Кодирование информации. Общие сведения о кодировании информации Общие сведения о кодировании информации Кодирование числовой информации Кодирование текстовой. Кодирование информации в компьютере

Кодировка буквенных символов

Лекция 8. Компьютерное представление текста

Компьютерное представление текста связано с системой его кодирования, которая начала развиваться задолго до появления компьютера. В развитии системы кодирования текста можно отметить следующие особенности.

1. Информация никогда не появляется в чистом виде, она всегда как-то представлена, как-то закодирована. Решать задачу кодирования информации человечество начало задолго до появления компьютеров. В результате решения этой грандиозной задачи была создана письменность – как система кодирования речи и арифметика - как система кодирования чисел.

2. Человек выражает свои мысли в виде предложений, составленных из слов. Слова, в свою очередь, складываются из букв. Буквы объединяются в алфавит. Основу языка составляет алфавит - конечный набор различных знаков (символов) любой природы, из которых складывается сообщение.

3. Одна и та же запись может нести разную смысловую нагрузку. Например, набор цифр 251299 может обозначать: массу объекта; длину объекта; расстояние между объектами; номер телефона; запись даты и т.д. Запись – это данные, которые могут превратиться в информацию только в результате раскодирования. Таким образом, для представления информации нужно знать систему кодирования и декодирования илиопределенные правила записи кодов.

Кодирование – это процесс представления информации в виде кода, или переход от одного формата к другому, более удобному для хранения, передачи или обработки информации.

Код набор условных обозначений для представления информации.

Декодирование – получение информации с использованием кода (обратное преобразование).

Шифрование – кодирование, выполняемое с целью засекречивания сообщения, результат шифрования называется криптограммой или шифровкой.

4. Кодировать информацию можно различными способами: устно, письменно, жестами или сигналами любой другой природы (сигналы светофора, телефонные звонки). Чаще всего кодированию подвергаются тексты на естественных языках. Для естественных языков существуют различные способы кодирования, остановимся на самых характерных и широко используемых способах.

1. Графический – основан на использовании специальных рисунков или знаков. Графическое кодирование описано, например, в литературном произведении Конан Дойла "Пляшущие человечки", где для шифрования сообщений использовалась последовательность человеческих фигурок. Другим примером графического кодирования является азбука Морзе, созданная американским изобретателем Самюэлем Морзе в 1837 году для телеграфического кодирования сообщений. В азбуке Морзе каждая буква или знак представлены комбинацией точек и тире или последовательностью коротких и длинных сигналов. До настоящего времени в мореходной практике используются сигналы азбуки Морзе, например, сигнал бедствия – SOS (спасите наши души).



2. Символьный на основе символов (букв) того же алфавита, что и исходный текст. Способ используется, например, в криптографии при создании шифрованных сообщений. Одним из первых применений способа является кодирование английского алфавита, предложенное в 1580 году Фрэнсисом Бэконом. Шифр Бэкона (табл. 8.1) выполнен на основе двоичного 5-тиразрядного кода или двухсимвольного алфавита, состоящего из букв А и В.

Таблица 8.1

Кодирование английского алфавита

a AAAAA g AABBA n ABBAA t BAABA
b AAAAB h ABBB j ABBAB v BAABB
c AAABA i ABAAA p ABBBA w BABAA
d AAABB k ABAAB q ABBBB x BABAB
e AABAA l ABABA r BAAAA y BABBA
f AABAB m ABABB s BAAAB z BABBB

Для создания сообщений на основе предложенной Бэконом системы требуется двухсимвольный алфавит, но при этом длина самого сообщения возрастает в 5 раз, поскольку каждая буква заменяется набором из 5 символов.

3. Числовой – основан на кодировании символов с помощью чисел. Широкое распространение способ получил благодаря развитию ЭВМ. В ЭВМ для кодирования букв используется два числа: 0 и 1. В отличие от шифра Бэкона, где достаточно 5-разрядного представления, в компьютерной технике принято 8-разрядное или 8-битовое представление символов. Последовательность из 8 бит образует 1 байт, байт используется для кодирования одного символа. Число возможных комбинаций 0 и 1 в пределах байта вычисляется по формуле 2 8 =256. Это означает, что с помощью одного байта путем смены последовательности записи нулей и единиц можно закодировать 256 различных символов.

Числовую систему кодирования компьютерных символов следует рассматривать как систему общего пользования. При создании такой системы кодирования используются общеизвестные подходы и принципы. Рассмотрим, каким образом числовой способ реализуется для кодирования компьютерного текста.

1.2 Кодирование информации

Представление информации происходит в различных формах в процессе восприятия окружающей среды живыми организмами и человеком, в процессах обмена информацией между человеком и человеком, человеком и компьютером, компьютером и компьютером и так далее. Преобразование информации из одной формы представления (знаковой системы) в другую называется кодированием.

Средством кодирования служит таблица соответствия знаковых систем, которая устанавливает взаимно однозначное соответствие между знаками или группами знаков двух различных знаковых систем.

В процессе обмена информацией часто приходится производить операции кодирования и декодирования информации. При вводе знака алфавита в компьютер путем нажатия соответствующей клавиши на клавиатуре происходит кодирование знака, то есть преобразование компьютерный код. При выводе знака на экран монитора или принтер происходит обратный процесс - декодирование, когда из компьютерного кода знак преобразуется в его графическое изображение.

