Основные понятия о базах данных и субд. Основные понятия систем базы данных

Федеральное агентство по образованию

Государственное Общеобразовательное Учреждение

Среднепрофессионального Обучения

«Тульский экономический колледж»

По дисциплине «Информатика»

На тему: «База данных. Понятие базы данных. Виды баз данных. Объекты для работы с базами данных. Типы данных в базах и таблицах Access. Основные элементы и понятия баз данных»

Подготовила студентка 2 курса

группы 216-БП

Храмова Анна

Проверил преподаватель:

Васильева И.В.

Щёкино,2007

С О Д Е Р Ж А Н И Е:

1. Введение…………………………………………...…………….……2

2. Понятие базы данных………………………………………………..3

3. Виды базы данных………………………………………….………4-5

4. Объекты для работы с базами данных…………………………...6-7

5. Типы данных в базах………………………………………………….8

6. Типы данных в таблицах Access……………………………………9

7. Основные элементы и понятия баз данных…………………..10-15

8. Тест…………………………………………………………….…16-17

9. Ответы на тест……………………………………………...…….…18

10. Вопросы для самопроверки………………………………..........19

11. Список используемой литературы……………………………….20

12. Презентация……………………………………………………21-33

13. Рецензия………………………………………………..…………..34

В В Е Д Е Н И Е:

Мы познакомились с работой Excel и знаем, что это приложение создано специально для решения задач обработки табличных данных.

Существуют системы (приложения) для решения иных классов задач. В частности, очень большую роль играют сейчас программы (приложения, системы), цепь которых – хранение данных и выдача данных по запросу пользователя.

Использование ЭВМ именно для решения этого класса задач становится всё более массовым явлением.

Смело можно сказать, что такие задачи и необходимость их решения существуют в любой фирме, на любом предприятии.

Основное понятие для подобного круга задач – база данных. Так называется файл или группа файлов стандартной структуры, служащая для хранения данных.

Для разработки программ, систем программ, работающих с базами данных, используются специальные средства – системы управления базами данных (СУБД).

СУБД включает, как правило, специальный язык программирования и все прочие средства, необходимые для разработки указанных программ.

В настоящее время наиболее известными СУБД являются FOXPRO и ACCESS. Последняя входит в состав профессионального пакета MS Office 97.

Это современные системы с большими возможностями, предназначенные для разработки сложных программных комплексов, и знакомство с ними для пользователя ЭВМ исключительно полезно, но в рамках настоящего пособия осуществить его затруднительно.

Понятие базы данных

База данных (БД) – это совокупность массивов и файлов данных, организованная по определённым правилам, предусматривающим стандартные принципы описания, хранения и обработки данных независимо от их вида.

База данных (БД) – совокупность организованной информации, относящейся к определённой предметной области, предназначенная для длительного хранения во внешней памяти компьютера и постоянного применения.

Виды БД:

1.Фактографическая – содержит краткую информацию об объектах некоторой системы в строго фиксированном формате;

2.Документальная – содержит документы самого разного типа: текстовые, графические, звуковые, мультимедийные;

3.Распределённая – база данных, разные части которой хранятся на различных компьютерах, объединённых в сеть;

4.Централизованная – база данных, хранящихся на одном компьютере;

5.Реляционная – база данных с табличной организацией данных.

Одно из основных свойств БД – независимость данных от программы, использующих эти данные.

Работа с базой данных требует решения различных задач, основные из них следующие:

Создание базы, запись данных в базу, корректировка данных, выборка данных из базы по запросам пользователя.

Задачи этого списка называются стандартными.

Следующее понятие, связанное с базой данных: программа для работы с базой данных – это программа, которая обеспечивает решение требуемого комплекса задач. Любая подобная программа должна уметь решать все задачи стандартного набора.

База данных в разных системах имеет различную структуру.

В ПВЭМ обычно используются реляционные БД – в таких базах файл является по структуре таблицей. В ней столбцы называются полями, строки – записями.

Примером БД может служить расписание движения поездов или автобусов. Здесь каждая строчка – запись отражает данные строго одного объекта. База включает поля: номер рейса, маршрута следования, время отправления и т.д.

Классическим примером БД является и телефонный справочник. Запрос к базе данных – это предписание, указывающее, какие данные пользователь желает получить из базы.

Некоторые запросы могут представлять собой серьёзную задачу, для решения которой потребляется составлять сложную программу. Например, запрос к базе – автобусному расписанию: определить разницу в среднем интервале отправления автобусов из Ростова в Таганрог и из Ростова в Шахты.

Объекты для работы с базами данных

Для создания приложения, позволяющего просматривать и редактировать базы данных, нам потребуется три звена:

набор данных

источник данных

визуальные элементы управления

В нашем случае эта триада реализуется в виде:

Table

DataSource

DBGrid

Table подключается непосредственно к таблице в базе данных. Для этого нужно установить псевдоним базы в свойстве DataBaseName и имя таблицы в свойстве TableName, а затем активизировать связь: свойство Active = true.

Однако, поскольку Table является невизуальным компонентом, хотя связь с базой и установлена, пользователь не в состоянии увидеть какие – либо данные. Поэтому необходимо добавить визуальные компоненты, отображающие эти данные. В нашем случае это сетка DBGrid. Сетка сама по себе «не знает», какие данные ей нужно отображать, её нужно подключить к Table, что и делается через компонент – посредник DataSource.

А зачем нужен компонент – посредник? Почему бы сразу не подключаться к Table?

Допустим, несколько визуальных компонентов – таблица, поля ввода и т.п. подключены к таблице. А нам нужно быстро переключить их все на другую подобную таблицу. С DataSource это сделать несложно - достаточно просто поменять свойство DataSet, а вот без DataSource пришлось бы менять указатели у каждого компонента.

Приложения баз данных – нить, связывающая БД и пользователя:

БД – набор данных – источник данных – визуальные компоненты – пользователь

Набор данных:

Table (таблица, навигационный доступ)

Query (запрос, реляционный доступ)

Визуальные компоненты:

Сетки DBGrid , DBCtrlGrid

Навигатор DBNavigator

Всяческие аналоги Lable , Edit и т.д.

Компоненты подстановки

Типы данных в базах

В Access можно определить следующие типы полей:

Текстовый – текстовая строка; максимальная длина задаётся параметром «размер», но не может быть больше 255

Поле МЕМО – текст длиной до 65535 символов

Числовой – в параметре «Размер поля» можно задать поле: байт, целое, дейсвительное и т.п.

Дата/время – поле, хранящее данные о времени.

Денежный – специальный формат для финансовых нужд, по сути являющийся числовым

Счётчик – автоинкрементное поле. При добавлении новой записи внутренний счётчик таблицы увеличивается на единицу и записывается в данное поле новой записи. Таким образом, значения этого поля гарантированно различны для разных записей. Тип предназначен для ключевого поля

Логический – да или нет, правда или ложь, включен или выключен

Объект OLE – в этом поле могут храниться документы, картинки, звуки и т.п. Поле является частным случаем BLOB – полей ( Binary Large Object ), встречающихся в различных базах данных

Подстановка

Типы данных в таблицах Access :

Текстовый

Поле МЕМО

Числовой

Дата\время

Денежный

Счётчик

Логический

Объект OLE

Не надо забывать про индексы.

Связывать таблицы.

Связь с обеспечением целостности контролирует каскадное удаление и модификацию данных.

Монопольный доступ к БД нужен для того, чтобы производить в ней фундаментальные изменения.

Основные понятия и элементы баз данных

Базы данных понадобились тогда, когда возникла потребность хранить большие объёмы однотипной информации, уметь её оперативно использовать. Базами данных (в широком понимании этого слова) пользовались на протяжении всей истории жрецы, чиновники, купцы, ростовщики, алхимики.

Основное требование к базам данных – удобство доступа к данным, возможность оперативно получить исчерпывающую информацию по любому интересующему вопросу (важно не только то, что информация содержится в базе, важно то, насколько она хорошо структирована и целостна).

Лишь только появились и распространились компьютеры, почти сразу на них возложили тяжёлый и кропотливый труд по обработке и структурированию данных, появились базы данных (БД) в их нынешнем понимании.

Согласно современным требованиям к базам данных, информация, содержащаяся в них, должна быть:

непротиворечивой (не должно быть данных, противоречащих друг другу);

неизбыточной (следует избегать ненужного дублирования информации в базе, избыточность может привести к противоречивости – например, если какие – то данные изменяют, а их копию в другой части базы забыли изменить);

целостной (все данные должны быть связаны, не должно быть ссылок на несуществующие в базе данные)

Реляционная модель баз данных была предложена Эдгаром Коддом в конце 70-х годов. В рамках этой модели база данных представляет собой набор таблиц, связанных друг с другом отношениями. При достаточной простоте (а значит, и удобстве реализации на компьютере) данная модель обладает гибкостью, позволяющей описывать сложно структурированные данные. Кроме того, для этой модели достаточно глубоко проработано теоретическое обоснование, что также даёт возможность эффективнее использовать компьютер при создании базы данных и работе с ней. В плане правил связи в реляционной модели реализуется отношение «один–ко–многим» связи между таблицами. Это значит, что одной записи в главной таблице соответствует несколько записей в подчинённой таблице (в том числе может не соответствовать ни одной записи). Другие типы связей: «один-к-одному», «много-к-одному» и «много-ко-многим» - можно свести к данному типу «один-ко-многим». Реляционные базы данных состоят из связанных таблиц.

Таблица представляет собой двумерный массив, в котором хранятся данные. Столбцы таблицы (в рамках принятых обозначений БД) называются полями, строки – записями. Количество полей таблицы фиксировано, количество записей – нет. Фактически таблица – нефиксированный массив записей с одинаковой структурой полей в каждой записи. Добавить в таблицу новую запись не составляет труда, а то время как добавление нового поля влечёт за собой рестрктуризацию всей таблицы и может вызвать определённые трудности. В качестве значений полей в записях могут храниться числа, строки, картинки и т.д. Таблицы баз данных хранятся на жёстком диске (на локальном компьютере или на сервере баз данных – в зависимости от типа БД). Одной таблице соответствуют обычно несколько файлов – один основной и несколько вспомогательных. Тонкости организации таблиц зависят от используемого формата (dBase, Paradox, InterBase, Microsoft Access и т.д.)

