Трехмерная графика (3D). Растровая, векторная и фрактальная графика

В лесах фрактальной графики

Дмитрий Шахов, фрилансер, г.Москва

Фракталы привлекают внимание, завораживают, гипнотизируют. Однако многие считают, что такие изображения — просто узоры, которые хороши лишь на экране монитора или в качестве прикладных вспомогательных средств для оформления различной полиграфической продукции. При этом мало кто догадывается, что простота эта только кажущаяся. На самом деле фрактальная графика довольно сложна и является результатом слияния математики и искусства. Сегодня фракталы — один из самых перспективных, быстро развивающихся видов компьютерной графики.

Прежде чем перейти к рассмотрению фрактальной графики, рассмотрим, в чем суть компьютерной, или «машинной», графики, а также общепринятую классификацию компьютерной графики (Computer Graphics, CG). Это понятие появилось относительно недавно, в 60-х годах прошлого столетия, когда были изобретены электронные вычислительные устройства. Термин «компьютерная графика» трактуется в различных источниках по-разному. Некоторые определяют его как область информатики, занимающуюся вопросами получения различных изображений (рисунков, чертежей, мультипликации) на компьютере. Компьютерная графика охватывает все виды и формы представления изображений, доступные для человеческого восприятия на экране монитора или в виде копии на внешнем носителе (бумаге, ткани, кинопленке и т.п.). В других источниках компьютерная графика называется специальной областью информатики, изучающей методы и средства создания и обработки изображений с помощью программно-аппаратных вычислительных комплексов.

В широком смысле слова компьютерная графика — это всё, для чего используется визуальная, образная среда отображения на мониторе. Если сузить понятие до практического использования, то под компьютерной графикой можно подразумевать процесс создания, обработки и вывода разного рода изображений с помощью компьютера.

В зависимости от способа формирования изображений компьютерная графика делится на растровую, векторную и фрактальную (рис. 1).

Основным и наименьшим элементом растрового изображения является точка. Когда изображение находится в программной среде на экране, она называется пикселом. Каждый пиксел растрового изображения имеет две характеристики: размещение и цвет. Чем больше количество пикселов и меньше их размеры, тем лучше выглядит изображение. Большие объемы данных — это основная проблема при использовании растровых изображений. Второй недостаток растровых изображений связан с невозможностью их увеличения для рассмотрения деталей. Поскольку изображение состоит из точек, увеличение изображения приводит к тому, что эти точки становятся крупнее и напоминают мозаику, а следовательно, дополнительных деталей в этом случае рассмотреть не удается. Более того, увеличение точек растра визуально искажает изображение и делает его зернистым. Этот эффект называется пикселизацией.

Рис. 1. Типы компьютерной графики: а — растровая; б — векторная; в — фрактальная

В векторной графике основным элементом изображения является линия (не важно, прямая или кривая). Разумеется, в растровой графике тоже существуют линии, но там они рассматриваются как комбинации точек. Для каждой точки линии в растровой графике отводится одна или несколько ячеек памяти (чем больше цветов могут иметь точки, тем больше ячеек им выделяется). Соответственно, чем длиннее растровая линия, тем больше памяти она занимает. В векторной графике объем памяти, занимаемый линией, не зависит от размеров линии, поскольку линия представляется в виде формулы, а точнее, в виде нескольких параметров. Что бы мы ни делали с этой линией, меняются только ее параметры, хранящиеся в ячейках памяти. Количество же ячеек для любой линии остается неизменным.

Рис. 2. Пример фрактальности в природе — капуста Романеску

Изображение в векторном формате легко редактируется: его можно без потерь масштабировать, поворачивать, деформировать. Имитация трехмерности в векторной графике тоже проще, чем в растровой. Дело в том, что каждое преобразование фактически выполняется так: старое изображение (или фрагмент) стирается, а вместо него строится новое. Математическое описание векторного рисунка остается прежним — изменяются только значения некоторых переменных, например коэффициентов.

