Функции системы глонасс. Состав системы глонасс. Глонасс в смартфонах

Многие автовладельцы используют навигаторы в своих автомобилях. При этом некоторые из них не знают о существовании двух различных спутниковых систем – российской ГЛОНАСС и американской GPS. Из этой статьи вы узнаете, в чем же их отличия и какой следует отдать предпочтение.

Как работает навигационная система

Навигационная система в основном используется для того, чтобы определить местоположение объекта (в данном случае автомобиля) и скорость его движения. Иногда от неё требуется и определение некоторых других параметров, например, высоты над уровнем моря.

Вычисляет она эти параметры, устанавливая расстояние между самим навигатором и каждым из нескольких спутников, расположенных на земной орбите. Как правило, для эффективной работы системы необходима синхронизация с четырьмя спутниками. По изменению этих расстояний она и определяет координаты объекта и другие характеристики движения. Спутники ГЛОНАСС не синхронизируются с вращением Земли, из-за чего обеспечивается их стабильность на большом промежутке времени.

Видео: ГлоНаСС vs GPS

Что лучше ГЛОНАСС или GPS и в чем их разница

Системы навигации в первую очередь предполагали их использование в военных целях, и только потом стали доступны для обычных граждан. Очевидно, что военным необходимо использовать разработки своего государства, потому что иностранная система навигации может быть отключена властями этой страны в случае возникновения конфликтной ситуации. Более того, в России призывают использовать систему ГЛОНАСС и в повседневной жизни военным и государственным служащим.

В повседневной жизни обычному автомобилисту и вовсе не стоит переживать по поводу выбора навигационной системы. И ГЛОНАСС, и обеспечивают качество навигации, достаточное для использования в житейских целях. На северных территориях России и других государств, расположенных в северных широтах, спутники ГЛОНАСС работают эффективнее, из-за того, что их траектории передвижения находятся выше над Землей. То есть в Заполярье, в скандинавских странах ГЛОНАСС эффективнее и это признали шведы еще в 2011 году. В других регионах GPS немного точнее ГЛОНАСС в определение местоположения. По данным Российской системы дифференциальной коррекции и мониторинга ошибки GPS составляли от 2 до 8 метров, ошибки ГЛОНАСС от 4 до 8 метров. Но GPS, чтобы определить местоположение нужно поймать от 6 до 11 спутников, ГЛОНАСС хватит 6-7 спутников.

Также следует учесть, что система GPS появилась на 8 лет раньше и ушла в солидный отрыв в 90-ые года. И за последнее десятилетие ГЛОНАСС этот отрыв сократила почти полностью, а к 2020 году разработчики обещают, что ГЛОНАСС не будет ни в чем уступать GPS.

На большинство современных устанавливается комбинированная система, которая поддерживает как российскую спутниковую систему, так и американскую. Именно такие устройства являются наиболее точными и обладают самой низкой ошибкой в определении координат автомобиля. Также возрастает и стабильность принимаемых сигналов, ведь такой аппарат может «увидеть» больше спутников. С другой стороны, цены на такие навигаторы намного выше односистемных аналогов. Оно и понятно – в них встраиваются два чипа, способные принимать сигналы от каждого типа спутников.

Видео: тест GPS и GPS+ГЛОНАСС приемников Redpower CarPad3

Таким образом, наиболее точными и надежными навигаторами являются двухсистемные устройства. Однако их преимущества связаны с одним существенным недостатком – стоимостью. Поэтому при выборе нужно подумать – а нужна ли настолько высокая точность в условиях каждодневного использования? Также для простого автолюбителя не очень важно, какой навигационной системой пользоваться – российской или американской. Ни GPS, ни ГЛОНАСС не дадут вам заблудиться и доставят к желаемому месту назначения.

Система ГЛОНАСС является крупнейшим навигационным комплексом, который позволяет отслеживать местоположение различных объектов. Проект, запущенный в 1982 г., по сей день активно развивается и совершенствуется. Причем работа ведется как над техническим обеспечением ГЛОНАСС, так и над инфраструктурой, позволяющей использовать систему все большему количеству людей. Так, если первые годы существования комплекса навигация посредством спутников использовалась преимущественно в решении военных задач, то сегодня ГЛОНАСС - это технологичный инструмент позиционирования, который стал обязательным в жизнедеятельности миллионов гражданских пользователей.

Глобальные системы спутниковой навигации

Ввиду технологической сложности глобального спутникового позиционирования на сегодняшний день полностью соответствовать этому названию могут лишь две системы - ГЛОНАСС и GPS. Первая является российской, а вторая - плодом американских разработчиков. С технической точки зрения ГЛОНАСС - это комплекс специализированного аппаратного оснащения, расположенного и на орбите, и на земле.

Для связи со спутниками используются специальные датчики и приемники, считывающие сигналы и формирующие на их основе данные о местоположении. Для расчета временных параметров применяются специальные Они служат для определения положения объекта с учетом трансляции и обработки радиоволн. Сокращение погрешностей позволяет обеспечивать более достоверный расчет параметров позиционирования.