Ключ – поле или комбинация полей таблицы, значения в которых однозначно определяют запись. Ключ потому так и называется, что, имея значения ключевых полей, можно однозначно получить доступ к нужной записи. Таким образом, ключи чрезвычайно полезны для связи таблиц. Записывая значения ключа в отведённые поля подчинённой таблицы и тем самым, задавая ссылку, обеспечиваем связь двух записей – записи в главной таблице и записи в подчинённой таблице. В одной записи подчинённой таблицы может находиться и несколько ссылок на записи главной таблицы. Например, в школьном журнале может быть таблица – список дежурств, где в каждой записи содержатся фамилии и имена (ключ их двух полей) нескольких дежурных. Так осуществляется связь различных записей главной таблицы и реализуется достаточно сложная структура данных. В школьной практике в качестве ключевых полей используются имена и фамилии, но в БД лучше отводить специальные ключевые поля – индивидуальные номера (коды) записей. Это гарантированно уберегает от возможных проблем с однофамильцами. В школе же, где не требуется такая компьютерная чёткость, появление в одном классе двух учеников с одинаковыми именами и фамилиями – очень редкое событие, поэтому можно простить подобное техническое упущение. Кроме связывания, ключи могут использоваться для прямого доступа к записям, ускорения работы с таблицей.

Индекс – поле, так же, как и ключ, специально выделенное в таблице, данные в котором, однако, могут повторяться. Они также служат для ускорения доступа и, кроме того, для сортировки и выборок.

Нормальные формы были придуманы, скорее, для автоматизации процесса создания баз данных, нежели как руководство тем, кто создаёт их вручную (автоматическое проектирование больших баз данных может производиться с помощью специальных систем программ – средств (CASE). Реально при ручной разработке проектировщик сразу же задумывает необходимую структуру, планирует нужные таблицы, а не идёт от одной большой таблицы. Нормальные формы фактически формализуют интуитивно понятые требования к организации данных, помогая, прежде всего, избежать избыточного дублирования данных.

Первая нормальная форма:

информация в полях неделимая (к примеру, имя и фамилия должны быть разными полями, а не одним);

в таблице нет повторяющихся групп полей

Вторая нормальная форма:

выполнена первая форма;

любое неключевое поле однозначно идентифицируется ключевыми полями (фактически, требование наличия ключа)

Третья нормальная форма:

выполнена вторая форма

неключевые поля должны однозначно идентифицироваться только ключевыми полями (это значит, что данные, не зависящие от ключа, должны быть вынесены в отдельную таблицу)

Требование третьей нормальной формы имеет тот смысл, что таблицу с полями (Имя, Фамилия, Класс, Классный руководитель) необходимо разбить на две таблицы (Имя, Фамилия, Класс) и (Класс, Классный руководитель), поскольку поле Класс однозначно определяет поле Классный руководитель (а согласно третьей форме, однозначно определять должны только ключи).

Для более глубокого понимания тонкостей проведения операций с записями в таблицах необходимо иметь понятия о способах доступа, транзакциях и бизнес-правилах.

Способы доступа определяют, как технически производятся операции с записями. Способы доступа выбираются программистом во время разработки приложения. Навигационный способ основан на последовательной обработке нужных записей поодиночке. Он обычно используется для небольших локальных таблиц. Реляционный способ основан на обработке сразу набора записей с помощью SQL-запросов. Он используется для больших удалённых БД.

Транзакции определяют надёжность выполнения операций по отношению к сбоям. В транзакцию объединяется последовательность операций, которая либо должна быть выполнена полностью, либо не выполнена совсем. Если во время выполнения транзакции произошёл сбой, то все результаты всех операций, входящих в неё отменяются. Это гарантирует то, что не нарушается корректность базы данных даже в случае технических (а не программных) сбоев.

Бизнес-правила определяют правила проведения операций и представляют механизмы управления БД. Задавая возможные ограничения на значения полей, они также вносят свой вклад в поддержание корректности базы. Несмотря на возможные ассоциации с бизнесом как коммерцией, бизнес-правила не имеют к нему прямого отношения и просто являются правилами управления базами данных.

Корректная БД:

- неизбыточная;

- непротиворечивая;

- целостная

Реляционная БД:

- таблицы;

- связи между таблицами с помощью ключей

- поля (столбцы) – фиксированы;

- записи (строки) – легко добавляются и удаляются

- однозначно определяет запись

Ключи и индексы:

- служат для связи таблиц, прямого доступа, ускорения обработки и т.п.

Нормальные формы:

- служат для борьбы с избыточностью данных;

- много требуют, но из самых благих побуждений

Способы доступа:

-навигационный;

- реляционный

Защита корректности БД:

- транзакции – техническая защита

- бизнес-правила – логическая защита

Т Е С Т

1.Модели баз данных:

А) коммерческие

Б) сетевые

В) объектно-ориентированные

Г) революционные

Д) реляционные

Е) интегральные

2.Виды базы данных:

А) документальные

Б) сетевые

В) графические

Г) реляционные

3.Какая из баз данных содержит документы самого разного типа?

А) распределённая

Б) централизованная

В) фактографическая

Г) документальная

4.Что может являться примером базы данных?

А) пешеход, стоящий на обочине дороги

Б) телефонный справочник

В) расписание уроков

Г) расписание движения поездов или автобусов

5. Что такое ключ?

А) ссылкаБ) кодовое словоВ) программаГ) поле или комбинация полей таблицы

6. Что будет выведено на экран в результате выполнения фрагмента программы?

M:= ‘биология’;
k:= ‘зоо’ + copy (m, 4, 5);
writeln (k);

А) зоологияБ) зооВ) биологияГ) логия 7.Набор данных содержит: А) навигатор DBNavigatorБ) TableВ) Query 8.Выберите верное утверждение: денежный тип полей… А) текстовая строкаБ) текст длиной до 65535 символовВ) специальный формат для финансовых нуждГ) автоинкретное поле 9.Основное требование к данным: А) потребность в хранении больших объёмов однотипной информацииБ) быстрое распространение информацииВ) возвратное удаление информацииГ) удобство доступа к данным и быстрое нахождение нужной информации по интересующему вопросу 10.Какой должна быть информация, находящаяся в требованиях к базам данных? А) целостнойБ) краткойВ) непротиворечивойГ) однотипной

Ответы на тест

Вопросы для самопроверки :

1. Что такое БД?

2. Что является классическим примером БД?

3. Приведите несколько примеров БД

4. Какой вид БД обычно используется в ПВЭМ?

5. Какие виды БД вы знаете?

6. Какие три звена нам потребуются для создания приложения, позволяющего просматривать и редактировать базы данных?

7. Какие типы полей можно определить в Access?

8. Для чего нужен монопольный доступ к БД?

9. Что такое реляционная модель базы БД?

10. Сколько существует нормальных форм в БД? Перечислите их

11. Что такое транзакции?

Л И Т Е Р А Т У Р А :

1. Информатика. Учебное пособие для среднего профессионального образования (+CD)/Под общ. ред. И.А. Черноскутовой – СПб.: Питер, 2005. – 272 с.: ил. стр. 24 - 25

2. Информатика. Учебное пособие для студ. пед. вузов /А.В.Могилёв; Н.И.Пак, Е.К.Хённер; Под ред. Е.К.Хённера. – М., 1999. - 816 с стр. 185 - 187

3. Информатика. Учебник. – 3-е перераб. изд./Под ред. проф. Н.В.Макаровой. – М.: Финансы и статистика, 2000. – 768 с.: ил.

Р Е Ц Е Н З И Я

Основные понятия о базах данных и СУБД

Наименование параметра Значение
Тема статьи:
Рубрика (тематическая категория) Связь

Лекция 3. Тема 4.3 Представление об организации баз данных и системах управления базами данных.

1 Основные понятия о базах данных

2 СУБД Microsoft Access

Основные понятия о базах данных и СУБД

Информационная система (ИС) - ϶ᴛᴏ система, построенная на базе компьютерной техники, предназначенная для хранения, поиска, обработки и передачи значительных объёмов информации, имеющая определœенную практическую сферу применения.

База данных - ϶ᴛᴏ ИС, которая хранится в электронном виде.

База данных (БД) – организованная совокупность данных, предназначенная для длительного хранения во внешней памяти ЭВМ, постоянного обновления и использования.

БД служат для хранения и поиска большого объёма информации. Примеры баз данных: записная книжка, словари, справочники, энциклопедии и т.д.

Классификация баз данных:

1. По характеру хранимой информации:

- Фактографические – содержат краткие сведения об описываемых объектах, представленных в строго определённом формате (картотеки, н-р: БД книжного фонда библиотеки, БД кадрового состава учреждения),

- Документальные – содержат документы (информацию) самого разного типа: текстового, графического, звукового, мультимедийного (архивы, н-р: справочники, словари, БД законодательных актов в области уголовного права и др.)

2. По способу хранения данных:

- Централизованные (хранятся на одном компьютере),

- Распределœенные (используются в локальных и глобальных компьютерных сетях).

3. По структуре организации данных:

- Реляционные (табличные),

- Нереляционные.

Термин ʼʼреляционныйʼʼ (от лат. relatio – отношение) указывает на то, что такая модель хранения данных построена на взаимоотношении составляющих её частей. Реляционная база данных, по сути, представляет собой двумерную таблицу . Каждая строка такой таблицы принято называть записью. Столбцы таблицы называются полями: каждое поле характеризуется своим именем и типом данных. Поле БД - ϶ᴛᴏ столбец таблицы, содержащий значения определœенного свойства.

Свойства реляционной модели данных:

Каждый элемент таблицы – один элемент данных;

Всœе поля таблицы являются однородными, ᴛ.ᴇ. имеют один тип;

Одинаковые записи в таблице отсутствуют;

Порядок записей в таблице должна быть произвольным и может характеризоваться количеством полей, типом данных.

Иерархической принято называть БД, в которой информация упорядочена следующим образом: один элемент считается главным, остальные – подчинёнными. В иерархической базе данных записи упорядочиваются в определœенную последовательность, как ступеньки лестницы, и поиск данных может осуществляться последовательным ʼʼспускомʼʼ со ступени на ступень. Данная модель характеризуется такими параметрами, как уровни, узлы, связи. Принцип работы модели таков, что несколько узлов более низкого уровня соединяются при помощи связи с одним узлом более высокого уровня.

Узел – информационная модель элемента͵ находящегося на данном уровне иерархии.

Свойства иерархической модели данных:

Несколько узлов низшего уровня связано только с одним узлом высшего уровня;

Иерархическое дерево имеет только одну вершину (корень), не подчинœено никакой другой вершинœе;

Каждый узел имеет своё имя (идентификатор);

Существует только один путь от корневой записи к более частной записи данных.

Иерархической базой данных является Каталог папок Windows, с которым можно работать, запустив Проводник. Верхний уровень занимает папка Рабочий стол. На втором уровне находятся папки Мой компьютер, Мои документы, Сетевое окружение и Корзина, которые представляют из себяпотомков папки Рабочий стол, будучи между собой близнецами. В свою очередь, папка Мой компьютер – предок по отношению к папкам третьего уровня, папкам дисков (Диск 3,5(А:), С:, D:, E:, F:) и системным папкам (Принтеры, Панель управления и др.).