Фрактальная графика относительно молода по сравнению с растровой и векторной графикой. Основой фрактальной графики является фрактальная геометрия, позволяющая математически описывать различные виды неоднородностей, встречающихся в природе. Понятия «фрактал», «фрактальная геометрия» и «фрактальная графика» появились в конце 1970-х. Слово «фрактал» образовано от латинского fractus и означает «состоящий из фрагментов». Оно было предложено математиком Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур. Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги «The Fractal Geometry of Nature» Бенуа Мандельброта. Определение фрактала, данное Мандельбротом: фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому. Самоподобие — одно из основных свойств фракталов. Таким образом, фрактальная графика — это вид компьютерной графики, в которой в той или иной мере используются самоподобные структуры (проще говоря, фракталы). Далее мы поговорим о том, что же такое самоподобие и где в природе встречаются фракталы.

Что подразумевается под самоподобием? Капуста Романеску из Италии — самый характерный пример фрактального объекта в природе. Капустные почки у нее нарастают в виде некой спирали (рис. 2), которая называется логарифмической, а число капустных почек совпадает с числом Фибоначчи. Числа Фибоначчи — это элементы числовой последовательности 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946…, в которой каждое последующее число равно сумме двух предыдущих чисел. Свое название они получили в честь средневекового математика Леонардо Пизанского (известного как Фибоначчи). Каждая часть элементов капусты Романеску имеет ту же форму, что и весь кочан. Это свойство повторяется с регулярностью в различных масштабах. По сути эта капуста является природным фракталом. То есть как бы мы ни увеличивали фрактал, после каждого шага мы увидим ту же форму, что характерна для данного фрактала в целом. Таким образом, с фракталами тесно связаны еще два понятия — итерация и рекурсия. Рекурсия — процесс повторения элементов самоподобным образом. Итерация — упрощенно говоря — повторное применение какой-либо математической операции.

На самом деле фрактальные свойства имеет очень большое количество природных объектов — просто мало кто об этом задумывается. Вы можете любоваться облаками на небе, набегающими волнами прибоя, ходить по лесу — и даже не подозревать, что в основе этой красоты лежит математика! Да-да! Исследования фрактальных свойств природных объектов начал проводить еще Бенуа Мандельброт. Оказывается, несмотря на всю сложность природных объектов, многие из них в принципе описываются довольно простыми математическими формулами. Хотя в чистом виде фракталы в природе не существуют. То, что мы наблюдаем, — это так называемые стохастические фракталы. То есть такие фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие-либо его параметры. «Чистый» фрактал можно приближать до бесконечности, поскольку он обладает бесконечной рекурсией, а вот о стохастических фракталах этого сказать нельзя.

Следует отметить, что слово «фрактал» не является математическим термином и не имеет общепринятого строгого математического определения. Оно может употребляться, когда рассматриваемая фигура обладает какими-либо из следующих свойств:

  • имеет нетривиальную структуру во всех масштабах — этим фрактал отличается от регулярных фигур (таких как окружность, эллипс, график гладкой функции): если мы рассмотрим небольшой фрагмент регулярной фигуры в очень крупном масштабе, то он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведет к упрощению структуры, поэтому на всех шкалах мы увидим одинаково сложную картину;
  • является самоподобной или приближенно самоподобной;
  • имеет дробную метрическую размерность или метрическую размерность, превосходящую топологическую.

Кроме того, для построения фрактала необходимо учитывать начальное состояние и описывающую его формулу — так называемое исходное множество, которое пропускается через некий механизм, вызывающий его отображение и добавляющий отображенное множество к исходному. Этот процесс и называется итерацией. Таким образом, после нескольких подобных относительно простых операций получается весьма сложное изображение. В процессе получения фрактала важны два момента: исходное множество и механизм преобразования. В зависимости от алгоритма построения фракталы делятся на линейные и нелинейные.

Алгоритмы построения линейных фракталов определяются линейными функциями. В них самоподобие присутствует в простейшем варианте: любая часть повторяет целое.

Нелинейные фракталы задаются нелинейной функцией роста, то есть уравнениями в степени выше первой. В них самоподобие будет более сложным: любая часть является уже не точной, а деформированной копией целого.

Один из простейших примеров линейного фрактала — кривая Коха (1904 год, немецкий математик Хельга фон Кох).