Функции спутниковой навигации

В спектр задач глобальных систем спутниковой навигации входит определение точного местоположения наземных объектов. Помимо географического положения, глобальные навигационные спутниковые системы позволяют учитывать время, путь следования, скорость и другие параметры. Реализуются эти задачи посредством спутников, находящихся в разных точках над земной поверхностью.

Применение глобальной навигации используется не только в транспортной отрасли. Спутники помогают в поисково-спасательных операциях, выполнении геодезических и строительных работ, а также без них не обходится координация и обслуживание других космических станций и аппаратов. Военная отрасль также не остается без поддержки системы подобных целей обеспечивает защищенный сигнал, предназначенный специально для авторизованной аппаратуры Министерства обороны.

Система ГЛОНАСС

Полноценную работу система начала лишь в 2010 г., хотя попытки ввести комплекс в активную работу предпринимались с 1995 г. Во многом проблемы были связаны с низкой долговечностью используемых спутников.

На данный момент ГЛОНАСС - это 24 спутника, которые работают в разных точках орбиты. В целом навигационную инфраструктуру можно представить тремя компонентами: управляющий комплекс (обеспечивает контроль группировки на орбите), а также навигационные технические средства пользователей.

24 спутника, каждый из которых имеет свою постоянную высоту, распределены на несколько категорий. На каждое полушарие приходится по 12 спутников. Посредством спутниковых орбит над поверхностью земли формируется сетка, за счет сигналов которой определяются точные координаты. Помимо этого, спутниковый ГЛОНАСС имеет и несколько резервных объектов. Они также находятся каждый на своей орбите и не бездействуют. В круг их задач входит расширение покрытия над конкретным регионом и замена выходящих из строя спутников.

Система GPS

Американский аналог ГЛОНАСС - это система GPS, которая начинала свою работу также в 1980-е, но только с 2000 года точность определения координат сделал возможным ее широкое распространение среди потребителей. На сегодняшний день спутники gps гарантируют точность до 2-3 м. Задержка в развитии возможностей навигации долгое время была обусловлена ограничениями позиционирования искусственного характера. Тем не менее их снятие позволило с максимальной точностью определять координаты. Даже при условии синхронизации с миниатюрными приемниками достигается результат, соответствующий ГЛОНАСС.

Отличия между ГЛОНАСС и GPS

Между навигационными системами выделяется несколько отличий. В частности, есть разница в характере расстановки и движении спутников на орбитах. В комплексе ГЛОНАСС они движутся по трем плоскостям (по восемь спутников на каждую), а в системе GPS предусматривается работа в шести плоскостях (примерно по четыре на плоскость). Таким образом, российская система обеспечивает более широкий охват наземной территории, что отражается и в более высокой точности. Однако на практике краткосрочная «жизнь» отечественных спутников не позволяет использовать весь потенциал системы ГЛОНАСС. GPS, в свою очередь, поддерживает высокую точность за счет избыточного количества спутников. Тем не менее российский комплекс регулярно вводит новые спутники, как для целевого использования так и в качестве резервной поддержки.

Также применяются разные методы кодирования сигнала - американцы используют код CDMA, а в ГЛОНАСС - FDMA. При расчете приемниками данных для позиционирования российская спутниковая система предусматривает более сложную модель. В результате для использования ГЛОНАСС необходимо высокое потребление энергии, что отражается в габаритах устройств.

Что позволяют возможности ГЛОНАСС?

Среди базовых задач системы — определение координат объекта, способного взаимодействовать ГЛОНАСС. GPS в этом смысле выполняет схожие задачи. В частности, рассчитываются параметры движения наземных, морских и воздушных объектов. За несколько секунд транспортное средство, обеспеченное соответствующим навигатором может вычислить характеристики собственного движения.

При этом использование глобальной навигации уже стало обязательным для отдельных категорий транспорта. Если в 2000-х распространение спутникового позиционирования относилось к контролю определенных стратегических объектов, то сегодня приемниками снабжаются морские и авиационные суда, общественный транспорт и т. д. В скором будущем не исключено и обязательное обеспечение ГЛОНАСС-навигаторами всех частных автомобилей.

Какие устройства работают с ГЛОНАСС

Система способна обеспечивать непрерывное глобальное обслуживание всех без исключения категорий потребителей независимо от климатических, территориальных и временных условий. Как и услуги системы GPS, ГЛОНАСС навигатор предоставляется бесплатно и в любой точке планеты.

Среди устройств, которые имеют возможность приема спутниковых сигналов, значатся не только бортовые навигационные средства и GPS-приемники, но также и сотовые телефоны. Данные о местоположении, направлении и скорости движения отправляются на специальный сервер по сетям GSM-операторов. В использовании возможностей спутниковой навигации помогает специальная программа ГЛОНАСС и различные приложения, которые занимаются обработкой карт.