Сетевой принято называть БД, в которой к вертикальным иерархическим связям добавляются горизонтальные связи. Любой объект должна быть главным и подчинённым.

Сетевой базой данных фактически является Всемирная паутина глобальной компьютерной сети Интернет. Гиперссылки связывают между собой сотни миллионов документов в единую распределœенную сетевую базу данных.

Программное обеспечение, предназначенное для работы с базами данных, принято называть система управления базами данных (СУБД). СУБД используются для упорядоченного хранения и обработки больших объёмов информации.

Система управления базами данных (СУБД) - ϶ᴛᴏ система, обеспечивающая поиск, хранение, корректировку данных, формирование ответов на запросы. Система обеспечивает сохранность данных, их конфиденциальность, перемещение и связь с другими программными средствами.

Основные действия, которые пользователь может выполнять с помощью СУБД:

Создание структуры БД;

Заполнение БД информацией;

Изменение (редактирование) структуры и содержания БД;

Поиск информации в БД;

Сортировка данных;

Защита БД;

Проверка целостности БД.

Современные СУБД дают возможность включать в них не только текстовую и графическую информацию, но и звуковые фрагменты и даже видеоклипы.

Простота использования СУБД позволяет создавать новые базы данных, не прибегая к программированию, а пользуясь только встроенными функциями. СУБД обеспечивают правильность, полноту и непротиворечивость данных, а также удобный доступ к ним.

Популярные СУБД - FoxPro, Access for Windows, Paradox.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, крайне важно различать собственно базы данных (БД) – упорядоченные наборы данных, и системы управления базами данных (СУБД) – программы, управляющие хранением и обработкой данных. К примеру, приложение Access, входящее в офисный пакет программ Microsoft Office, является СУБД, позволяющей пользователю создавать и обрабатывать табличные базы данных.

Принципы построения систем управления баз данных следуют из требований, которым должна удовлетворять организация баз данных:

- Производительность и готовность. Запросы от пользователя базой данных удовлетворяются с такой скоростью, которая требуется для использования данных. Пользователь быстро получает данные всякий раз, когда они ему необходимы.

- Минимальные затраты. Низкая стоимость хранения и использования данных, минимизация затрат на внесение изменений.

- Простота и легкость использования. Пользователи могут легко узнать и понять, какие данные имеются в их распоряжении. Доступ к данным должен быть простым, исключающим возможные ошибки со стороны пользователя.

- Простота внесения изменений. База данных может увеличиваться и изменяться без нарушения имеющихся способов использования данных.

- Возможностьпоиска. Пользователь базы данных может обращаться с самыми различными запросами по поводу хранимых в ней данных. Для реализации этого служит так называемый язык запросов.

- Целостность . Современные базы данных могут содержать данные, используемые многими пользователями. Очень важно, чтобы в процессе работы элементы данных и связи между ними не нарушались. Вместе с тем, аппаратные ошибки и различного рода случайные сбои не должны приводить к необратимым потерям данных. Значит, система управления данными должна содержать механизм восстановления данных.

- Безопасность и секретность. Под безопасностью данных понимают защиту данных от случайного или преднамеренного доступа к ним лиц, не имеющих на это права, от неавторизированной модификации (изменения) данных или их разрушения. Секретность определяется как право отдельных лиц или организаций решать, когда, как какое количество информации должна быть передано другим лицам или организациям.

Далее на примере одной из самых распространенных систем управления базами данных – Microsoft Access входит в состав популярного пакета Microsoft Office – мы познакомимся с основными типами данных, способами создания баз данных и с приемами работы с базами данных.

Основные понятия о базах данных и СУБД - понятие и виды. Классификация и особенности категории "Основные понятия о базах данных и СУБД" 2017, 2018.

Главная > Реферат

Министерство образования Республики Беларусь

Белорусский Государственный Университет

Реферат по теме:

«СУБД Access. Основные понятия. Таблицы. Запросы. Формы. Отчёты. Создание базы данных»

Выполнила студентка I курса группы «Экономика» Пантюхина Любовь Владимировна Руководитель: Кожич Павел Павлович Microsoft Access. Основные понятия. 5 Связи между таблицами. 7 Создание базы данных 10 Список использованной литературы 20

Введение

Автоматизированные банки данных уже давно стали неотъемлемой частью практически всех компьютерных систем управления на любом уровне – от отрасли до отдельного предприятия. Однако проектирование и создание базы данных (БД) до сих пор остаётся процессом, который скорее сродни искусству, чем науке. За прошедшие годы неизмеримо вырос уровень потребительских качеств систем управления базами данных (СУБД): разнообразие поддерживаемых функций, удобный для пользователя интерфейс, сопряжение с программными продуктами, возможность для работы в сети и др. Но изменения почти не коснулись того, что раньше называлось логическими структурами базы данных. Это формы, в которых пользователь представляет и хранит свою информацию. А ведь именно от них в немалой степени зависит удобство работы пользователя с базой данных: формулировка запроса, простота поиска данных, форма выдачи итоговой информации и другие операции.К настоящему времени накоплен значительный опыт проектирования банков данных. Это позволяет сделать процесс создания БД значительно более формализованным.Итак, речь идёт об информации, которая формируется и накапливается в компьютерных банках данных. В реальных условиях это понятие употребляется в двух различных значениях:
    Информация, хранившаяся на бумажных носителях и сведённая в новый электронный банк данных Банк данных, который был создан ранее и используется до сих пор
Постепенно эта разница стирается. И это происходит при помощи использования БД (одним из наиболее универсальных БД является Microsoft Access, о котором и будет далее идти речь) путём реорганизации старых баз данных в новые и создание новых баз данных на основе неиспользованной информации.

Microsoft Access. Основные понятия.

Доктор Е. Ф. Кодд, служащий корпорации IBA, в 1970 году опубликовал в июньском выпуске журнала ассоциации по вычислительной технике (Association for Computing Machinery) статью под названием “A Relational Model of Data for Large Shared Databanks” («Реляционная модель организации данных для больших, совместно используемых банков данных»). Специальность доктора Кодда был раздел математики, называемый теорией множеств, в котором определено понятие отношений. Сам доктор определил отношение как имеющий название набор кортежей (записей или строк), который имеет атрибуты (поля или столбцы). Один из атрибутов должен содержать уникальное значение, которое позволило бы опознать каждый кортеж. Обычным термином для отношения является таблица, которую любой пользователь может легко себе представить как электронную таблицу.СУБД (система управления базой данных) является универсальным программным инструментом создания и обслуживания баз данных и приложений пользования в самых разных предметных областях. СУБД обеспечивает многоаспектный доступ к данным и использование одних и тех же данных различными задачами и приложениями пользователей. СУБД поддерживаются различные модели данных.Модель данных – это метод (принцип) логической организации данных, используемых СУБД. Наиболее известными являются иерархическая, сетевая и реляционная модели.В СУБД для персональных компьютеров поддерживается преимущественно реляционная модель , которую отличает простота и единообразие представления данных простейшими двумерными таблицами. Реляционная модель обеспечивает возможность использования в разных СУБД операций обработки данных, имеющих единую основуалгебру отношений (реляционную алгебру), и универсального языка структурирования запросов – SQL (Structured Query Language). Основной логической структурной единицей манипулирования данными является строка таблицы – запись. Структура записи определяется составом входящих в неё полей. Совокупность полей записи соответствуют логически связанным реквизитам, характеризующим некоторую сущность предметной области. Типовыми функциями СУБД по манипулированию данными являются выборка, добавление, удаление, изменение данных.Выборка данных – выборка записей из взаимосвязанных таблиц в соответствии с заданными условиями.Добавление и удаление данных – добавление новых данных или удаление существующих.Изменение данных – модификация значений данных в полях существующих записей. Данные из одной или нескольких взаимосвязанных таблиц могут подвергаться обработке. В операциях обработки относятся расчёты в пределах каждой записи, группировка записей, обработка при помощи статистических функций.СУБД Microsoft Access является системой управления реляционной базой данных, включающей все необходимые инструментальные средства для создания локальной базы данных.Средства графического конструирования позволяют пользователю создавать объекты базы данных и объекты приложений с помощью многочисленных графических элементов, не прибегая к программированию.Диалоговые средства представлены разнообразными мастерами, которые в режиме ведения диалога с пользователем позволяют создавать объекты и выполнять разнообразные функции по реорганизации и преобразованию базы данных.Среди многочисленных средств графического конструирования и диалоговых средств Microsoft Access следует выделить средства для создания:
    Таблиц и схем базы данных Запросов выборки, отбирающих и объединяющих данные нескольких таблиц в одну виртуальную таблицу, которая может использоваться во многих задачах приложения Запросов на изменение данных базы Экранных форм , предназначенных для ввода, просмотра и обработки данных в диалоговом режиме Отчётов , предназначенных для просмотра и вывода на печать данных из базы данных и результатов их обработки в удобном для пользователя виде Страниц доступа к данным, обеспечивающих работу с базами данных в Интернете и локальной сети
Базы данных являются организованной на машинном носителе совокупностью взаимосвязанных данных, и содержит сведения о различных сущностях одной предметной области.

Таблицы

Реляционная база данных представляет собой множество взаимосвязанных двумерных таблиц. Совокупность реляционных таблиц, между которыми установлена связь, образуют логическую структуру реляционной базы данных. В таблицах реляционной базы данных должна сохраняться все данные, необходимые для решения задач предметной области, причём каждый элемент данных должен храниться в базе только в одном экземпляре. Поэтому таблицы являются основой базы данных. Таблицы содержат описание реальных объектов. Для создания таблиц соответствующих реляционной модели данных, используется процесс, называемый нормализацией данных. Нормализация – это удаление из таблицы повторяющихся данных путём их переноса в новые таблицы.Структура реляционной таблицы определяется составом полей. Каждое поле определяет определённую характеристику сущности. Таблицы состоят из строк и столбцов . Содержимое поля указывается в столбце таблицы, в которых сохраняются свойства объектов, которые отражены в таблице. Столбец содержит записи одного типа. Содержание таблицы заключается в её строках, однотипных по структуре. Каждая строка содержит данные о конкретном экземпляре сущности и называется записью.Для таблиц обычно используется режим таблицы, предназначенный для ввода данных, и режим конструктора, позволяющий просмотреть и модифицировать структуру таблицы. Переход от одного режима к другому производится щелчком на кнопке Вид (View). После того, как выбран набор таблиц, необходимый для создания базы данных, определены поля таблиц, следует выбрать уникальные поля. Уникальные поля – это такие поля, в которых значения не могут повторяться. Поле, по значению которого можно идентифицировать запись в таблице, называется первичным ключом . В качестве первичного ключа может выступать порядковый номер записи, артикул товара и т.д. Если первичные ключ не будет выбран, Access проинформирует об этом и предложит указать ключевое поле, отказываться от этого предложения не стоит, потому что в случае связывания таблиц в любом случае придется решить эту задачу и установить первичный ключ.