Существует простая рекурсивная процедура (получение самоподобных частей фрактала) формирования фрактальных кривых на плоскости. Зададим произвольную ломаную с конечным числом звеньев, называемую генератором. Далее заменим в ней каждый отрезок генератором (точнее, ломаной, подобной генератору). В получившейся ломаной вновь заменим каждый отрезок генератором. Продолжая до бесконечности, в пределе получим фрактальную кривую. На рис. 3 приведено несколько шагов этой процедуры для кривой Коха.

Одним из первых нелинейные фракталы описал французский математик Гастон Жюлиа еще в 1918 году. Но в его работе отсутствовали изображения исследованных им множеств и термин «фрактал».

В наше время компьютеры позволили получить изображения множеств Жюлиа (рис. 4а ), которые вместе с множествами Мандельброта(рис. 4б ) являются ныне самыми известными квадратичными фрактальными структурами.

Оба типа фракталов возникают в результате реализации на комплексной плоскости самого простого нелинейного алгоритма.

Здесь в основу метода построения изображений положен принцип наследования от так называемых родителей геометрических свойств объектов-наследников. Построение фрактального рисунка осуществляется по какому-либо алгоритму или путем автоматической генерации изображений при помощи вычислений по конкретным формулам. Изменения значений в алгоритмах или коэффициентов в формулах приводит к модификации этих изображений. Главным преимуществом фрактальной графики является то, что в файле фрактального изображения сохраняются только алгоритмы и формулы.

Фрактал — объект, отдельные элементы которого наследуют свойства родительских структур. Поскольку более детальное описание элементов меньшего масштаба происходит по простому алгоритму, описать такой объект можно всего несколькими математическими уравнениями.

Фракталы позволяют описывать целые классы изображений, для детального описания которых требуется относительно мало памяти. В то же время фракталы слабо применимы к изображениям вне этих классов.

Программные средства для работы с фрактальной графикой предназначены для автоматической генерации изображений путем математических расчетов. Именно поэтому фрактальная графика не признается ни компьютерными, ни обычными художниками из-за того, что якобы здесь за человека всё делает программа. На самом деле процесс работы с фрактальной графикой хоть и автоматизирован, но, тем не менее, полностью творческий: комбинируя формулы и меняя переменные, можно добиваться удивительных результатов и воплощать самые смелые художественные замыслы. Создание фрактальной художественной композиции заключается не в рисовании или оформлении, а в программировании.

Изменяя и комбинируя окраску фрактальных фигур, можно моделировать образы живой и неживой природы (например, ветви дерева или снежинки), а также составлять из полученных фигур «фрактальную» композицию. Фрактальная графика, так же как векторная и трехмерная, является вычисляемой. Ее главное отличие в том, что изображение строится по уравнению или системе уравнений. Поэтому для выполнения всех вычислений в памяти компьютера ничего, кроме формулы, хранить не требуется.

Только изменив коэффициенты уравнения, можно получить совершенно иное изображение. Эта идея нашла применение в компьютерной графике благодаря компактности математического аппарата, необходимого для ее реализации. Так, с помощью нескольких математических коэффициентов можно задать линии и поверхности очень сложной формы.

В машинной графике фрактальная геометрия незаменима при генерации искусственных облаков, гор, поверхности моря. Фактически, благодаря фрактальной графике найден способ эффективной реализации сложных неевклидовых объектов, образы которых весьма похожи на природные. Собственно, поэтому настоящей статье и дано такое название. Многие природные объекты имеют фрактальные свойства, поэтому их легко создавать на компьютере с помощью фрактальной графики. Например, при разработке компьютерной игры нет нужды каждый раз заново рисовать лес, горы, облака и т.д. Эти объекты обладают самоподобием, а следовательно, могут быть легко сгенерированы программными средствами на основе математических формул. Добавляя или изменяя некоторые параметры исходной формулы, можно добиться удивительного разнообразия получаемых природных объектов. Фракталы на экране компьютера — это узоры, построенные самим ПК по заданной программе. Помимо фрактальной живописи существуют фрактальные анимация и музыка.