С появлением языка, а затем и знаковых систем расширились возможности общения между людьми. Это позволило хранить идеи, полученные знания и любые данные, передавать их различными способами на расстояние и в другие времена - не только своим современникам, но и будущим поколениям. До наших дней дошли творения предков, которые с помощью различных символов увековечили себя и свои деяния в памятниках и надписях. Наскальные рисунки (петроглифы) до сих пор служат загадкой для ученых. Возможно, таким способом древние люди хотели вступить в контакт с нами, будущими жителями планеты и сообщить о событиях их жизни.

Каждый народ имеет свой язык, состоящий из набора символов (букв): русский, английский, японский и многие другие. Вы уже познакомились с языком математики, физики, химии.

Представление информации с помощью какого-либо языка часто называют кодированием.

Код - набор символов (условных обозначений) дли представления информации. Кодирование- процесс представления информации в виде кода.

Водитель передает сигнал с помощью гудка или миганием фар. Кодом является наличие или отсутствие гудка, а в случае световой сигнализации - мигание фар или его отсутствие.

Вы встречаетесь с кодированием информации при переходе дороги по сигналам светофора. Код определяют цвета светофора - красный, желтый, зеленый.

В основу естественного языка, на котором общаются люди, тоже положен код. Только в этом случае он называется алфавитом. При разговоре этот код передается звуками, при письме - буквами. Одну и ту же информацию можно представить с помощью различных кодов. Например, запись разговора можно зафиксировать посредством русских букв или специальных стенографических значков.

По мере развития техники появлялись разные способы кодирования информации. Во второй половине XIX века американский изобретатель Сэмюэль Морзе изобрел удивительный код, который служит человечеству до сих пор. Информация кодируется тремя «буквами»: длинный сигнал (тире),короткий сигнал (точка) и отсутствие сигнала (пауза) для разделения букв. Таким образом, кодирование сводится к использованию набора символов, расположенных в строго определенном порядке.

1.3 Представление информации в двоичном коде

Люди всегда искали способы быстрого обмена сообщениями. Для этого посылали гонцов, использовали почтовых голубей. У народов существовали различные способы оповещения о надвигающейся опасности: барабанный бой, дым костров, флаги и т. д. Однако использование такого представления информации требует предварительной договоренности о понимании принимаемого сообщения.

Знаменитый немецкий ученый Готфрид Вильгельм Лейбниц предложил еще в XVII веке уникальную и простую систему представления чисел. «Вычисление с помощью двоек... является для науки основным и порождает новые открытия... при сведении чисел к простейшим началам, каковы 0 и 1, везде появляется чудесный порядок».

Сегодня такой способ представления информации с помощью языка, содержащего всего два символа алфавита - 0 и 1, широко используется в технических устройствах, в том числе ив компьютере. Эти два символа 0 и 1 принято называть двоичными цифрами или битами (от англ. bit - BinaryDigit - двоичный знак).

Вся информация, которую обрабатывает компьютер должна быть представлена двоичным кодом с помощью двух цифр 0 и 1. Эти два символа принято называть двоичными цифрами или битами. С помощью двух цифр 0 и 1 можно закодировать любое сообщение. Это явилось причиной того, что в компьютере обязательно должно быть организованно два важных процесса: кодирование и декодирование.

Кодирование преобразование входной информации в форму, воспринимаемую компьютером, т.е. двоичный код.

Декодирование – преобразование данных из двоичного кода в форму, понятную человеку.

С точки зрения технической реализации использование двоичной системы счисления для кодирования информации оказалось намного более простым, чем применение других способов. Действительно, удобно кодировать информацию в виде последовательности нулей и единиц, если представить эти значения как два возможных устойчивых состояния электронного элемента:

Отсутствие электрического сигнала;

Наличие электрического сигнала.

Эти состояния легко различать. Недостаток двоичного кодирования - длинные коды. Но в технике легче иметь дело с большим количеством простых элементов, чем с небольшим числом сложных.

Вам приходится постоянно сталкиваться с устройством, которое может находится только в двух устойчивых состояниях: включено/выключено. Конечно же, это хорошо знакомый всем выключатель. А вот придумать выключатель, который мог бы устойчиво и быстро переключаться в любое из 10 состояний, оказалось невозможным. В результате после ряда неудачных попыток разработчики пришли к выводу о невозможности построения компьютера на основе десятичной системы счисления. И в основу представления чисел в компьютере была положена именно двоичная система счисления.

Способы кодирования и декодирования информации в компьютере, в первую очередь, зависит от вид;, информации, а именно, что должно кодироваться: числа, текст, графические изображения или звук.

Представление(кодирование) чисел

Для записи информации о количестве объектов используются числа. Числа записываются с помощью набора специальных символов.

Система счисления - способ записи чисел с помощью набора специальных знаков, называемых цифрами.

Системы счисления подразделяются на позиционные и непозиционные.

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от её положения в числе (позиции).

Цветные изображения формируются в соответствии с двоичным кодом цвета каждой точки, хранящимся в видеопамяти. Цветные изображения могут иметь различную глубину цвета, которая задается количеством битов, используемым для кодирования цвета точки. Наиболее распространенными значениями глубины цвета являются 8,16, 24 или 32 бита.