Комбинированные приемники

Территориальное расширение спутниковой навигации обусловило сращивание двух систем с точки зрения потребителя. На практике устройства ГЛОНАСС нередко дополняются GPS и наоборот, что повышает точность позиционирования и временных параметров. Технически это реализуется посредством двух датчиков, интегрированных в один навигатор. На основе этой идеи и производятся совмещенные приемники, работающие одновременно с системами ГЛОНАСС, GPS и сопутствующей аппаратурой.

Кроме повышения точности определения такой симбиоз делает возможным отслеживание местоположения, когда спутники одной из систем не улавливаются. Минимальное количество орбитальных объектов, «видимость» которых требуется для работы навигатора, составляет три единицы. Так, если, например, программа ГЛОНАСС становится недоступной, то на помощь придут спутники gps.

Другие системы спутниковой навигации

Разработкой проектов, схожих по масштабам с ГЛОНАСС и GPS, занимается Европейский союз, а также Индия и Китай. планирует реализовать систему Galileo, состоящую из 30 спутников, что позволит добиться непревзойденной точности. В Индии планируется запуск системы IRNSS, работающей посредством семи спутников. Навигационный комплекс ориентируется на внутригосударственное использование. Система Compass от китайских разработчиков должна состоять из двух сегментов. Первый будет включать 5 спутников, а второй - 30. Соответственно, авторы проекта предполагают два формата обслуживания.

Необходимость определения своего местоположения, а еще лучше точных географических координат, во все времена была первоочередной задачей мореплавателей, путешественников и военных. Именно для решения военных задач во второй половине 20 века и была задумана глобальная навигационная система. Зародилась идея в США, где уже в 1964 году появилась первая позиционирования, предназначенная для военных целей. В СССР своя система определения местоположения была запущена в 1967 году.

Первые системы были очень несовершенны, точность определения координат была слабой, навигационные спутники часто выходили из строя и свое местоположение можно было узнать примерно раз в 2 часа. Но сама идея была прорывной, и именно на этих первых системах отрабатывалось и доводилось до ума то, что сегодня мы называем навигационной системой определения местоположения. Давайте разберемся, как же работает спутниковая система навигации.

Как работают навигационные системы GPS и ГЛОНАСС

Физические принципы работы навигационной системы

Общий алгоритм работы системы GPS и ГЛОНАСС

  1. Основная идея;
  2. Определение расстояния до спутников;
  3. Синхронизация по времени;
  4. Определение положения спутника на орбите;
  5. Корректировка погрешностей.

Основная идея

С появлением искусственных спутников Земли и установкой на них передатчиков радиосигнала гигагерцовой частоты, появилась возможность принимать от них этот сигнал над достаточно обширной территорией. Если измерить точное расстояние до 3-х спутников, то при совмещении 3-х сфер, радиус которых и есть расстояние до спутников, они пересекутся в единственной точке, которая и будет вашим местоположением. Дальнейшие расчеты показали, что для гарантированного наблюдения 3-х спутников с территории любой точки Земли, необходимо запустить 18 передатчиков. А для дополнительного определения положения над поверхностью Земли и точной корректировки времени необходимы данные еще с одного спутника. Соответственно 24 спутника будет достаточно для полного определения координат в любой точке земного шара.

Ударная сила №115: «Космический навигатор»

Определение расстояния до спутников

Из школы мы знаем, что для определения расстояния необходимо скорость объекта умножить на время. Соответственно, зная скорость распространения сигнала, а в вакууме это скорость света, и время его прохождения можно легко рассчитать путь, те есть расстояние до спутника. Чтобы определить промежуток времени необходимо знать точное время подачи и приема сигнала. Для этого на спутнике устанавливаются очень точные атомные часы, и время подачи сигнала записывается и передается отдельным пакетом данных.

На земле навигационный приемник, принимая сигнал, засекает время приема и отнимает от него полученное отдельно время подачи сигнала. Полученный отрезок времени и будет временем прохождения сигнала от спутника до приемника. После умножения данного временного отрезка на скорость света и получится искомое расстояние до спутника.

Система GPS слежения

Синхронизация по времени

Итак, для определения местоположения теоретически необходимо провести измерения расстояний до трех любых спутников. Но в бытовых приемниках навигационных сигналов стоят обычные кварцевые часы, имеющие определенную погрешность. Поэтому для того, чтобы на практике правильно определить местоположение необходимо произвести еще одно измерение до четвертого спутника. Имея четыре измерения расстояний можно с помощью специально созданной компьютерной программы синхронизировать время спутников со временем приемника и определить точное местоположение.

Определение положения спутника на орбите

При проведении расчетов очень важно знать точное место спутника в момент подачи радиосигнала. С помощью компьютеров производится расчет точного положения спутника на орбите через заданные очень маленькие промежутки времени. Эта информация заноситься в память компьютера установленного на спутнике и передается в излучаемом им сигнале.