В заключение хотелось бы отметить следующее: фрактальная графика — одно из самых необычных и перспективных направлений в компьютерной графике. Результаты, которые можно получить с ее помощью, поражают воображение даже самых искушенных ценителей компьютерного искусства. Так, изображения, создаваемые с помощью программ-фракталогенераторов, порой содержат совершенно фантастические и необычные пейзажи (рис. 5), которые даже не снились художникам-сюрреалистам. И наоборот, с помощью фрактальной графики можно с удивительной точностью изобразить то, что мы видим в окружающем нас мире. Воистину мир фракталов удивителен! 

Продолжение следует.

На сегодня фрактальная графика очень быстро развивается и весьма популярна и перспективна. Основой фрактальной графики является геометрия. Основным методом создания изображений является принцип наследственности от геометрического свойства наследников.

Фрактал - это структура, которая состоит из частей, подобных целому. Его основное свойство - самоподобие. Объекты, называют самоподобными, если части объекта после увеличения, остаются похожими друг на друга.

Центром фрактальной фигуры является её простейший элемент - треугольник с равными сторонами, который назвали «фрактальный». На середине сторон треугольника строят такие же равносторонние треугольники, которые равны одной третьей стороны исходной фигуры. Затем, на треугольниках первого поколения выстраивают треугольники второго поколения, но уже со стороной равно одной девятой от стороны центрального треугольника. Этот процесс можно продолжать нескончаемое число раз.

Изменение и комбинируя окраски фрактальных фигур, возможно, проектировать живые или неживые природные образы, такие как снег или же деревья, ветви, листья. Составлять фрактальную композицию. Изображения фрактальной графики состоят из уравнений или по системе уравнений. Фрактальная графика - это вычисление. Для того, что выполнять изображения такой графики, компьютеру нужно хранить только формулу или алгоритм, по которой производятся вычисления. Заменив коэффициенты уравнения, можем создать абсолютно другое изображение, а при использовании сразу нескольких коэффициентов одновременно, можно создать линии или поверхность самого сложной формы.

Фрактальная графика 21 века стала популярной совсем недавно, в ней используются такие понятия, как: фрактальные треугольники, фигуры, объекты прямые и композиции. А так же «Объекты-родители» и «Объекты-наследники». Все эти понятия играют свою роль в создании изображения.

При помощи фрактальной компьютерной графики создаются абстрактные композиции, реализующие такие приемы композиции как линии горизонтальные и вертикальные, любые направления диагоналей, различные симметричные и асимметричные. Немногие российские и зарубежные программисты, и компьютерные дизайнеры знакомы с фрактальной графикой.

Объекты фрактальной графики по структуре можно сравнивать со сложными структурами кристалликов льда или снежинок. Используя эти уникальные свойства фрактальной графики можно создавать декоративные орнаменты. Разработанные великими умами алгоритмы и уравнения для синтеза коэффициентов фрактальных рисунков, позволяют создать картинки, близкие по сходству с оригиналом, то есть клонировать картинку, причем неограниченное количество раз.

В машинной графике использование фрактальной геометрии незаменимо при создании искусственных облаков, поверхности моря или гор. Только благодаря фрактальной графике был создан способ реализации сложных объектов, которые по образу очень похожи на природу. Геометрические фракталы на мониторе компьютера - это построенные по заданной программе узоры.

Создателями фракталов является человек разносторонний, владеющий несколькими профессиями сразу. Он должен быть одновременно и художником, и скульптором, и фотографом. Создавая рисунок свои руками, вы пользуясь математической формулой сам задаете ту форму изображения, которая вам нужна. Подстраиваете параметры, выбираете, каким рисунок будет по виду, какого цвета. Отличие фрактальной графики от других редакторов графики, например Photoshop, заключается в том, что вы создаете свой уникальный рисунок с «ноля».

В Photoshop невозможно создать рисунок, его можно лишь отредактировать или отформатировать, придать ему необходимый цвет, размер, улучшить качество и сгладить недостатки. Отличительной чертой редактора Painter считается то, что художник, в реале работающий без помощи компьютера, не сможет, используя кисть, перо или карандаш, тех же возможностей, что даны в Painter.