Цветное изображение на экране монитора формируется за счет смешивания трех базовых цветов: красного, зеленого и синего. Такая цветовая модель называется RGB-моделью по первым буквам английских названий цветов (Red, Green, Blue).


Заключение

Информацию можно классифицировать разными способами, и разные науки это делают по-разному. Например, в философии различают информацию объективную и субъективную. Объективная информация отражает явления природы и человеческого общества. Субъективная информация создается людьми и отражает их взгляд на объективные явления.

В информатике отдельно рассматривается аналоговая информация и цифровая. Это важно, поскольку человек благодаря своим органам чувств, привык иметь дело с аналоговой информацией, а вычислительная техника, наоборот, в основном, работает с цифровой информацией.

Человек воспринимает информацию с помощью органов чувств. Свет, звук, тепло – это энергетические сигналы, а вкус и запах – это результат воздействия химических соединений, в основе которого тоже энергетическая природа. Человек испытывает энергетические воздействия непрерывно и может никогда не встретиться с одной и той же их комбинацией дважды. Нет двух одинаковых зеленых листьев на одном дереве и двух абсолютно одинаковых звуков – это информация аналоговая. Если же разным цветам дать номера, а разным звукам – ноты, то аналоговую информацию можно превратить в цифровую.

Кодирование информации. Кодирование информации – это процесс формирования определенного представления информации.

В более узком смысле под термином «кодирование» часто понимают переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки.

Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (звуки, изображения, показания приборов и т. д.) для обработки на компьютере должна быть преобразована в числовую форму. Например, чтобы перевести в числовую форму музыкальный звук, можно через небольшие промежутки времени измерять интенсивность звука на определенных частотах, представляя результаты каждого измерения в числовой форме. С помощью компьютерных программ можно преобразовывать полученную информацию, например «наложить» друг на друга звуки от разных источников.

Аналогично на компьютере можно обрабатывать текстовую информацию. При вводе в компьютер каждая буква кодируется определенным числом, а при выводе на внешние устройства (экран или печать) для восприятия человеком по этим числам строятся изображения букв. Соответствие между набором букв и числами называется кодировкой символов.

Как правило, все числа в компьютере представляются с помощью нулей и единиц (а не десяти цифр, как это привычно для людей). Иными словами, компьютеры обычно работают в двоичной системе счисления, поскольку при этом устройства для их обработки получаются значительно более простыми.


Список использованной литературы

1. Агальцов В.П., Титов В.М. Информатика для экономистов: Учебник. – М.: ИД «ФОРУМ»: ИНФРА-М, 2006. – 448 с.

2. Информатика для экономистов: Учебник / Под общ. ред. В.М. Матюшка. – М.: ИНФРА-М, 2007. – 880с.

3. Информатика. Общий курс: Учебник / Под ред. В.И. Колесникова. – М.: Издательско-торговая корпорация «Дашков и К ◦ »; Ростов н/Д: Наука-Пресс, 2008. – 400 с.

Оно осуществляет свою деятельность, чем больше на предприятие осуществляется поставок, тем более стабильно работает данное предприятие. При осуществлении поставок на предприятие производится обработка и хранение большого количества информации, связанной с поставками, которая в себя включает: своевременное и правильное оформление документов и контроль за каждой операцией поступления товаров от...

Свойства информации

Информация обладает следующими свойствами:

  • достоверность
  • полнота
  • точность
  • ценность
  • своевременность
  • понятность
  • доступность
  • краткость и т. д.

4) Классификация - система распределения объектов (предметов, явлений, процессов, понятий) по классам в соответствии с определенным признаком.

1. Информацию можно подразделить по форме представления на 2 вида:
- дискретная форма представления информации- аналоговая или непрерывная форма представления информации

2. По области возникновения можно выделить информацию:
- элементарную- биологическую- социальную

3. По способу передачи и восприятия различают следующие виды информации:
- визуальную- аудиальную- тактильную- органолептическую- машинную

4. Информацию, создаваемую и используемую человеком, по общественному назначению можно разбить на три вида:
- личную- массовую- специальную

5. По способам кодирования выделяют следующие типы информации:
- символьную- текстовую- графическую.

5) Содержательный подход к измерению информации. Сообщение – информативный поток, который в процессе передачи информации поступает к приемнику. Сообщение несет информацию для человека, если содержащиеся в нем сведения являются для него новыми и понятными Информация - знания человека? сообщение должно быть информативно. Если сообщение не информативно, то количество информации с точки зрения человека = 0. (Пример: вузовский учебник по высшей математике содержит знания, но они не доступны 1-класснику)

Алфавитный подход к измерению информации не связывает кол-во информации с содержанием сообщения. Алфавитный подход - объективный подход к измерению информации. Он удобен при использовании технических средств работы с информацией, т.к. не зависит от содержания сообщения. Кол-во информации зависит от объема текста и мощности алфавита. Ограничений на max мощность алфавита нет, но есть достаточный алфавит мощностью 256 символов. Этот алфавит используется для представления текстов в компьютере. Поскольку 256=2 8 , то 1символ несет в тексте 8 бит информации.