Корректировка погрешностей

  • При любых измерениях существует вероятность ошибок . Источниками ошибок в нашем случае являются преимущественно два фактора: погрешности измерения времени и прохождения радиосигнала через ионосферу Земли.
  • Погрешности при измерении времени будут всегда . Просто невозможно сделать часы, сохраняющие точность на протяжении всего времени эксплуатации – все равно понадобиться корректировка набегающей погрешности измерения.
  • Еще одно узкое место при расчете расстояния – наличие у Земли ионосферы. Через ионосферу по законам физики радиосигнал не может распространяться со скоростью света, поэтому формула определения пути на этом участке будет рассчитываться неправильно.
  • Для того чтобы минимизировать влияние этих факторов вводят так называемые корректировочные коэффициенты , с помощью которых удается значительно улучшить точность вычисления местоположения.

Существующие навигационные системы

В настоящее время есть всего две полностью глобальные системы – GPS и ГЛОНАСС. Физические принципы работы их полностью идентичны, а системы различаются только высотой орбит эшелонов спутников и частотами используемых радиосигналов, кроме того обе системы оснащены дополнительным более точным кодированным радиосигналом используемым только для военных целей. Навигационная система – это комплекс высокотехнологичных, дорогих и очень сложных в обслуживании устройств, располагают которыми пока только США и Россия.

Автомобильный или туристический навигатор уже давно стал привычным делом для многих водителей и любителей путешествовать. О том, какие преимущества получает человек, у которого на переднем стекле установлен навигатор, говорить не нужно - это умное устройство само подберет оптимальный маршрут, подскажет когда начинать перестраиваться и сколько осталось до ближайшего перекрестка. Благодаря такой функции, как «Дорожные пробки», вы всегда будете знать, по каким маршрутам в данный момент лучше не ехать.

Говорить можно еще много обо всех этих умных опциях, однако мало кто задумывается над тем, какой труд прошлось проделать конструкторским бюро, полчищам инженеров и ученых, чтобы вы могли спокойно ездить даже по незнакомым вам маршрутам и городам.

ГЛОНАСС — Глобальная навигационная спутниковая система

На сегодняшний день есть две глобальных навигационных системы - ГЛОНАСС и GPS. Еще можно вспомнить китайскую региональную навигационную систему Бэйдоу, которая покрывает территорию Китая, Монголии, Индии, Кореи и часть Юго-Восточной Азии, также она немного затрагивает Русский Дальний Восток, Японию, Пакистан и Казахстан.

Готовится к запуску еще ряд региональных программ, например более продвинутая китайская «Компасс» или европейская «Галилео».

Уже давно ведется спор о том, какая из этих систем более точная и надежная. . В принципе, все эти системы геопозиционирования работают по одной схеме, благодаря эффекту допплеровского смещения, а качество приема и точность показаний зависят от количества спутников на орбите.

Мы можем сказать только одно - американская GPS покрывает весь Земной Шар, потому что на орбите на 2013 год был 31 навигационный спутник.

ГЛОНАСС стремится к такому показателю и планируется, что между 2015-2017 годами догонит его и по точности и по площади покрытия. На данный же момент численность спутников составляет 24 штуки, при этом их орбиты ориентированы таким образом, чтобы сигнал лучше всего принимался на территории России.

Планируется также, что ГЛОНАСС и Бэйдоу объединят свои усилия, то есть площадь покрытия и точность увеличатся в разы.

История ГЛОНАСС

Началом создания проекта глобальных систем геопозиционирования можно считать 1957 год, когда был запущен первый советский Спутник. Правда, открытие принадлежит американцам, поскольку они следили за сигналами со Спутника и обнаружили, что благодаря эффекту Допплера можно определить, приближается ли к вам спутник или отдаляется.

Обычно данный эффект описывают так: достаточно просто определить по звуку свистка поезда, в каком направлении он движется - к вам или от вас.

Эффект Допплера в свое время помог известному астроному Эдвину Хабблу установить, что наша Вселенная состоит из сотен миллиардов галактик, которые разлетаются в разные стороны и Вселенная расширяется.

Понятно, что размышлять о судьбах Вселенной, Большом Взрыве и братьях по разуму очень занимательно, но открытием воспользовались военные желающие создать систему, которая помогла бы определить точное местонахождения любого объекта на поверхности Земли. И американцы и Советы принялись вести исследования в данном направлении. Программа США начала реализоваться в 60-х, в то же время, что и в СССР.

Первый спутник будущей системы ГЛОНАСС был запущен в 1982 году, а к 1991 году это уже была вполне работоспособная система, насчитывающая 12 спутников. Но с падением СССР проект отошел на второй план и на орбите в рабочем состоянии оставалось всего 6 космических аппаратов.

Ну и только с приходом Путина было решено возобновить программу, а в 2007 году уже можно было покупать навигаторы, которые работают как с GPS так и с ГЛОНАСС. В принципе Россия не сильно отстала от США, так как GPS-навигаторы для авто появились только в 2005 году. Хотя военные обеих стран пользовались системами геопозиционирования задолго до того, как они стали доступны широкой общественности.

