь на переключение обоих типов транзисторов.

Параметр

IGBT, 1200-B Infineon BSM 15 GD 120
DN2 ID (max) = 15 A при 80°С

DMOSFET 1200-B CREE engineering
sample ID (max) = 15 A при 150 °С

Напряжение VDS, В

Индуктивная

Индуктивная (500 мкГн)

Напряжение управления VGE, В

Сопротивление затвора RG, Ом

Потери энергии при включении (коммутируемый ток 10 А), ЕON, мДж

Потери энергии при выключении (коммутируемый ток 10 А), ЕOFF, мДж

Максимальный кпд, ή

Евро-кпд* ήEUR0

Таблица 1. Потери на переключение кремниевых IGBT и карбид-кремниевых MOSFET.

Далее рассмотрим пример применения карбид-кремниевых MOSFET в трехфазных 7-кВт, 16,6-кГц инверторах солнечных батарей. Инвертор имеет топологию В6, разработанную в институте ISE, и использует конденсатор в цепи постоянного тока, соединяющийся с нейтральным проводом. На рисунке 2 показаны результаты сравнительных испытаний. Как видно из приведенных результатов, при использовании карбид-кремниевых транзисторов потери сокращаются почти в 2 раза. Значит уменьшается и температура теплоотвода: 93°С при использовании IGBT-транзисторов и 50°С — при использовании карбид-кремниевых MOSFET.

Рис.2. Сравнение потерь в 1200-В MOSFET и IGBT

Преимущества использования карбид-кремниевых MOSFET в фотоэлектрических преобразователях:
- низкая стоимость индуктивных компонентов. Размеры индуктивных компонентов зависят от частоты преобразования. Их стоимость уменьшается примерно на 50% при увеличении частоты преобразования в 2—3 раза. С увеличением частоты преобразования увеличивается и частота третьей гармоники, а уменьшить мощность третьей гармоники частотой 150 кГц гораздо проще, чем частотой 50 кГц;
- более низкие требования к теплоотводу. Использование карбид-кремниевых MOSFET позволяет уменьшить их температуру на 50%, что приведет к уменьшению размеров и, соответственно, стоимости всего изделия приблизительно на 5% в нашем примере;
- увеличение прибыли за счет сокращения потерь энергии.

На рисунке 3 показана стандартная схема трехфазного выпрямителя с изолированным DC/DC-преобразователем с коммутацией при нулевом токе. В качестве ключей S1, S2 в испытаниях были использованы 1200-В, 25-А IGBT-транзисторы, 1200-В, 40-А IGBT-транзисторы и 1200-В, 25-А карбид-кремниевые MOSFET. Результаты работы системы на максимальную нагрузку 3 кВт приведены на рисунке 4. Как видно, при работе с MOSFET КПД системы увеличивается на 2,2%. Корпус MOSFET имеет меньшую температуру: на 25°С ниже, чем 40-А IGBT и на 36°С ниже чем у 25-А IGBT.


Рис. 3. Трехфазный 3-кВт инвертор с большей величиной коэффициента мощности и с прямоходовым преобразователем Рис. 4. График изменения КПД в зависимости от выходной мощности при частоте преобразования 67 кГц.

Выше были показаны достоинства 1200-В MOSFET. Однако и при более высоких напряжениях — 6,5 кВ и даже выше карбид-кремниевые транзисторы также имеют преимущества перед их кремниевыми аналогами. Недавно был разработан 10-кВ, 10-А карбид-кремниевый MOSFET. При напряжении управления затвором 20 В и токе через канал 10 А падение напряжении на открытом канале составляет всего лишь 4,1 В, что эквивалентно сопротивлению 127 мОм/см2. Утечка тока сток-исток составляет 124 нА при напряжении 10 кВ.
В ходе проведения сравнительного эксперимента было установлено, что, при работе на индуктивную нагрузку, потери на переключение в карбид-кремниевом транзисторе в 200 раз меньше, чем в 6,5-кВ IGBT! Задержка включения составляет всего лишь 94 нс, а задержка на выключение — 50 нс; у IGBT — 1,4 мкс и 540 нс соответственно!
При использовании 10-кВ карбид-кремниевых MOSFET и диода Шоттки в повышающем преобразователе (входное напряжение — 500 В, выходное — 5 кВ) КПД 600-Вт преобразователя составил 91%. По итогам произведенных расчетов установлено, что та же схема с обычным кремниевым MOSFET могла бы работать лишь с частотой всего несколько сотен Гц. На рисунке 5 показаны графики токов и напряжений при выключении MOSFET. Из рисунка видно, насколько быстро протекают переходные процессы в приборе.

Рис. 5. Процесс коммутации 10-кВ карбид-кремниевого MOSFET при частоте 20 кГц и мощности преобразователя 600 Вт.

При возросшем интересе к альтернативным источникам энергии карбид-кремниевая технология имеет широкие перспективы. За счет снижения потерь мощности применение карбид-кремниевых транзисторов является привлекательным в фотоэлектрических преобразователях, а также в преобразователях генераторов энергии из органического топлива в будущем.