Вероятностный подход к измерения информации. Все события происходят с различной вероятностью, но зависимость между вероятностью событий и количеством информации, полученной при совершении того или иного события можно выразить формулой которую в 1948 году предложил Шеннон.

6) Количество информации – в теории информации это количество информации в одном случайном объекте относительно другого

Количество информации можно рассматривать как меру уменьшения неопределенности знания при получении информационных сообщений.

При всем многообразии подходов к определению понятия информации, с позиции измерения информации выделяют два из них: определение К. Шеннона, применяемое в математической теории информации (содержательный подход), и определение А. Н. Колмогорова, применяемое в отраслях информатики, связанных с использованием компьютеров (алфавитный подход).


  1. Содержательный подход. Согласно Шеннону, информативность сообщения характеризуется содержащейся в нем полезной информацией - той частью сообщения, которая снимает полностью или уменьшает неопределенность какой-либо ситуации. По Шеннону, информация - уменьшение неопределенности наших знаний.

Но если число исходов не зависит от суждений людей (случай бросания кубика или монеты), то информация о наступлении одного из возможных исходов является объективной.

Если сообщение уменьшило неопределенность знаний ровно в два раза, то говорят, что сообщение несет 1 бит информации.

1 бит - объем информации такого сообщения, которое уменьшает неопределенность знания в два раза.


  1. Алфавитный подход. Алфавитный подход основан на том, что всякое сообщение можно закодировать с помощью конечной последовательности символов некоторого алфавита.

Алфавит - упорядоченный набор символов, используемый для кодирования сообщений на некотором языке.

I – количество информации

N - количество разных событий.

Обратная формула N=2 I

7) Как уже было сказано, основная единица измерения информации - бит. 8 бит составляют 1 байт.

Наряду с байтами для измерения количества информации используются более крупные единицы:

1 Кбайт (один килобайт) = 210 байт = 1024 байта;

1 Мбайт (один мегабайт) = 210 Кбайт = 1024 Кбайта;

1 Гбайт (один гигабайт) = 210 Мбайт = 1024 Мбайта.

В последнее время в связи с увеличением объёмов обрабатываемой информации входят в употребление такие производные единицы, как:

1 Терабайт (Тб) = 1024 Гбайта = 240 байта,

1 Петабайт (Пб) = 1024 Тбайта = 250 байта.

1 байт = 8 бит;

1 Килобайт (Кбайт) = 2 10 байт

1 МегаБайт (Мбайт) = 2 10 Кбайт или 2 20 байт

1 Гигабайт (Гбайт) = 2 10 Мбайт или 2 30 байт

1 Терабайт (Тбайт) = 2 10 Гбайт или 2 40 байт

  • 9) 2 - двоичная (в дискретной математике, информатике, программировании);
  • 3 - троичная;
  • 8 - восьмеричная;
  • 10 - десятичная (используется повсеместно);
  • 12 - двенадцатеричная (счёт дюжинами);
  • 13 - тринадцатеричная;
  • 16 - шестнадцатеричная (используется в программировании, информатике);
  • 60 - шестидесятеричная (единицы измерения времени, измерение углов и, в частности, координат, долготы и широты).

9) Система счисле́ния - символический метод записи чисел, представление чисел с помощью письменных знаков.

Система счисления:

· даёт представления множества чисел (целых и/или вещественных);

· даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление);

· отражает алгебраическую и арифметическую структуру чисел.

10) сложение, вычитание, деление, умножение недесятичных чисел.

11) это перевод из 1 системы счисления в другую

Способы кодирования информации.

Одна и та же информация может быть представлена (закодирована) в нескольких формах. C появлением компьютеров возникла необходимость кодирования всех видов информации, с которыми имеет дело и отдельный человек, и человечество в целом. Но решать задачу кодирования информации человечество начало задолго до появления компьютеров. Грандиозные достижения человечества - письменность и арифметика - есть не что иное, как система кодирования речи и числовой информации. Информация никогда не появляется в чистом виде, она всегда как-то представлена, как-то закодирована.

Двоичное кодирование – один из распространенных способов представления информации. В вычислительных машинах, в роботах и станках с числовым программным управлением, как правило, вся информация, с которой имеет дело устройство, кодируется в виде слов двоичного алфавита.

Код - (1) правило, описывающее соответствие знаков или их сочетаний одного алфавита знакам или их сочетаниям другого алфавита; - (2) знаки вторичного алфавита, используемые для представления знаков или их сочетаний первичного алфавита.

Кодирование - перевод информации, представленной посредством первичного алфавита, в последовательность кодов.

Декодирование - операция, обратная кодированию, т.е. восстановление информации в первичном алфавите по полученной последовательности кодов.

Операции кодирования и декодирования называются обратимыми, если их последовательное применение обеспечивает возврат к исходной информации без каких-либо ее потерь.

13) Двоичная система – основа кодирования информации для ЭВМ

14) Существуют два способа представления чисел в памяти ЭВМ. Они называются так: форма с фиксированной точкой и форма с плавающей точкой. Форма с фиксированной точкой применяется к целым числам, форма с плавающей точкой - к вещественным числам (целым и дробным). Под точкой здесь подразумевается знак-разделитель целой и дробной части числа.