Следующим шагом в глобальном продвижении ГЛОНАСС стало появление смартфонов, работающих с этой системой. Начиная с iPhone 4S Apple сделала доступной ГЛОНАСС для покупателей. Поддерживают ГЛОНАСС Samsung Galaxy, HTC One, Nokia (а потом и Microsoft Lumia), Sony Xperia, LG, Huawei, Xiaomi, Garmin eTrex и десятки других.

Что точнее GPS или ГЛОНАСС?

Если речь идет о сверх точном определении координат, то обе системы не являются идеальными. Результаты многочисленных испытаний в разных уголках Планеты, показывают, что ГЛОНАСС все же отстает:

  • ГЛОНАСС - погрешность составляет 3-6 метра;
  • GPS - 2-4 метра.

Однако, для автолюбителей такие ошибки не являются слишком уж важными, к тому же навигаторы, предлагаемые в России и Европе, работают с обеими системами, из-за чего их точность возрастает, поскольку одновременно в зоне видимости приемника находится от 12-ти до 15-ти космических аппаратов.

Точность же во многом зависит от количества каналов приема самого навигатора, которое в идеале должно составлять 60, при этом устройство может одновременно ловить сигнал от 12 спутников, плюс сигналы отражающиеся от различных поверхностей.

То есть говорить о том, какая система точнее, сегодня не так уж и важно. Но не стоит забывать о том, что данными системами пользуются военные, и поэтому и в GPS и в ГЛОНАСС предусмотрено 2 уровня сигналов:

  • общедоступные, рассчитанные на гражданских пользователей;
  • шифрованные - используются для нужд армии.

Еще один важный момент. Благодаря тому, что ГЛОНАСС спутники находятся на более высоких орбитах, более точное местоопределение получается в северных широтах. Данный факт был подтвержден в Швеции: «Из-за высокой орбиты наше оборудование лучше видит ГЛОНАСС, чем GPS».

Ну и кроме всего прочего, правительство Российской Федерации поддерживает свою систему геопозиционирования тем, что требует устанавливать модули ГЛОНАСС на пассажирские транспортные средства.

Планируется, что к 2017 году ГЛОНАСС догонит своего американского конкурента по точности. Количество спутников будет доведено до 32, что сделает данную систему полностью автономной в любой точке Земного шара. Добиться большей точности можно будет за счет запуска спутников на высокоэллиптические и геосинхронные орбиты.

К 2020 году погрешность в определении координат будет составлять всего лишь 80 сантиметров. Понятно, что такая точность водителям абсолютно не нужна, зато военные получат массу преимуществ перед своим воображаемым противником.

Хочется надеяться, что ГЛОНАСС, как GPS и все остальные подобные системы будут использоваться только в мирных целях.

Видео, о том как работают навигационные системы, в том числе и ГЛОНАСС.

Глобальная навигационная спутниковая система ГЛОНАСС

Глобальная навигационная спутниковая система ГЛОНАСС предназначена для определения местоположения, скорости движения, а также точного времени морских, воздушных, сухопутных и других видов потребителей.

История развития ГЛОНАСС

Развитие отечественной навигационной спутниковой системы, как принято считать, началось с запуска в Советском Союзе 4 октября 1957 года первого искусственного спутника Земли. Использовать спутники для навигации в 1957 году впервые предложил проф. В.С. Шебшаевич. Эта возможность была открыта им при исследовании приложений радиоастрономических методов в пилотировании самолетов. После этого в целом ряде советских институтов были проведены исследования, посвященные вопросам повышения точности навигационных определений, обеспечения глобальности, круглосуточного применения и независимости от погодных условий. Все они были использованы в 1963 году во время проведения опытно-конструкторских работ по созданию первой отечественной низкоорбитальной системы «Цикада». 27 ноября 1967 года на орбиту был выведен первый навигационный отечественный спутник «Космос-192» (КА «Циклон»).Он обеспечивал непрерывное излучение радионавигационного сигнала на частотах 150 и 400 МГц в течение всего времени активного существования.

Система «Цикада» была сдана в эксплуатацию в составе четырех спутников в 1979 году. Навигационные спутники были выведены на круговые орбиты высотой 1000 км, с наклонением 83° и равномерным распределением плоскостей вдоль экватора. Система позволяла потребителю в среднем через каждые 1,5–2 часа входить в радиоконтакт с одним из спутников и определять плановые координаты своего места при продолжительности навигационного сеанса до 5-6 минут. Навигационная система «Цикада» использовала беззапросные измерения дальности от потребителя до навигационных спутников. Наряду с совершенствованием бортовых систем спутника и корабельной навигационной аппаратуры серьезное внимание было уделено вопросам повышения точности определения и прогнозирования параметров орбит навигационных спутников.