Связи между таблицами.

В нормализованной реляционной базе данных связь двух таблиц характеризуется отношениями записей типа один-к-одному , один-ко-многим , многие-к-многим . Отношение один-к-одному предполагает, что каждой записи одной таблицы соответствует одна запись в другой. Отношение один-ко-многим предполагает, что каждой записи первой таблицы соответствует много записей другой таблицы, но каждой записи второй таблицы соответствует только одна запись в первой. Соответственно, связь многие-к-многим – это связь многих записей одной таблицы ко многим записям другой.Для двух таблиц, находящихся в отношении один-ко-многим, устанавливается связь по уникальному ключу таблицы, представляющей в отношении сторону «один», - главной таблицы в связи. Во второй таблице, представляющей в отношении сторону «многие» и называемой подчинённой, этот ключ связи может быть либо частью уникального ключа, либо не входить в состав ключа. В подчинённой таблице ключ связи называется ещё внешним ключом .

Формы

Формы являются наиболее удобным средством отображения данных в таблице. Преимущество формы для ввода данных состоит в простоте и наглядности. Ещё одним преимуществом формы является то, что в формах на экран выводится вся информация, в то время как в запросах и таблицах часть информации может выходить за пределы экрана.При помощи формы, а в частности при помощи фильтра, можно отображать лишь те поля, которые содержат необходимую информацию. Формы также можно конструировать, т.е. изменять их внешний вид.Форма, в сущности, представляет собой окно, куда можно поместить элементы управления, предназначенные для ввода и отображения данных.Форма состоит из главной формы, базирующейся на определённой таблице. Помимо этого, форма может включать подчинённые формы, связанные с другими таблицами. Основными элементами формы являются надписи, в которых указывается текст, непосредственно отображающийся в форме, и поля, содержащие значение полей таблицы.Access позволяет использовать автоформы пяти видов: табличная, ленточная, в столбец, сводная таблица и сводная диаграмма. Ленточная форма содержит несколько записей, которая выглядит более привлекательно, чем табличного вида. Автоформа в столбец отображает в определённый момент только одну запись, для перехода к другой записи используется панель навигации, расположенной в нижней части формы. Если создаётся форма, предназначенная для ввода или редактирования записей, то наиболее подходящим типом является автоформа в столбец, если форма используется для просмотра информации многими пользователями, то лучше использовать табличный или ленточный вид, т.к. они выглядят более привлекательно. Такие автоформы, как сводная таблица и сводная диаграмма , обеспечивают расширенные возможности представления данных, однако при их создании необходимо дополнительно выполнить ряд операций.

Запросы

Запросы используются для выборки из базы данных информации, необходимой для пользователя. Под выборкой будем понимать динамическую таблицу с записями данных, которые удовлетворяют соответствующим условиям. Запросы обеспечивают быстрый и эффективный доступ к данным, хранящимся в таблице. Благодаря запросам можно не только выполнить сортировку или вычислить выражение, но и свести данные из связанных таблиц. Запросы не хранятся базой данных, информация храниться лишь в таблицах. Но полученная в результате запроса таблица может использоваться в качестве источника данных в формах отчётах и других запросах. Можно ввести поправки в запрос, которые отобразятся в соответствующей таблице.В таблице данные всегда отсортированы по первичному ключу. Чтобы выполнить сортировку по иным критериям, используются запросы.Как правило, при составлении таблиц нужно стараться не нагромождать их данными. Создание вычисляемого поля осуществляется путём простого ввода выражений для вычисления в пустом столбце бланка запроса. В квадратные скобки заключаются только имена полей. В результате запроса, в таблице присутствует поле, в котором находится результат вычисления.Запросы можно разделить на несколько типов: по результатам их действий , особенностям их выполнения , по способу формирования . Чаще всего используются стандартные запросы выбора , используемые для того, чтобы отобрать и представить в виде таблицы интересующие пользователя данные. Нарду со стандартными запросами выбора, можно выделить запросы на выполнение действий , которые используются для создания новых таблиц базы данных.Наиболее часто встречающимися запросами являются запросы с итогами, с параметром и на вычисление. Запрос с параметром представляет собой запрос на выборку, который отображает диалоговое окно, предназначенное для ввода параметров запроса. Для создания такого запроса в строке Условие отбора в квадратных скобках указывается необходимый параметр. Запрос с итогами – это запрос на выборку, который предназначен не для отображения содержимого записей, а для выполнения итоговых вычислений над хранящимися в них данными.

Отчёты

Отчёты позволяют представить данные в требуемом виде. Средства Microsoft Access по разработке отчётов предназначены для конструирования макета отчётов, в соответствии с которым может быть осуществлён вывод данных в виде печатного документа.Отчёты очень похожи на формы. При работе над отчётом можно использовать те же области, что и при создании таблиц.Microsoft Access выводит верхний колонтитул вверху страницы, то же происходит и с нижним колонтитулом. Заголовок печатается один раз в начале, а примечание – в конце. Пользователь может определить несколько полей, по которым проводится группировка данных.Большинство отчётов по своему внешнему виду относятся к ленточным или отчётам в столбец . Отчёт в столбец вводит данные каждого поля в отдельной строке, в результате чего они организуются в один столбец. Такой вариант более широко используется для вывода отчёта в напечатанном виде.

Создание базы данных

Для того, чтобы создать базу данных при помощи Microsoft Access, необходимо продумать её структуру, определиться с количеством и составом входящих в базу таблиц, создать необходимые формы, запросы и соответствующие отчёты.Для наглядного примера рассмотри, как виртуальная фирма «Глобал програмс» создаёт свою базу данных.После открытия приложения Microsoft Access выбираем соответствующий вкладыш, предлагающий нам создать новую базу данных. (Сохраняем созданную базу данным, присваивая ей уникальное имя, в нашем случае – «Глобал програмс» ).
    Нам необходимо создать ряд таблиц: Сотрудники, Товары, Услуги, Контакты. В открывшемся окне выбивает вкладыш «Таблицы» «Создание таблиц в режиме конструктора» Заполняем соответствующие поля, присваиваем им тип (в данном случае все поля получили Текстовый тип , кроме поля «ПорядковыйНомер», который имеет тип Счётчик , который позволит назначить каждой записи свой номер). Выбираем ключевое поле («ПорядковыйНомер», потому что оно имеет тип Счётчик)
    Заполняем таблицу в парадном режиме
После создания соответствующих таблиц приступаем к созданию форм, которые безусловно упростят добавление, изменение и просмотр данных, а также помогут менее опытным сотрудникам совладать с имеющейся базой данных.
    В открытом окне выбираем вкладыш «Формы» Необходимые формы будем создавать при помощи мастера форм

    для этого выберем таблицы, для которых нам необходимы формы (допустим, это таблицы «Сотрудники» и «Товары»)

при помощи значка >/>> выбираем поля, которые будут использоваться в формена следующем этапе выбираем вид формы, стиль оформления, задаём имя формы и выводим готовую форму


    То же самое проделываем для оставшихся форм
Как упоминалось выше, использование форм делает работу с таблицами более простой и приятной. Благодаря разнообразию стилей оформления, каждый может оформить форму на свой вкус.Следующим шагом в создании нашей базы данных станет создание запросов. Создание запросов является одним из самых важных и сложных этапов в работе с базой данных.
    Для нашей фирмы необходимо создать два запроса Выбираем в открытом окне вкладыш «Запросы» Запросы мы будем создавать в режиме конструктора Добавляем необходимые таблицы

    Проводим сортировку, фильтрацию и выборку по определённым условиям

В Поле добавляем необходимые поля из имеющихся таблиц; в поле Сортировка можно отсортировать данные по возрастанию/убыванию; в одном из свободных полей можно, путём выбора команды построить из контекстного меню, ввести выражение, которое будет подсчитывать, и выводить на экран необходимые сведенияИ последним этапом создания нашей базы данных станет составление отчёта о продаже каждым сотрудником товаров и о прибыли полученной нашей фирмой.
    Выбираем вкладыш «Отчёты» Отчёты будем создавать при помощи мастера Выбираем таблицу/запрос, по которым мы будем делать отчёт

    Оформляем полученный документ



    В режиме просмотра, выводим готовый отчёт

Вывод

В данной работе была рассмотрена характеристика электронный баз данных, их структура, особенности и преимущества. С помощью наглядного материала были описаны основные понятия и этапы в составлении электронного банка данных, а также необходимость обладания навыком использования БД. На самом деле, на больших предприятиях и не только, объём информации настолько велик, что хранить его в простом бумажном виде не только накладно, но и неудобно. А при помощи БД можно структурировать, дополнять, обновлять, корректировать, просматривать любую информацию в достаточно удобном виде.БД (а в нашем случае Microsoft Access) являются грандиозным открытием. Знание пользователя электронных банков данных помогает повысить свою квалификацию. Наиболее востребованной способностью в XXI веке при приёме на работу является умение работы с Office, в частности с его приложением – Access.

Список использованной литературы

    Microsoft Access 2002, М., 2002 Дженнингс Р., Использование Microsoft Access 2002, М., 2002 Пасько В., Access 97, Киев, 1997 Бекаревич Ю. Б., Microsoft Access 2003, СПб., 2004 Бемер С., MS Access 2.0, СПб., 1995 Манс В., Microsoft Access 2.0. Локальная версия, М., 1995 Дубнов П. Ю., Access 2002, М., 2004 Фролов И. М., Энциклопедия Microsoft Office 2003, М., 2004 Иванов В., Microsoft Office System 2003. Русская версия, СПб., 2004 Палмер С., Access 2 для «чайников», Киев, 1995
  1. Система управления базами данных это комплекс программных и языковых средств, необходимых для создания, обработки баз данных и поддержания их в актуальном состоянии

    Решение

    База данных – это организованная структура, предназначенная для хранения информации. Систему управления базой данных (СУБД) можно определить как комплекс программных средств, предназначенных для создания структуры базы данных, заполнения

  2. Документ

    Для студентов дневных и вечерних факультетов технических вузов, изучающих автоматизированные информационные системы и системы управления базами данных.