Рейтинг: / 18

ПлохоОтлично

Растровая, векторная и фрактальная графика

Компьютерная графика - это специальная область информатики, изучающая методы и способы создания и обработки изображений на экране компьютера с помощью специальных программ. В зависимости от способа формирования изображений компьютерную графику принято подразделять на растровую и векторную. Кроме того выделяют другие типы графики, например, трехмерную (3 D ), изучающую приемы и методы построения объемных объектов в пространстве. Как правило, в ней сочетаются векторный и растровый способ формирования изображения.

Растровая и векторная графика создается в специальных программах - графических редакторах и процессорах. Например, программы Paint и Gimp являются растровыми, а Inkscape - векторым.

Растровая графика

Растровое изображение представляет картину, состоящую из массива точек на экране, имеющих такие атрибуты как координаты и цвет.

Пиксель – наименьший элемент изображения на экране компьютера. Размер экранного пикселя приблизительно 0,0018 дюйма.

Растровый рисунок похож на мозаику, в которой каждый элемент (пиксель) закрашен определенным цветом. Этот цвет закрепляется за определенным местом экрана. Перемещение фрагмента изображения "снимает" краску с электронного холста и разрушает рисунок.

Информация о текущем состоянии экрана хранится в памяти видеокарты. Информация может храниться и в памяти компьютера - в графическом файле данных.

Самыми близкими аналогами растровой графики является живопись, фотография.

Кодирование графической информации

Качество изображения определяется разрешающей способностью экрана и глубиной цвета.

Число цветов (К), воспроизводимых на экране дисплея, зависти от числа бит (N ), отводимых в видеопамяти под каждый пиксель:

K =2 N

Для получения богатой палитры цветов базовым цветам могут быть заданы различные интенсивности. Например, при глубине цвета в 24 бита на каждый из цветов выделяется по 8 бит (RGB ), т.е. для каждого из цветов возможны K = 28 = 256 уровней интенсивности. Один бит видеопамяти занимает информация об одном пикселе на черно-белом экране (без полутонов).

Величину N называют битовой глубиной.

Страница - раздел видеопамяти, вмещающий информацию об одном образе экрана (одной "картинке" на экране). В видеопамяти одновременно могут размещаться несколько страниц.

Если на экране с разрешающей способностью 800 х 600 высвечиваются только двухцветные изображения, то битовая глубина двухцветного изображения равна 1, а объем видеопамяти на одну страницу изображения равен 800 * 600 * 1 = 480000 бит = 60000 байт.

Для хранения двух страниц изображения при условии, что разрешающая способность дисплея равна 640 х 350 пикселей, а количество используемых цветов - 16 будет таким: 640 * 350 * 4 * 2 = 1792000 бит = 218,75 Кбайт

Количество используемых цветов - 16, это 2 4 , значит, битовая глубина цвета равна 4.

Векторная графика

В векторной графике изображение состоит из простых элементов, называемых примитивами: линий, окружностей, прямоугольников, закрашенных областей. Границы областей задаются кривыми.

Файл, отображающий векторное изображение, содержит начальные координаты и параметры примитивов – векторные команды.

Самым близким аналогом векторной графики является графическое представление математических функций. Например, для описания отрезка прямой достаточно указать координаты его концов, а окружность можно описать, задав координаты центра и радиус.

Информация о цвете объекта сохраняется как часть его описания, т.е. тоже в векторной команде.

Векторные команды сообщают устройству вывода о том, что необходимо нарисовать объект, используя заложенное число элементов-примитивов. Чем больше элементов используется, тем лучше этот объект выглядит.

Приложения для создания векторной графики широко используются в области дизайна, технического рисования, оформительских работ. Элементы векторной графики имеются также в текстовых процессорах. В этих программах одновременно с инструментами рисования и командами предусмотрено специальное программное обеспечение, формирующее векторные команды, соответствующие объектам, из которых состоит рисунок.

Файлы векторной графики могут содержать растровые объекты.