В дальнейшем спутники системы «Цикада» были дооборудованы приемной измерительной аппаратурой обнаружения терпящих бедствие объектов, которые оснащаются специальными радиобуями. Эти сигналы принимаются спутниками системы «Цикада» и ретранслируются на специальные наземные станции, где производится вычисление точных координат аварийных объектов (судов, самолетов и др.). Дооснащенные аппаратурой обнаружения терпящих бедствие спутники «Цикада» образуют системы «Коспас». Совместно с американо-франко-канадской системой «Сарсат» они входят в единую службу поиска и спасения.

Успешная эксплуатация низкоорбитальных спутниковых навигационных систем морскими потребителями привлекла широкое внимание к спутниковой навигации. Возникла необходимость создания универсальной навигационной системы, удовлетворяющей требованиям всех потенциальных потребителей: авиации, морского флота, наземных транспортных средств и космических кораблей. Выполнить требования всех указанных классов потребителей низкоорбитальные системы в силу принципов, заложенных в основу их построения, не могли. Перспективная навигационная спутниковая система второго поколения должна была обеспечить потребителю в любой момент времени возможность определять три пространственные координаты, вектор скорости и точное время.

Была выбрана структура спутниковой системы: высота орбиты навигационных спутников составила 20 тыс. км, их общее количество – 24 аппарата. Были решены две проблемы создания высокоорбитальной навигационной системы. Первая проблема - взаимная синхронизация спутниковых шкал времени с точностью до миллиардных долей секунды (наносекунд). Эта проблема была решена с помощью установки на спутниках высокостабильных бортовых цезиевых стандартов частоты с относительной нестабильностью 1*10 -13 и наземного водородного стандарта с относительной нестабильностью 1* 10 -14 , а также создания наземных средств сличения шкал с погрешностью 3-5 нс. Второй проблемой было высокоточное определение и прогнозирование параметров орбит навигационных спутников. Ее решили, учитывая факторы второго порядка малости, таких как световое давление, неравномерность вращения Земли и движение ее полюсов, а также исключая действия на спутник в полете реактивных сил, вызванных не герметичностью двигательных установок и газоотделением материалов покрытий.

Летные испытания высокоорбитальной отечественной навигационной системы, получившей название ГЛОНАСС , были начаты в октябре 1982 года запуском спутника «Космос-1413». Система ГЛОНАСС была принята в опытную эксплуатацию в 1993 году. В 1995-м развернута орбитальная группировка полного состава (24 спутника) и начата штатная эксплуатация. Система позволяет обеспечить непрерывную глобальную навигацию всех типов потребителей с различным уровнем требований к качеству навигационного обеспечения.

Сокращение финансирования космической отрасли в 1990-х годах привело к деградации орбитальной группировки ГЛОНАСС , снижению ее выходного эффекта. В 2001 году в целях сохранения и развития системы Президентом и Правительством РФ утвержден ряд директивных документов, основным из которых является федеральная целевая программа «Глобальная навигационная система».

Генеральный конструктор глобальной навигационной системы ГЛОНАСС - Сергей Николаевич Карутин (ТАСС, 21.09.2015).

Структура ГЛОНАСС

Система ГЛОНАСС в расширенной конфигурации включает в себя следующие составные части:

  • Космический комплекс системы ГЛОНАСС, состоящий из орбитальной группировки, средств выведения, наземного комплекса управления.
  • Функциональные дополнения, включая широкозонную систему функционального дополнения ГНСС – систему дифференциальных коррекций и мониторинга, а также региональные и локальные системы мониторинга и дифференциальной навигации.
  • Система высокоточной апостериорной эфемеридно-временной информации.
  • Средства фундаментального обеспечения ГЛОНАСС – системы оперативного определения параметров вращения и ориентации Земли, системы формирования государственной шкалы всемирного скоординированного времени, геодезической основы РФ.
  • Навигационная аппаратура потребителей для гражданского и специального применения.

Головная организация по развитию и использованию системы ГЛОНАСС - АО «Российские космические системы».
Головная организация по космическому комплексу ГЛОНАСС - АО «Информационные спутниковые системы» имени академика М.Ф. Решетнёва».
Оператор государственной автоматизированной информационной системы «ЭРА-ГЛОНАСС» - АО «ГЛОНАСС».
Федеральный сетевой оператор в сфере навигационной деятельности - НП «ГЛОНАСС».
Оперативный круглосуточный мониторинг и подтверждение характеристик навигационного поля ГЛОНАСС осуществляет Информационно-аналитический центр координатно-временного и навигационного обеспечения ФГУП ЦНИИмаш.

Состав системы ГЛОНАСС

Система ГЛОНАСС состоит из трех подсистем:

  • подсистемы космических аппаратов (ПКА);
  • подсистемы контроля и управления (ПКУ);
  • навигационной аппаратуры потребителей (НАП).