15) Таким образом, кодирование предшествует передаче и хранению информации. При этом, как указывалось ранее, хранение связано с фиксацией некоторого состояния носителя информации, а передача - с изменением состояния с течением времени (т.е. процессом). Эти состояния или сигналы будем называть элементарными сигналами - именно их совокупность и составляет вторичный алфавит.

Без технических сторон передачи и хранения сообщения (т.е. того, каким образом фактически реализованы передача-прием последовательности сигналов или фиксация состояний), математическая постановка задачи кодирования, дается следующим образом.

По типу линий связи: проводные; кабельные; оптико-волоконные;

линии электропередачи; радиоканалы и т.д.

2. По характеру сигналов: непрерывные; дискретные; дискретно-непрерывные (сигналы на входе системы дискретные, а на выходе непрерывные, и наоборот).

3. По помехозащищенности: каналы без помех; с помехами.

18) Или короче: алгоритм – это строго определенная последовательность действий, необходимых для решения данной задачи

19) На практике распространены следующие формы представления алгоритмов:


  • словесная (запись на естественном языке);

  • графическая (изображения из графических символов);

  • псевдокоды (полуформализованные описания алгоритмов на условном алгоритмическом языке, включающие как элементы языка программирования, так и фразы естественного языка, общепринятые математические обозначения и др.);

  • программная (тексты на языках программирования).

20) Сжатие информации - это процесс преобразования информации, хранящейся в файле, в результате которого уменьшается ее избыточность, соответственно, требуется меньший объем Памяти для хранения.

Архивный файл - это специальным образом организованный файл, содержащий в себе один или несколько файлов в сжатом или несжатом виде и служебную информацию об именах файлов, дате и времени их создания или модификации, размерах и т. д.

Архивация (упаковка) - помещение (загрузка) исходных файлов в архивный файл в сжатом или несжатом виде.

22) Код - набор символов (условных обозначений) дли представления информации. Кодирование - процесс представления информации в виде кода.

Векторное и фрактальное изображения.

Векторное изображение - это графический объект, состоящий из элементарных отрезков и дуг. Базовым элементом изоражения является линия. Как и любой объект, она обладает свойствами: формой (прямая, кривая), толщиной., цветом, начертанием (пунктирная, сплошная). Замкнутые линии имеют свойство заполнения (или другими объектами, или выбранным цветом). Все прочие объекты векторной графики составляются из линий. Так как линия описывается математически как единый объект, то и объем данных для отображения объекта средствами векторной графики значительно меньше, чем в растровой графике. Информация о векторном изображении кодируется как обычная буквенно-цифровая и обрабатывается специальными программами.

К программным средствам создания и обработки векторной графики относятся следующие ГР: CorelDraw, Adobe Illustrator, а также векторизаторы (трассировщики) - специализированные пакеты преобразования растровых изображений в векторные.

Фрактальная графика основывается на математических вычислениях, как и векторная. Но в отличии от векторной ее базовым элементом является сама математическая формула. Это приводит к тому, что в памяти компьютера не хранится никаких объектов и изображение строится только по уравнениям. При помощи этого способа можно строить простейшие регулярные структуры, а также сложные иллюстрации, которые иммитируют ландшафты.

Задачи.

Известно, что видеопамять компьютера имеет объем 512 Кбайт. Разрешающая способность экрана 640 на 200. Сколько страниц экрана одновременно разместится в видеопамяти при палитре
а) из 8 цветов;
б) 16 цветов;
в) 256 цветов?

Сколько бит требуется, чтобы закодировать информацию о 130 оттенках? Нетрудно подсчитать, что 8 (то есть 1 байт), поскольку при помощи 7 бит можно сохранить номер оттенка о 0 до 127, а 8 бит хранят от 0 до 255. Легко видеть, что такой способ кодирования неоптимален: 130 заметно меньше 255. Подумайте, как уплотнить информацию о рисунке при его записи в файл, если известно, что
а) в рисунке одновременно содержится только 16 цветовых оттенков из 138 возможных;
б) в рисунке присутствуют все 130 оттенков одновременно, но количество точек, закрашенных разными оттенками, сильно различаются.

А) очевидно, что для хранения информации о 16 оттенках достаточно 4 бита (половина байта). Однако так как эти 16 оттенков выбраны из 130, то они могут иметь номера, не умещающиеся в 4 битах. Поэтому воспользуемся методом палитр. Назначим 16 используемым в нашем рисунке оттенкам свои “локальные” номера от 1 до 15 и закодируем весь рисунок из расчета 2 точки на байт. А затем допишем к этой информации (в конец содержащего ее файла) таблицу соответствия, состоящую из 16 пар байтов с номерами оттенков: 1 байт - наш “локальный” номер в данном рисунке, второй - реальный номер данного оттенка. (когда вместо последнего используется закодированная информация о самом оттенке, например, сведения об яркости свечения “электроннык пушек” Red, Green, Blue электронно-лучевой трубки, то такая таблица и будет представлять собой палитру цветов). Если рисунок достаточно велик, выигрыш в объеме полученного файла будет значительным;
б) попытаемся реализовать простейший алгоритм архивации информации о рисунке. Назначим трем оттенкам, которыми закрашено минимальное количество точек, коды 128 - 130, а остальным оттенкам - коды 1 -127. Будем записывать в файл (котрый в этом случае представлыет собой не последовательность байтов, а сплошной битовый поток) семибитные коды для оттенков с номерами от 1 до 127. Для оставшихся же трех оттенков в битовом потоке будем записывать число-признак - семибитный 0 - и сразу за ним двухбитный “локальный” номер, а в конце файла добавим таблицу соответствия “локальных”и реальных номеров. Так как оттенки с кодами 128 - 130 встречаются редко, то семибитных нулей будет немного.