Достоинства векторной графики

  • Векторные изображения занимают относительно небольшой объем памяти.
  • Векторные объекты могут легко масштабироваться без потери качества
  • Недостатки векторной графики
  • Векторная графика не позволяет получать изображения фотографического качества.
  • Векторные изображения описываются тысячами команд. В процессе печати эти команды передаются устройству вывода (принтеру). Чаще всего изображение на бумаге выглядит не так как на экране монитора.

Фрактальная графика

Последней из рассматриваемых видов компьютерной графики - это фрактальная графика. Фрактальная графика является на сегодняшний день одним из самых быстро развивающихся перспективных видов компьютерной графики.

Математической основой фрактальной графики является фрактальная геометрия. Здесь в основу метода построения изображений положен принцип наследования от, так называемых, «родителей» геометрических свойств объектов-наследников.

Понятия фрактал , фрактальная геометрия и фрактальная графика, появившиеся в конце 70-х, сегодня прочно вошли в обиход математиков и компьютерных художников. Слово фрактал образовано от латинского fractus и в переводе означает «состоящий из фрагментов». Оно было предложено математиком Бенуа Мандель-Бротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался.

Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому. Одним из основных свойств фракталов является самоподобие. Объект называют самоподобным, когда увеличенные части объекта походят на сам объект и друг на друга. Перефразируя это определение, можно сказать, что в простейшем случае небольшая часть фрактала содержит информацию обо всем фрактале.

В центре фрактальной фигуры находится её простейший элемент - равносторонний треугольник, который получил название «фрактальный». Затем, на среднем отрезке сторон строятся равносторонние треугольники со стороной, равной (1/3a) от стороны исходного фрактального треугольника. В свою очередь, на средних отрезках сторон полученных треугольников, являющихся объектами-наследниками первого поколения, выстраиваются треугольники-наследники второго поколения со стороной (1/9а) от стороны исходного треугольника.

Таким образом, мелкие элементы фрактального объекта повторяют свойства всего объекта. Полученный объект носит название «фрактальной фигуры». Процесс наследования можно продолжать до бесконечности. Таким образом, можно описать и такой графический элемент, как прямую.

Изменяя и комбинирую окраску фрактальных фигур можно моделировать образы живой и неживой природы (например, ветви дерева или снежинки), а также, составлять из полученных фигур «фрактальную композицию». Фрактальная графика, также как векторная и трёхмерная, является вычисляемой. Её главное отличие в том, что изображение строится по уравнению или системе уравнений. Поэтому в памяти компьютера для выполнения всех вычислений, ничего кроме формулы хранить не требуется.

Только изменив коэффициенты уравнения, можно получить совершенно другое изображение. Эта идея нашла использование в компьютерной графике благодаря компактности математического аппарата, необходимого для ее реализации. Так, с помощью нескольких математических коэффициентов можно задать линии и поверхности очень сложной формы.

Итак, базовым понятием для фрактальной компьютерной графики являются «Фрактальный треугольник». Затем идет «Фрактальная фигура», «Фрактальный объект»; «Фрактальная прямая»; «Фрактальная композиция»; «Объект-родитель» и «Объект наследник». Следует обратить Ваше внимание на то, что фрактальная компьютерная графика, как вид компьютерной графики двадцать первого века получила широкое распространение не так давно.

Её возможности трудно переоценить. Фрактальная компьютерная графика позволяет создавать абстрактные композиции, где можно реализовать такие композиционные приёмы как, горизонтали и вертикали, диагональные направления, симметрию и асимметрию и др. Сегодня немногие компьютерщики в нашей стране и за рубежом знают фрактальную графику. С чем можно сравнить фрактальное изображение? Ну, например, со сложной структурой кристалла, со снежинкой, элементы которой выстраивается в одну сложную структуру. Это свойство фрактального объекта может быть удачно использовано при составлении декоративной композиции или для создания орнамента. Сегодня разработаны алгоритмы синтеза коэффициентов фрактала, позволяющего воспроизвести копию любой картинки сколь угодно близкой к исходному оригиналу.