  3. Рабочая программа дисциплина базы данных направление

    Рабочая программа

    Рабочая программа составлена в соответствии с государственным образовательным стандартом высшего профессионального образования направления подготовки дипломированного специалиста 654600 – Информатика и вычислительная техника, специальности

  4. Методические указания для выполнения курсового проекта по дисциплине «Базы данных»

    Методические указания

    Соответствует государственным требованиям к минимуму содержания и уровню подготовки выпускников по специальности 230105 среднего профессионального образования

  5. Основная образовательная программа высшего профессионального образования Направление подготовки 032700 Филология (2)

    Основная образовательная программа

    1.1. Основная образовательная программа (ООП) бакалавриата, реализуемая вузом по направлению подготовки 032700 Филология и профилю подготовки Отечественной филологии (Башкирский язык и литература).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

БЕЗОПАСНОСТЬ СИСТЕМ БАЗ ДАННЫХ

Л екция 1. Основные понятия систем базы данных

База данных - совокупность данных, хранимых в соответствии со схемой данных, манипулирование которых осуществляется в соответствии с правилами средств моделирования данных.

База данных - совокупность данных, организованных в соответствии с концептуальной структурой, описывающей характеристики этих данных и взаимоотношения между ними, причём такое собрание данных, которое поддерживают одну или более областей применения.

СУБД - Это совокупность программ и лингвистических средств общего или специального назначения, обеспечивающих управление, создание и использование БД.

Классификация СУБД

I. По модели данных.

1. Иерархические;

2. Сетевые;

3. Реляционные;

4. Объектно-ориентированные;

5. Обьектно-реляционные;

II. По способу доступа БД.

1. Файлсерверный;

2. Клиентсерверный;

3. Встраиваемые.

Основные функции СУБД

1. Непосредственное управление файлами БД .

Обеспечение необходимых структур внешней памятью, как для хранения данных, непосредственно входящих в БД, так и для служебных целей (например, для ускорения поиска).

2. Управление буферами оперативной памяти .

СУБД обычно работают с БД значительного размера, и этот размер всегда больше доступной оперативной памяти, поэтому единственным доступным способом увеличения скорости производительности является буферизация данных в оперативной памяти, поэтому в развитых СУБД поддерживается собственный набор буферов оперативной памяти с собственной дисциплиной замены буферов.

3. Управление транзакциями .

Транзакция - последовательность операций над БД рассматриваемой СУБД, как единое целое. Либо транзакция успешно выполняется и СУБД фиксирует изменения в БД, произведенные этой транзакцией, либо ни одно из этих изменений никак не отображается на состоянии БД. Понятие транзакции необходимо для поддержания логической целостности БД.

4. Журнализация .

Одним из основных требований к СУБД является надёжность хранения данных во внешней памяти. Под надежностью хранения понимается то, что СУБД в состоянии восстановить последнее согласованное состояние БД после любого аппаратного или программного сбоя. Обычно рассматривают 2 вида аппаратных сбоев: 1) мягкий сбой, который можно трактовать как внезапную остановку компьютера; 2) жесткий сбой, который можно трактовать внезапным сбоем компьютера, который характеризуется потерей частью информации на внешних носителях. Журнал - особая часть БД, недоступная пользователям СУБД и поддерживаемая с особой тщательностью, в которую поступают записи обо всех изменениях в основной части БД.

5. Поддержка языков БД.

Для работы с БД используются специальные языки, называемые языками БД. В ранних версиях СУБД поддерживалось несколько языков, специализированных по выполняемым функциям. Обычно выделялось два: язык для выделения структур базы данных и язык манипулирования данными. Сейчас таким языком является TSQL .

Типовая организация современной СУБД

1. Ядро .

Отвечает за управление в СУБД данными во внешней памяти, управлением буферами оперативной памяти, управлением транзакциями и журнализацию. Можно выделить компоненты ядра: менеджер данных, буферов, транзакций, журналов.

2. Компилятор языка .

Основной функцией компилятора языка является компиляция операторов языка, под некоторой управляемой программой.

3. Утилиты БД .

В них выделяют такие процедуры, которые слишком накладно выполнять с использованием языка БД, такие как загрузка БД, глобальная загрузка целостности и так далее.

Лекция 2. Введение в реляционную модель данных

Реляционный подход к организации БД был заложен в конце 1960-х годов Эдгаром Коддом. В современности данных подход является одним из распространенных.

Достоинствами реляционного подхода являются:

Основан на небольшом числе интуитивно понятных абстракций, на основе которых возможно простое моделирование наиболее распространенных предметных областей. Эти абстракции могут быть точно и формально определены. Теоретическом базисом реляционного подхода служит аппарат теории множеств и математической логики. Реляционный подход обеспечивает возможность ненавигационного манипулирования данными без необходимости знания конкретной физической структуры базы данных во внешней памяти.

Основные понятия реляционных баз данных

1. Тип данных;

3. Атрибут;

4. Кортеж;

5. Отношение;

6. Первичный ключ.

Тип данных

Значения данных, хранимые в реляционной базе данных являются типизированными, то есть известен тип каждого хранимого значения. Понятие типа данных в реляционной модели полностью соответствует понятию типы данных языка программирования.

Домен

В общем виде домен определяется путем задания некоторого базового типа данных, к которому относятся элементы домена и произвольного логического выражения, применяемого элементу этого типа данных (ограничение домена). Элемент будет являться элементом домена только в том случае, если вычисления ограничения домена дает результат ИСТИНА. С каждым доменом связываются Имя уникальной среди имен всех доменов и соответствующей базе данных.

Заголовок отношения, кортеж, тело отношения, значение отношения, переменная отношения

Заголовком схемы отношения r отношение (Hr) называется конечное множество , где A - имя атрибута, Т обозначает имя некоторого базового типа или ранее определенного домена. По определению требуется, чтобы все имена атрибутов в заголовке были различны.

Кортежем tr соответствующим заголовку Hr называется множество упорядоченных триплетов вида: , где v должен являться допустимым значением типа данных или домена.

Телом Br называется произвольное множество кортежей tr.

Значением Vr называется пара множества Hr и Br. Заголовок и тело данных.

Первичный ключ

Первичным ключом является такое подмножество, которых что в любое время значение первичного ключа в любом кортеже тела отношения отличается от значения первичного ключа в любом другом кортеже тела этого отношения. А никакое собственное подмножество S этим свойством не обладает.

Фундаментальные свойства отношений

1. Отсутствие кортежей дубликатов. Это свойство следует из определения тела отношения как множество кортежей. В классической теории множеств по определению множество состоит из различных элементов. Именно из этого свойства вытекает наличие у каждого значения отношения первичного ключа. То есть у минимального множества атрибутов, являющегося подмножества заголовка данного отношения, составное значение которых уникально определяет кортеж отношения. Понятие первичного ключа является исключительно важным в связи с понятием целостности баз данных.

2. Отсутствие упорядоченности кортежей.

3. Отсутствие упорядоченности атрибутов.

4. Атомарность значения атрибутов. Значения всех атрибутов являются атомарными. Это следует из определения домена, как потенциального множества значений скалярного типа. То есть среди значений домена не могут содержаться значения с видимой структурой, в том числе множества значений. Главное в атомарности значений атрибутов состоит в том, что реляционная СУБД не должна обеспечивать пользователю явновидимой структуры внутренних данных.

Типы данных

Целые числа Строки символов Деньги Номера отделов

Домены (кроме первичного ключа)

Перв.ключ и номера проп-ов. Имена Размеры зарплат Номера отделов

Атрибуты

Лекция 3. Реляционная алгебра и нормализация

Базисные средства манипулирования реляционными данными составляющие определяются 2 базовых механизма манипулирования реляционными данными.

1) основанные на теории множеств реляционная алгебра и базирующиеся на мат. логике (на исчислении предикатов) реляционные исчисления. В свою очередь рассматривают два вида реляционного исчисления: исчисление доменов и предикатов. Все механизмы обладают одним важным свойством: они замкнуты относительно понятия отношения. Это означает, что выражения реляционной алгебры и формулы рел вычисления определяются над отношениями реляционной базы данных и результатом их выполнения также является отношения. Конкретный язык манипулирования рел. базами данных называется реляционно полным, если любой запрос, выражаемый с помощью одного выражения рел. алгебры или одной формулой реляционного исчисления может быть выражен с помощью одного оператора этого языка.

2) Осн. идея рел. алгебры в том, что отношения явл. множествами, то средствами манипулирования отношениями могут базироваться на традиционных теоретико-множественных операций, дополненными некоторыми специальными операциями, специфичными для БД.

В состав теоретико-множественных операций входят:

объединение

пересечение

разность

прямое произведение

Специальные операции:

ограничение отношений

проекция отношений

соединение отношений;

деление отношений;

Кроме того включают операцию присваивания, которые позволяют сохранить результаты алгебраических отношений, и операцию переименования, которая дает возможность корректно сформировать заголовок результирующего отношения.

Общая интерпретация рел. операций:

1) При выполнении операции объединения двух отношений, производится отношение, включающих все кортежи, входящее в хотя бы одно из отношений операндов.

2) Операция пересечений двух отношений производит отношение, включающее все кортежи, входящие в оба отношений операндов.

3) Отношение, являющееся разностью двух отношений, включает все кортежи, входящие в отношение первого операнда, такие что ни один из них не входит в отношение, являющимся вторым операндом.

4) При выполнении прямого произведения двух отношений производится отношение, кортежи которого являются... (сцеплением) кортежей первого и второго операнда.

5) Результатом ограничения отношений по некоторому условию является отношение, включающее кортежи отношения операнда, удовлетворяющие этому условию.

6) При выполнении проекции отношений на заданный набор атрибутов, ...... кортежи которого производятся путем взятия соответствующих значений, из кортежей отношения операнда.

7) При соединении двух отношений по некоторому условию образуется результирующее отношение, кортежи которого являются контетенацией (сцеплением) кортежей первого и второго отношения и удовлетворяет условию.

8) У операции деления два операнда: бинарные и унарные отношения. результирующее отношение состоит из одноатрибутного значения, включающее значение первого атрибута кортежей, первого операнда таких, что множество значений второго атрибута при фиксированном значении второго атрибута совпадает со множ. значений второго операнда.

9) Операция переименования производит отношение, тело которого совпадает с телом операнда, но имена атрибутов изменены.

Особенности теоретико-множественных операций реляционной алгебры. база данный компиляция реляционный

Понятие совместимости отношений об объединений

Два отношения совместимых по объединению только в том случае, когда обладают одинаковыми заголовками, более точно это означает, что в заголовках содержится один и тот же набор атрибутов, и одноименные атрибуты определены на одном и том же домене. Если два отношения почти совместимы по объединению, то есть во всем, кроме имен атрибутов, то их можно сделать полностью совместимыми, путем использования операции переименования.