Заметим, что постановка вопросов в данной задаче не исключает и другие варианты решения, без привязки к цветовому составу изображения - архивацию:
а) на основе выделения последовательности точек, закрашенных одинаковыми оттенками и замены каждой из этих последовательностей на пару чисел (цвет),(количество) (этот принцип лежит в основе графического формата РСХ);
б) путем сравнения пиксельных строк (запись номеров оттенков точек первой страницы целиком, а для последующих строк запись номеров оттенков только тех точек, оттенки которых отличаются от отенков точек, стоящих в той же позиции в предыдущей строке, - это основа формата GIF);
в) с помощью фрактального алгоритма упаковки изображений (формат YPEG). (ИО 6,1999)

Мир наполнен самыми разнообразными звуками: тиканье часов и гул моторов, завывание ветра и шелест листьев, пение птиц и голоса людей. О том, как рождаются звуки и что они собой представляют люди начали догадываться очень давно. Еще древнегреческий философ и ученый - энциклопедист Аристотель, исходя из наблюдений, объяснял природу звука, полагая, что звучащее тело создает попеременное сжатие и разрежение воздуха. Так, колеблющаяся струна то разряжает, то уплотняет воздух, а из-за упругости воздуха эти чередующиеся воздействия передаются дальше в пространство - от слоя к слою, возникают упругие волны. Достигая нашего уха, они воздействуют на барабанные перепонки и вызывают ощущение звука.

На слух человек воспринимает упругие волны, имеющие частоту где-то в пределах от 16 Гц до 20 кГц (1 Гц - 1 колебание в секунду). В соответствии с этим упругие волны в любой среде, частоты которых лежат в указанных пределах, называют звуковыми волнами или просто звуком. В учении о звуке важны такие понятия как тон и тембр звука. Всякий реальный звук, будь то игра музыкальных инструментов или голос человека, - это своеобразная смесь многих гармонических колебаний с определенным набором частот.

Колебание, которое имеет наиболее низкую частоту, называют основным тоном, другие - обертонами.

Тембр - разное количество обертонов, присущих тому или иному звуку, которое придает ему особую окраску. Отличие одного тембра от другого обусловлено не только числом, но и интенсивностью обертонов, сопровождающих звучание основного тона. Именно по тембру мы легко можем отличить звуки рояля и скрипки, гитары и флейты, узнать голос знакомого человека.

Музыкальный звук можно характеризовать тремя качествами: тембром, т. е. окраской звука, которая зависит от формы колебаний, высотой, определяющейся числом колебаний в секунду (частотой), и громкостью, зависящей от интенсивности колебаний.

Компьютер широко применяют в настоящее время в различных сферах. Не стала исключением и обработка звуковой информации, музыка. До 1983 года все записи музыки выходили на виниловых пластинках и компакт-кассетах. В настоящее время широкое распространение получили компакт-диски. Если имеется компьютер, на котором установлена студийная звуковая плата, с подключенными к ней MIDI-клавиатурой и микрофоном, то можно работать со специализированным музыкальным программным обеспечением.

Условно его можно разбить на несколько видов:

1) всевозможные служебные программы и драйверы, предназначенные для работы с конкретными звуковыми платами и внешними устройствами;
2) аудиоредакторы, которые предназначены для работы со звуковыми файлами, позволяют производить с ними любые операции - от разбиения на части до обработки эффектами;
3) программные синтезаторы, которые появились сравнительно недавно и корректно работают только на мощных компьютерах. Они позволяют экспериментировать с созданием различных звуков;
и другие.

К первой группе относятся все служебные программы операционной системы. Так, например, win 95 и 98 имеют свои собственные программы микшеры и утилиты для воспроизведения/записи звука, проигрывания компакт-дисков и стандартных MIDI - файлов. Установив звуковую плату можно при помощи этих программ проверить ее работоспособность. Например, программа Фонограф предназначена для работы с wave-файлами (файлы звукозаписи в формате Windows). Эти файлы имеют расширение.WAV . Эта программа предоставляет возможность воспроизводить, записывать и редактировать звукозапись приемами, аналогичными приемам работы с магнитофоном. Желательно для работы с Фонографом подключить микрофон к компьютеру. Если необходимо сделать звукозапись, то нужно определиться с качеством звука, так как именно от нее зависит продолжительность звукозаписи. Возможная продолжительность звучания тем меньше, чем выше качество записи. При среднем качестве записи можно удовлетворительно записывать речь, создавая файлы продолжительностью звучания до 60 секунд. Примерно 6 секунд будет продолжительность записи, имеющая качество музыкального компакт - диска.

А как же происходит кодирование звука? С самого детства мы сталкиваемся с записями музыки на разных носителях: грампластинках, кассетах, компакт-дисках и т.д. В настоящее время существует два основных способах записи звука: аналоговый и цифровой. Но для того чтобы записать звук на какой-нибудь носитель его нужно преобразовать в электрический сигнал.