Подсистема космических аппаратов системы ГЛОНАСС состоит из 24-х спутников, находящихся на круговых орбитах высотой 19100 км, наклонением 64,8° и периодом обращения 11 часов 15 минут в трех орбитальных плоскостях. Орбитальные плоскости разнесены по долготе на 120°. В каждой орбитальной плоскости размещаются по 8 спутников с равномерным сдвигом по аргументу широты 45°. Кроме этого, в плоскостях положение спутников сдвинуты относительно друг друга по аргументу широты на 15°. Такая конфигурация ПКА позволяет обеспечить непрерывное и глобальное покрытие земной поверхности и околоземного пространства навигационным полем. Как правило, требуется, чтобы в зоне видимости потребителя находились не менее 3-5 навигационных космических аппаратов (НКА). Кроме действующих НКА, на орбите находятся резервные спутники, которые могут быть оперативно введены для замены вышедших из строя.

Подсистема контроля и управления состоит из Центра управления системой ГЛОНАСС и сети станций измерения, управления и контроля, рассредоточенной по всей территории России. В задачи ПКУ входит контроль правильности функционирования ПКА, непрерывное уточнение параметров орбит и выдача на спутники временных программ, команд управления и навигационной информации.

Навигационная аппаратура потребителей состоит из навигационных приемников и устройств обработки, предназначенных для приема навигационных сигналов спутников ГЛОНАСС и вычисления собственных координат, скорости и времени.

Принцип работы

Спутники системы ГЛОНАСС непрерывно излучают навигационные сигналы двух типов: навигационный сигнал стандартной точности (СТ) в диапазоне L1 (1,6 ГГц) и навигационный сигнал высокой точности (ВТ) в диапазонах L1 и L2 (1,2 ГГц). Информация, предоставляемая навигационным сигналом СТ, доступна всем потребителям на постоянной и глобальной основе и обеспечивает, при использовании приемников ГЛОНАСС , возможность определения:

  • горизонтальных координат;
  • вертикальных координат;
  • составляющих вектора скорости;
  • точного времени.

Точности определения можно значительно улучшить, если использовать дифференциальный метод навигации и/или дополнительные специальные методы измерений.

Для определения пространственных координат и точного времени требуется принять и обработать навигационные сигналы не менее чем от 4-х спутников ГЛОНАСС . При приеме навигационных радиосигналов ГЛОНАСС приемник, используя известные радиотехнические методы, измеряет дальности до видимых спутников и измеряет скорости их движения.

Одновременно с проведением измерений в приемнике выполняется автоматическая обработка содержащихся в каждом навигационном радиосигнале меток времени и цифровой информации. Цифровая информация описывает положение данного спутника в пространстве и времени (эфемериды) относительно единой для системы шкалы времени и в геоцентрической связанной декартовой системе координат. Кроме того, цифровая информация описывает положение других спутников системы (альманах) в виде кеплеровских элементов их орбит и содержит некоторые другие параметры. Результаты измерений и принятая цифровая информация являются исходными данными для решения навигационной задачи по определению координат и параметров движения. Навигационная задача решается автоматически в вычислительном устройстве приемника, при этом используется известный метод наименьших квадратов. В результате решения определяются три координаты местоположения потребителя, скорость его движения и осуществляется привязка шкалы времени потребителя к высокоточной шкале Универсального координированного времени (UTC).

«ЭРА-ГЛОНАСС»

Система «ЭРА-ГЛОНАСС» – отечественный комплекс оперативного реагирования на дорожные происшествия, призванный в автоматическом режиме оповещать службы спасения о произошедших на автотрассах ДТП. Внедрение системы помогает:

  • улучшить ситуацию на дорогах;
  • снизить число автоаварий со смертельным исходом;
  • ускорить прибытие на место происшествия спасателей, медиков и автоинспекторов;
  • обезопасить перевозку пассажиров и грузов.

В опытную эксплуатацию система была запущен в 2014 году. На январь 2018 года устройством оснащены около 1,5 млн автомобилей (по данным официального сайта оператора системы – АО «ГЛОНАСС»).

С 2018 года прекращается государственное финансирование оператора системы «ЭРА – ГЛОНАСС». АО «ГЛОНАСС» полностью перешел на самоокупаемость.