Понятие совместимости по взятию расширенного прямого произведения. В том случае, если множество имен этих отношений не пересекаются. Все 4 теоретико-множественных операций рел. алгебры являются ассоциативными.

Специальные реляционные операции

Операция ограничения. Требует наличие двух операндов, ограничиваемых отношений и простого условного ограничения.

a comp-on b - ....

a comp-on const - литерально заданная константа

В результате выполнения операции ограничения производится отношение, заголовок которого совпадает с заголовком отношения операнда, а в тело входят те кортежи отношения операндов, для которых значением ограничения является TRUE.

Операция соединения отношений требует наличия двух операндов, соединяемых отношений и третьего операнда как и в операции соединения отношений она имеет такой же вид. Результатом операции соединения является отношение, получаемое путем выполнения операции путем ограничения по условию прямого произведения отношений a и b.

Операция деления отношений. Результатом деления а на b являются унарные отношения,состоящий из кортежей v таких что в отношении кортежей множество {w}включает множество значений...

Проектирование реляционных БД

При проектировании решаются две проблемы: каким образом отобразить предметно-объектные области в абстрактные модели данных, чтобы это отображение не противоречило семантике предметной области и было по возможности лучше, часто эту проблему называют проблему логического проектирования БД.

вторая - как обеспечить эффективность выполнения запросах в базе данных. Каким образом, имея особенности в конкретной субд расположить данные во внеш памяти и создание доп стр-р например индексов будет требоваться. Это проблема - проблема физ. проектирования бд.

Проектирование БД с использованием нормализации - классический подход, при котором весь процесс, весь процесс проектирования сводится в терминах реляционных моделей данных методом последовательных отношений к удовлетворительному набор схем отношений. Процесс проектирования представляет собой процесс нормализации схем отношений. Каждая след. нормальная форма обладает лучшими свойствами, чем предыдущая. В теории рел бд выделяется след послед-ть норм форм:

1 норм форма

2 норм форма

3 норм форма

Нормальная форма Бойса-Кодде

4 нормальная форма

5 нормальная форма или нормальная форма проекции соединения.

Основные свойства норм форм:

каждая след нф в некотором смысле лучше предыдущей.

при переходе к след нф свойства предыдущих нф сохраняются.

Определение 1. Функциональная зависимость в отношении r атрибут y функционально зависит от атрибута х только в том случае, если каждому значению х соответствует в точности одно значение у.

Полная функциональная зав-ть r(x) r(y) если y не зависит функционально от любого точного значения х.

Транзитивная зависимость если существует атрибут Z, что имеются функциональные зависимости...

Неключевой атрибут - любой атрибут отношения, невходящий в состав первичного ключа.

Взаимнонезависимые атрибуты (2 или более) - если не один из этих атрибутов не является функционально зависимым от других.

Отношение находится в 1нф тогда, когда каждый его кортеж содержит только одно значение для каждого из атрибутов. В реляц модели отношений все они находятся в нормальной форме.

вторая нормальная форма, только в том случае, когда она находится в первой нормальной форме и каждый неключевой атрибут полностью зависит от первичного ключа.

Третья нормальная форма. Отношение r находится в том случае, если она нах-ся во второй и каждый неключевой атрибут нетранзитивно зависит от первичного ключа.

СОТРУДНИК

ОТДЕЛ

ТЕЛЕФОН

БУХГАЛТЕР

БУХГАЛТЕР

СНАБЖЕНЕЦ

Лекция 4. Операторы языка SQL

SELECT служит для получения любого количества данных из одной или нескольких таблиц. В общем случае результатом выполнения предложения SELECT ЯВЛЯЕТСЯ ДРУГАЯ ТАБЛИЦА К этой новой таблице вновь может быть применена операция SELECT И так далее

1) Самостоятельная команда на получение и вывод строк в таблице, сформированной из столбцов и строк одной или нескольких таблиц представлений

2) как элемент WHERE или HAVING условия. Это называется ложным запросом

3) фраза выбора в командах CREATE VIEW DECLARE CURSOR INSERT

4) Средство присвоения глобальным переменным значений и строк сформированной таблицы. INTO

Имеет следующий формат.

SELECT [ выбрать данные и выполнить перед их выводом преобразования в соответствии с указанными выражениями и или функциями

Элемент, -\\-} FROM перечисление.......

базовая таблица | представления],

Строки из указанных таблиц должны соответствовать указанному перечню условий отбора строк

Фраза]

GROUP BY - операция по группировке по указанному перечню столбцов, с тем, чтобы получить для каждой группы единственное агрегированное значение.

HAVING - условие фильтрации по группам.

5. Простая выборка.

* служит псевдонимом для

выбор конкретного поля

Исключение дубликатов. Для исключения дубликатов и одновременного упорядочивания перечня применяется запрос с ключевым словом DISTINCT.

Выборка вычисляемых значений.

Фраза SELECT может содержать не только перечень столбцов, но и выражение.

Выборка с использованием фразы WHERE. В синтаксисе фразы для отбора нужных строк таблицы можно использовать базовые операторы сравнения. И возможность использования составных логических выражений.

WHERE P1 = 6 AND P2 = 8

Можно использовать BETWEEN для выборки значений в интервале.

BETWEEN удобно использовать при работе с данными задаваемыми интервалами, начало и конец, которые расположены в разных таблицах.

Использование оператора IN.

IN (3, 4, 5) <=> P1= 3 OR P1 = 4 OR P1 = 5

Использование LIKE

Данный оператор позволяет отыскать все значения указанного столбца, соответствующий образцу.

Заменяет любой одиночный символ.

% - заменяет любую последовательность из n символов.

Вовлечение неопределенного значения (NULL). Для проверки неопределенного значения используется IS.

Выборка с упорядочиванием. Для сортировки данных используется оператор ORDER BY. Можно упорядочить по возрастанию по умолчанию. Ключевое слово ASC позволит сортировать по убыванию.

Агрегирование данных

В SQL существует ряд стандартных функций. Кроме специального случая COUNT *, каждый из этих функций... столбца некоторой таблицы и создаёт несколько значений.

COUNT - количество значений в столбце

SUM - сумма значений в столбце

AVG - среднее значение в столбце

Столбец должен содержать числовые значения. Аргумент у всех функций кроме COUNT *, предшествует ключевое слово DISTINCT, указывающее...

А COUNT* служит для подсчета всех строк в таблице с дубликатами.

Если не используется фраза GROUP BY то в SELECT можно включать лишь SQL функции или выражения, содержащие такие функции.

Фраза GROUP BY

Инициирует перекомпоновку указанных во FROM таблицы по группам, каждая из которых имеет одинаковые значения в столбце, указанном в GROUP BY. Данная фраза не предполагает сортировки.

Фраза HAVING играет такую же роль для групп, что и WHERE для строк. Те используется для исключения групп.

Размещено на Allbest.ru

Подобные документы

    Современные базы данных – многофункциональные программные системы, работающие в открытой распределенной среде изучении администрирования базы данных. Способы организации внешней памяти баз данных. Системы управления базами данных для хранения информации.

    курсовая работа , добавлен 07.12.2010

    Основные понятия базы данных и систем управления базами данных. Типы данных, с которыми работают базы Microsoft Access. Классификация СУБД и их основные характеристики. Постреляционные базы данных. Тенденции в мире современных информационных систем.

    курсовая работа , добавлен 28.01.2014

    Понятие базы данных, её структура. Общие принципы хранения информации. Краткая характеристика особенностей иерархической, сетевой и реляционной модели организации данных. Structured Query Language: понятие, состав. Составление таблиц в Microsoft Access.

    лекция , добавлен 25.06.2013

    Преимущества и недостатки роботизированной сварки. Характеристика видов систем управления базами данных. Информационная модель сварочного робота, системы управления роботом сварочных клещей. Критерии выбора робота и структура запроса на выборку.

    курсовая работа , добавлен 22.12.2014

    Устройства внешней памяти. Система управления базами данных. Создание, ведение и совместное использование баз данных многими пользователями. Понятие системы программирования. Страницы доступа к данным. Макросы и модули. Монопольный режим работы.

    реферат , добавлен 10.01.2011

    Формы представляемой информации. Основные типы используемой модели данных. Уровни информационных процессов. Поиск информации и поиск данных. Сетевое хранилище данных. Проблемы разработки и сопровождения хранилищ данных. Технологии обработки данных.

    лекция , добавлен 19.08.2013

    Характеристика категорий современных баз данных. Исследование особенностей централизованных и распределенных баз данных. Классификация систем управления базами данных по видам программ и применению. Управление буферами оперативной памяти и транзакциями.

    курсовая работа , добавлен 10.03.2016

    Классификации баз данных по характеру сберегаемой информации, способу хранения данных и структуре их организации. Современные системы управления базами данных и программы для их создания: Microsoft Office Access, Cronos Plus, Base Editor, My SQL.

    презентация , добавлен 03.06.2014

    Особенности управления информацией в экономике. Понятие и функции системы управления базами данных, использование стандартного реляционного языка запросов. Средства организации баз данных и работа с ними. Системы управления базами данных в экономике.

    контрольная работа , добавлен 16.11.2010

    Структура и функции системы управления базами данных (СУБД). Управление хранением данных и доступом к ним. Защита и поддержка целостности данных. Надежность хранения данных во внешней памяти. Классификация СУБД по способу доступа к базе данных.

Введение

Системы баз данных сегодня являются основой построения большинства информационных систем и используются при автоматизации практически всех сфер человеческой деятельности. Например, доступ к базе данных необходим при работе с библиотечной информационной системой, содержащей сведения обо всех книгах, имеющихся в библиотеке, ее читателях, заявках на бронирование книг и т.д. В ней обычно содержатся средства, позволяющие читателям находить нужную им книгу по названию, фамилиям авторов или указанной тематике. С помощью такого рода систем организуется учет движения книг, другие операции, необходимые в библиотечной деятельности.

В ВУЗе могут существовать базы данных с информацией о студентах, профессорско-преподавательском составе, факультетах и кафедрах, др. данные, необходимые для функционирования так называемых комплексных информационно-аналитических систем и их подсистем (учета кадров, бухгалтерской, документооборота, информационного обеспечения учебной деятельности и т.п.).

Базы данных по народонаселению содержат сведения о жителях города, региона и т.п., необходимые для функционирования систем налогообложения, здравоохранения, образования, социальной защиты, др.

1. Основные понятия баз данных

Банк данных - это автоматизированная система, пред­ставляющая совокупность информационных, программных, техниче­ских средств и персонала, обеспечивающих хранение, накопление, об­новление, поиск и выдачу данных. Главными составляющими банка данных являются база данных и программный продукт, называе­мый системой управления базой данных (СУБД).