Это делается с помощью микрофона. Самые простые микрофоны имеют мембрану, которая колеблется под воздействием звуковых волн. К мембране присоединена катушка, перемещающаяся синхронно с мембраной в магнитном поле. В катушке возникает переменный электрический ток. Изменения напряжения тока точно отражают звуковые волны.

Переменный электрический ток, который появляется на выходе микрофона, называется аналоговым сигналом. Применительно к электрическому сигналу «аналоговый» обозначает, что этот сигнал непрерывен по времени и амплитуде. Он точно отражает форму звуковой волны, которая распространяется в воздухе.

Звуковую информацию можно представить в дискретной или аналоговой форме. Их отличие в том, что при дискретном представлении информации физическая величина изменяется скачкообразно («лесенкой»), принимая конечное множество значений. Если же информацию представить в аналоговой форме, то физическая величина может принимать бесконечное количество значений, непрерывно изменяющихся.

Виниловая пластинка является примером аналогового хранения звуковой информации, так как звуковая дорожка свою форму изменяет непрерывно. Но у аналоговых записей на магнитную ленту есть большой недостаток - старение носителя. За год фонограмма, которая имела нормальный уровень высоких частот, может их потерять. Виниловые пластинки при проигрывании их несколько раз теряют качество. Поэтому преимущество отдают цифровой записи.

В начале 80-х годов появились компакт-диски. Они являются примером дискретного хранения звуковой информации, так как звуковая дорожка компакт - диска содержит участки с различной отражающей способностью. Теоретически эти цифровые диски могут служить вечно, если их не царапать, т.е. их преимуществами являются долговечность и неподверженность механическому старению. Другое преимущество заключается в том, что при цифровой перезаписи нет потери качества звука.

На мультимедийных звуковых картах можно найти аналоговые микрофонный предусилитель и микшер.

Цифро-аналоговое и аналого-цифровое преобразование звуковой информации.

Кратко рассмотрим процессы преобразования звука из аналоговой формы в цифровую и наоборот. Примерное представление о том, что происходит в звуковой карте, может помочь избежать некоторых ошибок при работе со звуком

Звуковые волны при помощи микрофона превращаются в аналоговый переменный электрический сигнал. Он проходит через звуковой тракт (см. приложения рисунок 1.11, схема 1) и попадает в аналого-цифровой преобразователь (АЦП) - устройство, которое переводит сигнал в цифровую форму.

В упрощенном виде принцип работы АЦП заключается в следующем: он измеряет через определенные промежутки времени амплитуду сигнала и передает дальше, уже по цифровому тракту, последовательность чисел, несущих информацию об изменениях амплитуды (.см. приложения рисунок 1.11, схема 2).

Во время аналого-цифрового преобразования никакого физического преобразования не происходит. С электрического сигнала как бы снимается отпечаток или образец, являющийся цифровой моделью колебаний напряжения в аудиотракте. Если это изобразить в виде схемы, то эта модель представлена в виде последовательности столбиков, каждый из которых соответствует определенному числовому значению. Цифровой сигнал по своей природе дискретен - то есть прерывист, поэтому цифровая модель не совсем точно соответствует форме аналогового сигнала.

Семпл - это промежуток времени между двумя измерениями амплитуды аналогового сигнала.

Дословно Sample переводится с английского как «образец». В мультимедийной и профессиональной звуковой терминологии это слово имеет несколько значений. Кроме промежутка времени семплом называют также любую последовательность цифровых данных, которые получили путем аналого-цифрового преобразования. Сам процесс преобразования называют семплированием. В русском техническом языке называют его дискретизацией.

Вывод цифрового звука происходит при помощи цифро-аналогового преобразователя (ЦАП), который на основании поступающих цифровых данных в соответствующие моменты времени генерирует электрический сигнал необходимой амплитуды (см. приложения рисунок 1.11, схема 3).

Параметры семплирования

Важными параметрами семплирования являются частота и разрядность.
Частота - количество измерений амплитуды аналогового сигнала в секунду.

Если частота семплирования не будет более чем в два раза превышать частоту верхней границы звукового диапазона, то на высоких частотах будут происходить потери. Это объясняет то, что стандартная частота для звукового компакт-диска - это частота 44.1 кГц. Так как диапазон колебаний звуковых волн находится в пределах от 20 Гц до 20 кГц, то количество измерений сигнала в секунду должно быть больше, чем количество колебаний за тот же промежуток времени. Если же частота дискретизации значительно ниже частоты звуковой волны, то амплитуда сигнала успевает несколько раз измениться за время между измерениями, а это приводит к тому, что цифровой отпечаток несет хаотичный набор данных. При цифро-аналоговом преобразовании такой семпл не передает основной сигнал, а только выдает шум.

В новом формате компакт-дисков Audio DVD за одну секунду сигнал измеряется 96 000 раз, т.е. применяют частоту семплирования 96 кГц. Для экономии места на жестком диске в мультимедийных приложениях довольно часто применяют меньшие частоты: 11, 22, 32 кГц. Это приводит к уменьшению слышимого диапазона частот, а, значит, происходит сильное искажение того, что слышно.