Запуски

  • 1982 - 1993 гг. 53 космических аппарата (КА) ГЛОНАСС, космодром "Байконур"
  • 1994 - 1995 гг. 18 КА ГЛОНАСС
  • 1996 - 1997 гг. запуски не производились
  • 25 декабря 2002 г. 3 КА ГЛОНАСС
  • 10 декабря 2003 г. 2 КА ГЛОНАСС и 1 КА ГЛОНАСС-М
  • 26 декабря 2004 г. 2 КА ГЛОНАСС и 1 КА ГЛОНАСС-М
  • 25 декабря 2005 г. 1 КА ГЛОНАСС и 2 КА ГЛОНАСС-М, космодром "Байконур", ракета-носитель (РН) "Протон-К". Результат успешный
  • 25 декабря 2006 г. 3 КА ГЛОНАСС-М, космодром "Байконур", РН "Протон-К". Результат успешный
  • 26 октября 2007 г. 3 КА ГЛОНАСС-М, комодром "Байконур", РН "Протон-К". Результат успешный
  • 25 декабря 2007 г. 3 КА ГЛОНАСС-М, космодром "Байконур", РН "Протон-К". Результат успешный
  • 25 сентября 2008 г. 3 КА ГЛОНАСС-М, космодром "Байконур", РН "Протон-М". Результат успешный
  • 25 декабря 2008 г. 3 КА ГЛОНАСС-М, космодром "Байконур", РН "Протон-М". Результат успешный
  • 02 марта 2010 г. 3 КА ГЛОНАСС-М, космодром "Байконур", РН "Протон-М". Результат успешный
  • 02 сентября 2010 г. 3 КА ГЛОНАСС-М, космодром "Байконур", РН "Протон-М". Результат успешный
  • 05 декабря 2010 г. 3 КА ГЛОНАСС-М, космодром "Байконур", РН "Протон-М". Аварийный пуск
  • 26 февраля 2011 г. 1 КА ГЛОНАСС-К, космодром "Плесецк", РН "Союз-2-1Б". Результат успешный
  • 04 ноября 2011 г. 1 КА ГЛОНАСС-М, космодром "Байконур", РН "Протон-М". Результат успешный
  • 26 апреля 2013 г. 1 КА ГЛОНАСС-М, космодром "Плесецк", РН "Союз-2-1Б". Результат успешный
  • 02 июля 2013 г. 3 КА ГЛОНАСС-М, космодром "Байконур". РН "Протон-М". Аварийный пуск
  • 24 марта 2014 г. 1 КА ГЛОНАСС-М, космодром "Плесецк". РН "Союз-2.1б". Результат успешный
  • 14 июня 2014 г. 1 КА ГЛОНАСС-М, космодром "Плесецк". РН "Союз-2.1б". Результат успешный
  • 01 декабря 2014 г. 1 КА ГЛОНАСС-К, космодром "Плесецк". РН "Союз-2.1б". Результат успешный
  • 07 февраля 2016 г. 1КА ГЛОНАСС-М, космодром "Плесецк". РН "Союз-2.1б". Результат успешный
  • 29 мая 2016 г. 1КА ГЛОНАСС-М, космодром "Плесецк". РН "Союз-2.1б". Результат успешный
  • 22 сентября 2017 г. 1КА ГЛОНАСС-М, космодром "Плесецк". РН "Союз-2.1б". Результат успешный
  • 17 июня 2018 г. 1КА ГЛОНАСС-М, космодром "Плесецк". РН "Союз-2.1б". Результат успешный
  • 3 ноября 2018 г. 1КА ГЛОНАСС-М, космодром "Плесецк". РН "Союз-2.1б". Результат успешный

Применение ГНСС ГЛОНАСС

Основные направления применения ГЛОНАСС на транспорте:

  • сухопутная навигация
  • автомобильный и железнодорожный транспорт
  • морская навигация
  • аэронавигация
  • навигация в космосе

По мере совершенствования глобальных навигационных спутниковых систем появляются новые области их применения, которые, в свою очередь, требуют дальнейшего повышения точности, доступности, оперативности и надежности навигационных услуг:

организация дорожного движения, в том числе по платным дорогам, оплата парковок, анализ дорожно-транспортных происшествий, определение страховых случаев, организация автоматического управления дорожной, строительной и сельскохозяйственной техникой, контроль «деформации» инженерных сооружений, синхронизация систем связи, банковских систем осуществления транзакций, энергетических систем, систем транспортировки нефти и газа, высокоточный мониторинг движения земной поверхности, фундаментальные научные исследования и многое другое.

ГЛОНАСС сегодня

На сегодняшний день космическая группировка системы ГЛОНАСС работает в составе 24 космических аппарата; 23 - это прежнее поколение «Глонасс-М», и один аппарат – это «Глонасс-К» нового поколения. На земле работают шесть аппаратов, то есть в случае необходимости можно дополнять группировку необходимым количеством.

С 2019 года планируется вводить еще одно новое поколение спутника – «Глонасс-К2». Глонасс-К2 будет отличаться от предшественников большей точностью определения пользователями своих координат, достигнутой благодаря новейшим хронометрам и новым типом сигналов с кодовым разделением (CDMA), которые будут передаваться на трёх частотах L-диапазона (L1, L2 и L3). Также планируется поддержка Коспас-Сарсат .

На текущий момент орбитальная группировка состоит из 26 КА, из которых:

  • 24 КА используются по целевому назначению
  • 0 КА на этапе ввода в систему
  • 0 КА временно выведен на техническое обслуживание
  • 0 КА находятся на исследовании Главного конструктора системы
  • 1 КА находится в орбитальном резерве
  • 1 КА находится на этапе лётно-конструкторских испытаний

При этом 14 спутников из группировки работают за пределами срока активного существования, еще 4 спутника преодолеют рубеж в ближайшие полтора месяца.