База данных - это специальным образом организованное хра­нение информационных ресурсов в виде интегрированной совокупности файлов, обеспечивающей удобное взаимодействие между ними и быст­рый доступ к данным.

База данных - это динамичный объект, меняющий значения при изменении состояния отражаемой предметной области (внешних условий по отношению к базе). Под предметной обла­стью понимается часть реального мира (объектов, процессов), ко­торая должна быть адекватно, в полном информационном объеме представлена в базе данных. Данные в базе организуются в единую целостную систему что обеспечивает более производительную ра­боту пользователей с большими объемами данных.

Система управления базой данных (СУБД) – это программное обеспечение, с помощью которого пользователи могут определять, создавать и поддерживать базу данных, а также осуществлять к ней контролируемый доступ. СУБД взаимодействует с прикладными программами пользователя и базой данных и обладает приведенными ниже возможностями:

· Позволяет определять базу данных, что обычно осуществляется с помощью языка определения данных (DDL - Data Definition Language). Язык DDL предоставляет пользователям средства указания типа данных и их структуры, а также средства задания ограничений для информации, хранимой в базе данных.

· Позволяет вставлять, обновлять, удалять и извлекать информацию из базы данных, что обычно осуществляется с помощью языка управления данными (DML - Data Manipulation Language). Наличие централизованного хранилища всех данных и их описаний позволяет использовать язык DML как общий инструмент организации запросов, который иногда называют языком запросов.

· Предоставляет контролируемый доступ к базе данных с помощью: системы обеспечения безопасности, предотвращающей несанкционированный доступ к базе данных со стороны пользователей; системы поддержки целостности данных, обеспечивающей непротиворечивое состояние хранимых данных; системы управления параллельной работой приложений, контролирующей процессы их совместного доступа к базе данных; системы восстановления, позволяющей восстановить базу данных до предыдущего непротиворечивого состояния, нарушенного в результате сбоя аппаратного или программного обеспечения; доступного пользователям каталога, содержащего описание хранимой в базе данных информации.

Кроме важнейших составляющих базы данных и СУБД, банк данных включает и ряд других составляющих. Остановимся на их рассмотрении.

Языковые средства включают языки программирования, языки запросов и ответов, языки описания данных.

Методические средства - это инструкции и рекомендации по созданию и функционированию банка данных, выбору СУБД.

Технической основой банка данных является ЭВМ, удовлетворяющая оп­ределенным требованиям по своим техническим характеристикам.

Обслуживающий персонал включает программистов, инженеров по техническому обслуживанию ЭВМ, административный аппарат, в том числе администратора базы данных. Их задача - контроль за работой банка данных, обеспечение совместимости и взаимодействия всех состав­ляющих, а также управление функционированием банка данных, контроль за качеством информации и удовлетворение информационных по­требностей. В минимальном варианте все эти функции для пользо­вателя могут обеспечиваться одним лицом или выполняться орга­низацией, поставляющей программные средства и выполняющей их поддержку и сопровождение.

Особую роль играет администратор базы или банка данных. Администратор управляет данными, персоналом, обслужи­вающим банк данных. Важной задачей администратора базы данных является защита данных от разрушения, несанкционированного и некомпетентного доступа. Администратор предоставляет пользователям большие или меньшие полномочия на доступ ко всей или части базы. Для вы­полнения функций администратора в СУБД предусмотрены раз­личные служебные программы. Администрирование базой данных предусматривает выполнение функций обеспечения надежной и эффективной работы базы данных, удовлетворение информационных по­требностей пользователей, отображение в базе данных динамики предметной области.

Главными пользователями баз и банков данных являются ко­нечные пользователи , т.е. специалисты, ведущие различные участки экономической работы. Их состав неоднороден, они различаются по квалификации, степени профессионализма, уровню в системе управления: главный бухгалтер, бухгалтер, операционист, началь­ник кредитного отдела и т.д. Удовлетворение их информационных потребностей - это решение большого числа проблем в организа­ции внутримашинного информационного обеспечения.

Специальную группу пользователей банка данных образуют прикладные программисты. Обычно они играют роль посредников между базой данных и конечными пользователями, так как создают удобные пользовательские программы на языках СУБД. Централизованный характер управления данными вызывает необходимость администрирования такой сложной системы, как банк данных.

Преимущества работы с банком данных для пользователя окупают затраты и издержки на его создание, так как:

Повышается производительность работы пользователей, дос­тигается эффективное удовлетворение их информационных потребностей;

Централизованное управление данными освобождает при­кладных программистов от организации данных, обеспечива­ет независимость прикладных программ от данных;

Развитая организация базы данных позволяет выполнять разнообраз­ные нерегламентированные запросы, новые приложения;

Снижаются затраты не только на создание и хранение дан­ных, но и на их поддержание в актуальном и динамичном со­стоянии; уменьшаются потоки данных, циркулирующих в системе, сокращается их избыточность и дублирование.

Как банк данных, так и база данных могут быть сосредоточены на одном компьютере или распределены между несколькими ком­пьютерами. Для того чтобы данные одного исполнителя были дос­тупны другим и наоборот, эти компьютеры должны быть соедине­ны в единую вычислительную систему с помощью вычислительных сетей.

Банк и база данных, расположенные на одном компьютере, на­зываются локальными, а на нескольких соединенных сетями ПЭВМ называются распределенными. Распределенные банки и базы данных более гибки и адаптивны, менее чувствительны к выходу из строя оборудования.

Назначение локальных баз и банков данных организации бо­лее простого и дешевого способа информационного обслуживания пользователей при работе с небольшими объемами данных и ре­шении несложных задач.

Локальные базы данных эффективны при работе одного или нескольких пользователей, когда имеется возможность согласова­ния их деятельности административным путем. Такие системы просты и надежны за счет своей локальности и организационной независимости.

Назначение распределенных баз и банков данных состоит в предоставлении более гибких форм обслуживания множеству удаленных пользователей при работе со значительными объемами ин­формации в условиях географической или структурной разобщен­ности. Распределенные системы баз и банков данных обеспечивают широкие возможности по управлению сложных многоуровне­вых и многозвенных объектов и процессов.

Распределенная обработка данных позволяет разместить базу данных (или несколько баз) в различных узлах компьютерной сети. Таким образом, каждый компонент базы данных располагается по месту наличия техники и ее обработки. Например, при организа­ции сети филиалов какой-либо организационной структуры удобно обрабатывать данные в месте расположения филиала. Распределе­ние данных осуществляется по разным компьютерам в условиях реализации вертикальных и горизонтальных связей для организа­ций со сложной структурой.

Объективная необходимость распределенной формы организа­ции данных обусловлена требованиями, предъявляемыми конеч­ными пользователями:

Централизованное управление рассредоточенными информа­ционными ресурсами;

Повышение эффективности управления базами и банками данных и уменьшение времени доступа к информации;

Поддержка целостности, непротиворечивости и защиты дан­ных;

Обеспечение приемлемого уровня в соотношении «цена - производительность - надежность».

Распределенная система баз данных (или частей базы) позволя­ет в широких возможностях варьировать и поддерживать инфор­мационные ресурсы, избегая узких мест, сдерживающих произво­дительность пользователя, и добиваться максимальной эффектив­ности использования информационных ресурсов.

2. Функции СУБД

В этом разделе мы рассмотрим типы функций и служб (сервисов), которые должна обеспечивать типичная СУБД.

Хранение, извлечение и обновление данных. СУБД должна предоставлять пользователям возможность сохранять, извлекать и обновлять данные в базе данных. Это самая фундаментальная функция СУБД. Из предыдущего ясно, что способ реализации этой функции в СУБД должен позволять скрывать от конечного пользователя внутренние детали физической реализации системы (например, файловую организацию или используемые структуры хранения).

Каталог, доступный конечным пользователям. СУБД должна иметь доступный конечным пользователям каталог, в котором хранится описание элементов данных. Ключевой особенностью архитектуры ANSI-SPARC является наличие интегрированного системного каталога с данными о схемах, пользователях, приложениях и т.д. Предполагается, что каталог доступен как пользователям, так и функциям СУБД. Системный каталог, или словарь данных, является хранилищем информации, описывающей данные в базе данных (по сути, это - метаданные). В зависимости от типа используемой СУБД количество информации и способ ее применения могут варьироваться. Обычно в системном каталоге хранятся следующие сведения:

· имена, типы и размеры элементов данных;

· имена связей;

· накладываемые на данные ограничения поддержки целостности;

· имена санкционированных пользователей, которым предоставлено право доступа к данным;

· внешняя, концептуальная и внутренняя схемы и отображения между ними;

· статистические данные, например частота транзакций и счетчики обращений к объектам базы данных.

Системный каталог позволяет достичь определенных преимуществ, перечисленных ниже.

· Информация о данных может быть централизованно собрана и сохранена, что позволит контролировать доступ к этим данным, как и к любому другому ресурсу.

· Можно определить смысл данных, что поможет другим пользователям понять их предназначение.

· Упрощается сообщение, так как сохраняются точные определения смысла данных. В системном каталоге также могут быть указаны один или несколько пользователей, которые являются владельцами данных или обладают правом доступа к ним.

· Благодаря централизованному хранению избыточность и противоречивость описания отдельных элементов данных могут быть легко обнаружены.

· Внесенные в базу данных изменения могут быть запротоколированы.

· Последствия любых изменений могут быть определены еще до их внесения, поскольку в системном каталоге зафиксированы все существующие элементы данных, установленные между ними связи, а также все их пользователи.

· Меры обеспечения безопасности могут быть дополнительно усилены.

· Появляются новые возможности организации поддержки целостности данных.

· Может выполняться аудит сохраняемой информации.

Поддержка транзакций. СУБД должна иметь механизм, который гарантирует выполнение либо всех операций обновления данной транзакции, либо ни одной из них. Транзакция представляет собой набор действий, выполняемых отдельным пользователем или прикладной программой с целью доступа или изменения содержимого базы данных. Примерами простых транзакций может служить добавление в базу данных, удаление из нее или обновление сведений о том или ином объекте. Если во время выполнения транзакции произойдет сбой, база данных попадает в противоречивое состояние, поскольку некоторые изменения уже будут внесены, а остальные - еще нет. Поэтому все частичные изменения должны быть отменены для возвращения базы данных в прежнее, непротиворечивое состояние.

Сервисы управления параллельностью. СУБД должна иметь механизм, который гарантирует корректное обновление базы данных при параллельном выполнении операций обновления многими пользователями. При этом параллельный доступ сравнительно просто организовать, если все пользователи выполняют только чтение данных, поскольку в этом случае они не могут помешать друг другу. Однако, когда несколько пользователей одновременно получают доступ к БД, конфликт с нежелательными последствиями легко может возникнуть, например, если хотя бы один из них попытается обновить данные.