С точки зрения машинной графики фрактальная геометрия незаменима при генерации искусственных облаков, гор, поверхности моря. Фактически благодаря фрактальной графике найден способ эффективной реализации сложных неевклидовых объектов, образы которых весьма похожи на природные. Геометрические фракталы на экране компьютера - это узоры, построенные самим компьютером по заданной программе. Помимо фрактальной живописи существуют фрактальная анимация и фрактальная музыка.

Создатель фракталов - это художник, скульптор, фотограф, изобретатель и ученый в одном лице. Вы сами задаете форму рисунка математической формулой, исследуете сходимость процесса, варьируя его параметры, выбираете вид изображения и палитру цветов, то есть творите рисунок «с нуля». В этом одно из отличий фрактальных графических редакторов (и в частности - Painter) от прочих графических программ.

Например, в Adobe Photoshop изображение, как правило, «с нуля» не создается, а только обрабатывается. Другой самобытной особенностью фрактального графического редактора Painter (как и прочих фрактальных программ, например Art Dabbler) является то, что реальный художник, работающий без компьютера, никогда не достигнет с помощью кисти, карандаша и пера тех возможностей, которые заложены в Painter программистами.

Математика буквально пронизана гармонией, и графика фрактальная - прямое тому подтверждение. Наука присутствует при создании каждого ее элемента, поэтому она отражает всю красоту.

Создатель фрактальной геометрии, профессор Мальдерброт, писал в своих книгах, что рассматриваемая графика представляет собой не просто повторяющиеся изображения. Это - структура любого существа или объекта на планете, живого и неживого. К примеру, ДНК является основой, одной интеграцией. Но если код начинает повторяться, тогда появляется человек.

Основы фрактальной графики

Что такое фрактальная графика? Это одна или несколько каждая из которых подобна другой. То есть, изображение составляется из одинаковых частей.

Само слово "фрактал" может употребляться, если фигура обладает одним или несколькими из этих свойств:

  • Нетривиальная структура. Когда рассматривается небольшая деталь всего изображения, то фрагмент схож со всем рисунком. Увеличение масштаба не приводит к ухудшению. Изображение всегда остается одинаково сложным.
  • Каждая часть рисунка является самоподобной.
  • Имеется математическая размерность.
  • Строится при помощи повторения.

Множество объектов природного или искусственного происхождения наделяются свойствами фракталов. К ним относятся кровеносные системы человека и животного, кроны и корни деревьев и так далее.

Фрактальная компьютерная графика становится популярной потому, что добиться красоты и реалистичности можно посредством простого построения при помощи соответствующего оборудования. Нужно только задать правильную математическую формулу и указать количество повторений.

Как создать элемент фрактальной графики?

Создание фрактальной графики будет различаться в зависимости от ее классификации: геометрическая, алгебраическая или стохастическая. Несмотря на разницу, итог всегда будет одинаковым. Поскольку фрактальная графика начинается с геометрии, то следует рассмотреть ее создание на соответствующем примере:

  1. Задают условие. Это фигура, на основе которой будет строиться все изображение.
  2. Задают процедуру. Она преобразует условие.
  3. Получают геометрический фрактал.

Обычно нулевое условие представляется в виде треугольника.

Чтобы построить изображение, нужно применить две процедуры. Во-первых, DrawTriangle. Она строит треугольник по точкам, заданным пользователем. Во-вторых, DrawGenerator. Она указывает количество точек. Каждая процедура может повторяться несколько раз или бесконечно долго. Для определения этого показателя применяется численный аргумент n.

Другие действия с фрактальной графикой

После того как элемент фрактальной графики был создан, с ним можно производить различные дополнительные действия:

  • Повороты и растяжения. Так увеличиваются отдельные детали рисунка, либо они принимают нужную пользователю форму.
  • Группирование объектов. Обычно эта функция применяется для того, чтобы назначить требуемый масштаб.
  • Преобразование цветов. Изображение можно окрасить в любой оттенок, задать тон.
  • Изменение формы всего объекта или отдельных деталей.

Нужно помнить, что изображения фрактальной графики в конечном итоге предсказать невозможно. Когда треугольник слишком увеличивается, то просмотр будет нереальным, пользователь увидит только черное окно. Когда желаемая текстура обнаружена, все изменения с ней нужно проводить в минимальном порядке, постоянно сохраняя допустимый вариант.