Если в виде графика представить один и тот же звук высотой 1 кГц (нота до седьмой октавы фортепиано примерно соответствует этой частоте), но семплированный с разной частотой (нижняя часть синусоиды не показана на всех графиках), то будут видны различия. Одно деление на горизонтальной оси, которая показывает время, соответствует 10 семплам. Масштаб взят одинаковый см. приложения рисунок 1.13). Можно видеть, что на частоте 11 кГц примерно пять колебаний звуковой волны приходится на каждые 50 семплов, то есть один период синусоиды отображается всего при помощи 10 значений. Это довольно неточная передача. В то же время, если рассматривать частоту оцифровки 44 кГц, то на каждый период синусоиды приходится уже почти 50 семплов. Это позволяет получить сигнал хорошего качества.

Разрядность указывает с какой точностью происходят изменения амплитуды аналогового сигнала. Точность, с которой при оцифровке передается значение амплитуды сигнала в каждый из моментов времени, определяет качество сигнала после цифро-аналогового преобразования. Именно от разрядности зависит достоверность восстановления формы волны.

Для кодирования значения амплитуды используют принцип двоичного кодирования. Звуковой сигнал должен быть представленным в виде последовательности электрических импульсов (двоичных нулей и единиц). Обычно используют 8, 16-битное или 20-битное представление значений амплитуды. При двоичном кодировании непрерывного звукового сигнала его заменяют последовательностью дискретных уровней сигнала. От частоты дискретизации (количества измерений уровня сигнала в единицу времени) зависит качество кодирования. С увеличением частоты дискретизации увеличивается точность двоичного представления информации. При частоте 8 кГц (количество измерений в секунду 8000) качество семплированного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 кГц (количество измерений в секунду 48000) - качеству звучания аудио- CD.

Если использовать 8-битное кодирование, то можно достичь точность изменения амплитуды аналогового сигнала до 1/256 от динамического диапазона цифрового устройства (2 8 = 256).

Если использовать 16-битное кодирование для представления значений амплитуды звукового сигнала, то точность измерения возрастет в 256 раз.

В современных преобразователях принято использовать 20-битное кодирование сигнала, что позволяет получать высококачественную оцифровку звука.

Вспомним формулу К = 2 a . Здесь К - количество всевозможных звуков (количество различных уровней сигнала или состояний), которые можно получить при помощи кодирования звука а битами

В процессе развития человечество пришло к осознанию необходимости хранить и передавать на расстояния ту или иную информацию. В последнем случае требовалось её преобразование в сигналы. Этот процесс называется кодированием данных. Текстовая информация, а также графические изображения при этом могут преобразоваться в числа. О том, каким образом это можно сделать, расскажет наша статья.

Передача информации на расстояние

  • фельдъегерско-почтовая;
  • акустическая (например, посредством громкоговорителя);
  • на основе того или иного способа электросвязи (проводная, радио, оптическая, радиорелейная, спутниковая, оптико-волоконная).

Наиболее распространенными на данный момент являются системы передачи последнего типа. Однако для их использования требуется предварительно применить тот или иной способ кодирования информации. С помощью чисел в привычном для современного человека десятичном исчислении сделать это крайне сложно.

Шифрование

Двоичная система счисления

На заре компьютерной эры ученые были озабочены поисками устройства, которое бы позволило максимально просто представлять числа в ЭВМ. Вопрос разрешился, когда Клод Шенон предложил использовать двоичную систему счисления. Она была известна с 17 века, и для ее реализации требовалось устройство с 2 устойчивыми состояниями, соответствующими логической «1» и логическому «0». Их на тот момент было известно предостаточно - от сердечника, который мог быть либо намагниченным, либо размагниченным, до транзистора, способного находиться или в открытом, или в закрытом состоянии.

Представление цветных картинок

Способ кодирования информации с помощью чисел для таких изображений реализуется несколько сложнее. С этой целью предварительно требуется декомпозиция картинки на 3 основных цвета (зеленый, красный и синий), так как в результате их смешения в определенных пропорциях можно получить любой оттенок, воспринимаемый человеческим глазом. Такой способ кодирования картинки с помощью чисел с использованием 24 двоичных разрядов называется RGB, или полноцветным (True Color).

Если же речь идет о полиграфии, то используется система CMYK. Она основана на идее о том, что каждую из основных компонент RGB можно поставить в соответствие с цветом, дополняющим её до белого. Ими являются голубой, пурпурный и желтый. Хотя их достаточно, с целью снижения полиграфических расходов, добавляют и четвертую компоненту — черную. Таким образом, для представления графики в системе CMYK требуется 32 двоичных разряда, а сам режим принято называть полноцветным.

Представление звуков

На вопрос о том, есть ли для этого способ кодирования информации с помощью чисел, ответ должен быть положительным. Однако на данный момент такие методы не считаются совершенными. К их числу относятся:

  • Метод FM. Он основан на разложении любого сложного звука на последовательность элементарных гармонических сигналов разных частот, которые можно описать кодом.
  • Таблично-волновой метод. В заранее составленных таблицах хранят сэмплы — образцы звуков для различных музыкальных инструментов. Числовые коды выражают тип и номер модели инструмента, высоту тона, интенсивность и продолжительность звука и пр.

Теперь вы знаете, что двоичное кодирование — один из распространенных способов представления информации, который сыграл огромную роль в развитии компьютерной техники.