СУБД должна гарантировать, что при одновременном доступе к базе данных многих пользователей подобных конфликтов не произойдет.

Сервисы восстановления. При обсуждении поддержки транзакций упоминалось, что при сбое транзакции база данных должна быть возвращена в непротиворечивое состояние, что должно гарантироваться возможностями СУБД.

Сервисы контроля доступа к данным. СУБД должна иметь механизм, гарантирующий возможность доступа к базе данных только санкционированных пользователей. Термин "безопасность" относится к защите базы данных от преднамеренного или случайного несанкционированного доступа. Предполагается, что СУБД обеспечивает механизмы подобной защиты данных.

Поддержка обмена данными. СУБД должна обладать способностью к интеграции с коммуникационным программным обеспечением с целью организации доступа удаленных пользователей к централизованной БД (в рамках системы распределенной обработки).

Службы поддержки целостности данных. СУБД должна обладать инструментами контроля за тем, чтобы данные и их изменения соответствовали заданным правилам.

Целостность базы данных означает корректность и непротиворечивость хранимых данных и выражается в виде ограничений или правил сохранения непротиворечивости данных, которые не должны нарушаться в базе.

Службы поддержки независимости от данных. СУБД должна обладать инструментами поддержки независимости программ от структуры базы данных.

Понятие независимости от данных уже рассматривалось выше. Обычно она достигается за счет реализации механизма поддержки представлений или подсхем. Физическая независимость от данных достигается довольно просто, так как обычно имеется несколько типов допустимых изменений физических характеристик базы данных, которые никак не влияют на представления. Однако добиться полной логической независимости от данных сложнее. Как правило, система легко адаптируется к добавлению нового объекта, атрибута или связи, но не к их удалению. В некоторых системах вообще запрещается вносить любые изменения в уже существующие компоненты логической схемы.

Вспомогательные службы. СУБД должна предоставлять некоторый набор различных вспомогательных служб. Вспомогательные утилиты обычно предназначены для оказания помощи АБД в эффективном администрировании базы данных. Одни утилиты работают на внешнем уровне, а потому они, в принципе, могут быть созданы самим АБД, тогда как другие функционируют на внутреннем уровне системы и потому должны быть предоставлены самим разработчиком СУБД. Ниже приводятся некоторые примеры подобных утилит.

· Утилиты импортирования, предназначенные для загрузки базы данных из плоских файлов, а также утилиты экспортирования, которые служат для выгрузки базы данных в плоские файлы.

· Средства мониторинга, предназначенные для отслеживания характеристик функционирования и использования базы данных.

· Программы статистического анализа, позволяющие оценить производительность или степень использования базы данных.

· Инструменты реорганизации индексов, предназначенные для перестройки индексов и обработки случаев их переполнения.

· Инструменты сборки мусора и перераспределения памяти для физического устранения удаленных записей с запоминающих устройств, объединения освобожденного пространства и перераспределения памяти в случае необходимости.

3. Архитектура СУБД

В данном разделе рассмотрим различные типовые архитектурные решения, используемые при реализации многопользовательских СУБД, а именно: с телеобработкой, файл-серверными и клиент-серверными системами.

Телеобработка. Традиционной архитектурой многопользовательских систем раньше считалась схема, получившая название "телеобработки", при которой один компьютер был соединен с несколькими "неинтеллектуальными" терминалами так, как показано на рис. 1. С терминалов посылались сообщения пользовательским приложениям, в свою очередь, приложения обращались к необходимым службам СУБД. Таким же образом сообщения возвращались назад на пользовательский терминал. При такой архитектуре вся нагрузка возлагалась на центральный компьютер, который должен был выполнять не только действия прикладных программ и СУБД, но и значительную работу по обслуживанию терминалов (например, форматирование данных, выводимых на экраны терминалов).

В настоящее время в связи с развитием информационно-вычислительных сетей получили широкое распространение файл-серверные и клиент-серверные СУБД.

Рис 1. Топология архитектуры телеобработки

Файл - серверные системы. Системы данного типа функционируют в рамках локальных вычислительных сетей (ЛВС), управляемых ОС соответствующего типа. При этом файловый сервер содержит файлы, необходимые для работы приложений и самой СУБД. Однако пользовательские приложения и сама СУБД размещены и функционируют на отдельных рабочих станциях, и обращаются к файловому серверу только по мере необходимости получения доступа к нужным им файлами - как показано на рис. 2. Таким образом, файловый сервер функционирует просто как совместно используемый жесткий диск.

Рис 2. Архитектура с использованием файлового сервера

Очевидно, что архитектура с использованием файлового сервера обладает следующими основными недостатками:

· Большой объем сетевого трафика.

· На каждой рабочей станции должна находиться полная копия СУБД.

· Управление параллельностью, восстановлением и целостностью усложняется, поскольку доступ к одним и тем же файлам могут осуществлять сразу несколько экземпляров СУБД.

Клиент-серверные системы. При данном подходе предполагается существование клиентского процесса, требующего определенных ресурсов, а также серверного процесса, который эти ресурсы предоставляет. При этом совсем необязательно, чтобы они находились на одном и том же компьютере. На практике системы данного типа реализуются в рамках информационно-вычислительных сетей (не обязательно ЛВС) под управлением клиент-серверных ОС (см. рис. 3).

В контексте базы данных клиентская часть управляет пользовательским интерфейсом и логикой приложения, действуя как интеллектуальная рабочая станция, на которой выполняются приложения баз данных. Клиент принимает от пользователя запрос, проверяет синтаксис и генерирует запрос к базе данных на SQL или другом языке БД, который соответствует логике приложения. Затем он передает сообщение серверу, ожидает поступления ответа и форматирует полученные данные для представления их пользователю. Сервер принимает и обрабатывает запросы к базе данных, а затем передает полученные результаты обратно клиенту. Такая обработка включает проверку полномочий клиента, обеспечение требований целостности, поддержку системного каталога, а также выполнение запроса и обновление данных. Помимо этого, поддерживается управление параллельностью и восстановлением. Выполняемые клиентом и сервером операции приведены ниже.

Рис 3. Общая схема построения систем с архитектурой "клиент/сервер"

Клиент:

· Управляет пользовательским интерфейсом;

· Принимает и проверяет синтаксис введенного пользователем запроса;

· Выполняет приложение;

· Генерирует запрос к базе данных и передает его серверу;

· Отображает полученные данные пользователю.

Сервер:

· Принимает и обрабатывает запросы к базе данных со стороны клиентов;

· Проверяет полномочия пользователей;

· Гарантирует соблюдение ограничений целостности;

· Выполняет запросы/обновления и возвращает результаты клиенту;

· Поддерживает системный каталог;

· Обеспечивает параллельный доступ к базе данных;

· Обеспечивает управление восстановлением.

Этот тип архитектуры обладает приведенными ниже преимуществами.

· Обеспечивается более широкий доступ к существующим базам данных.

· Повышается общая производительность системы. Поскольку клиенты и сервер находятся на разных компьютерах, их процессоры способны выполнять приложения параллельно.

· Стоимость аппаратного обеспечения снижается. Достаточно мощный компьютер с большим устройством хранения нужен только серверу - для хранения и управления базой данных.

· Сокращаются коммуникационные расходы. Приложения выполняют часть операций на клиентских компьютерах и посылают через сеть только запросы к базе данных, что позволяет существенно сократить объем пересылаемых по сети данных.

· Повышается уровень непротиворечивости данных. Сервер может самостоятельно управлять проверкой целостности данных, поскольку все ограничения определяются и проверяются только в одном месте.

· Эта архитектура хорошо согласуется с архитектурой открытых систем.

· Данная архитектура может быть использована для организации средств работы с распределенными базами данных, т.е. с набором нескольких баз данных, логически связанных и распределенных в компьютерной сети.

Необходимо заметить, что в настоящее время данная архитектура рассматривается обычно в трехуровневом варианте, при котором функциональная часть прежнего, толстого (интеллектуального) клиента разделяется на две части. В трехуровневой архитектуре тонкий (неинтеллектуальный) клиент на рабочей станции управляет только пользовательским интерфейсом, тогда как средний уровень обработки данных управляет всей остальной логикой приложения. Третьим уровнем здесь является сepвep базы данных. Эта трехуровневая архитектура оказалась более подходящей для некоторых сред - например, для сетей Internet и intranet, где в качестве клиента может использоваться обычный Web-броузер.

Заключение

Таким образом, база данных – организованная структура, предназначенная для хранения информации. С понятием базы данных тесно связано понятие системы управления базой данных. Это комплекс программных средств, предназначенных для создания структуры новой базы, наполнения ее содержимым, редактирования содержимого и визуализации информации. Банк данных является разновидностью информационной системы, в которой реализованы функции централизованного хранения и накопления обрабатываемой информации. Главными составляющими банка данных являются база данных и системы управления базами данных.

Основными пользователями баз и банков данных являются специалисты, ведущие различные участки экономической работы. Их состав неоднороден, они различаются по квалификации, степени профессионализма, уровню в системе управления: главный бухгалтер, бухгалтер, операционист, началь­ник кредитного отдела и т.д. Удовлетворение их информационных потребностей - это решение большого числа проблем в организа­ции внутримашинного информационного обеспечения.

В данной работе рассмотрены функции, которые должна обеспечивать типичная СУБД, а также различные типовые архитектурные решения, используемые при реализации многопользовательских СУБД, а именно: с телеобработкой, файл-серверными и клиент-серверными системами.

Список литературы

1. http://cit.vvsu.ru/portal/cifr/1/lek19.htm

2. http://do.bti.secna.ru/lib/book_it/istor_razv.html

3. http://do.bti.secna.ru/lib/book_it/ogr_file.html

4. http://www.lib.csu.ru/dl/bases/prg/kompress/articles/2000_05_dbms3/

5. Microsoft Access 2000: справочник /под ред. Ю. Колесникова. – СПб.: Питер, 2001.

6. Автоматизированные информационные технологии в экономике /под ред. проф. Г.А. Титоренко. – М.: ЮНИТИ, 2005. – 399с.

7. Информатика для юристов и экономистов /под ред. С.В. Симоновича. – СПб.: Питер, 2005. – 688с.

9. Леонтьев В.П. Новейшая энциклопедия персонального компьютера 2005. – М.:ОЛМА-ПРЕСС Образование, 2005. – 800с.

10. Хомоненко А.Д., Цыганков В.М., Мальцев М.Г. Базы данных/ под ред. проф. А.Д. Хомоненко. – СПб.: КОРОНА, 2000. – 416с.

11. Экономическая информатика и вычислительная техника./ Под ред. В.П. Косарева. М.: Финансы и статистика, 2005. –592с.