Программы для генерации

Нет такого человека, которого бы не привлекала фрактальная графика. Программы, участвующие в ее создании, представлены в большом количестве. Поэтому надо разобраться в наиболее подходящих для новичков.

Продукт Art Dabbler представляет собой лучший вариант, если пользователь раньше не имел дело с его налогами. Здесь можно не только освоить графику, но и научиться рисовать на компьютере. К другим преимуществам следует отнести небольшое количество занимаемой памяти и интуитивно понятный интерфейс.

Другая программа - Ultra Fractal. Она уже ориентирована на работу профессионалов, новичкам сложно будет в ней разобраться. Интерфейс здесь достаточно сложный, но производители выполнили его на примере обычного Photoshop. Если пользователь имел дело с этой программой, то в кнопках разберется быстро. Особенность Ultra Fractal заключается в том, что здесь выполняется не только графика фрактальная в качестве стандартного и обычного изображения, но и анимация. Формулы для составления прилагаются, но при необходимости пользователь сможет задействовать свою.

Существующие форматы

Форматы фрактальной графики определяют форму и способ хранения файловых данных. Некоторые из них включают в себя большой объем информации. Поэтому их необходимо сжимать. Причем делать это не посредством архивирования, а непосредственно в файле. Если правильно его выбрать, то сжатие будет происходить автоматически. Есть несколько алгоритмов этой процедуры.

Если перед пользователем аппликация, большая часть которой выдержана в одном цвете, то разумно использовать форматы BMP и PCX. Здесь заменяется последовательность повторяющихся величин.

Диаграмму, которая очень редко, но все-таки используется во фрактальной графике, логично поместить в TIFF или GIF.

Часть форматов является универсальной. То есть, их можно просмотреть в большинстве редакторов. Но если пользователю важна качественная тогда нужно применять оригинальную программу.

Форматы фракталы не поддерживаются браузерами. Именно поэтому осуществляется их преображение, если есть необходимость загрузить на тот или иной сайт.

Сферы применения

Применение фрактальной графики можно назвать фактически повсеместным. Более того, эта область постоянно расширяется. На данный момент можно отметить следующие области:

  1. Компьютерная графика. Реалистично изображаются рельефы и природные объекты. Это применяется в создании компьютерных игр.
  2. Анализ фондовых рынков. Фракталы здесь используются для того, чтобы отметить повторения, которые впоследствии сыграют трейдерам на руку.
  3. Естественные науки. В физике с помощью фрактальной графики моделируются нелинейные процессы. В биологии она описывает строение кровеносной системы.
  4. чтобы уменьшить объем информации.
  5. Создание децентрализованной сети. Посредством фракталов удается обеспечить прямое подключение, а не через центральное регулирование. Поэтому сеть становится более устойчивой.

На данный момент практикуется применение фракталов в производстве различного оборудования. Например, уже запущен конвейер по созданию антенн, отлично принимающих сигналы.

Примеры

Примеры фрактальной графики распространены от примитивных до очень сложных повторяющихся элементов. Уникальной особенностью данного типа является то, что рисунок можно составить исключительно из восклицательных или

Стандартными, но относительно сложными примерами компьютерной фрактальной графики являются облака, горы, морские побережья и так далее. Их зачастую используют при создании игр.

Самым простым примером можно назвать кривую Коха. Во-первых, она не имеет конкретной длины, и ее называют бесконечной. Во-вторых, здесь полностью отсутствует гладкость. Поэтому невозможно построить касательную.

Плюсы и минусы

Свое распространение совсем недавно заполучила фрактальная графика. ее слишком размыты, поскольку отсутствует нормальная теоретическая база. Терминология и принципы ее использования до конца не изучены, несмотря на то, что они действенные и рабочие.

Достоинства фрактальной графики заключаются в нескольких факторах:

  1. Небольшой размер при масштабном рисунке.
  2. Нет конца масштабированию, сложность картинки можно увеличивать бесконечно.
  3. Нет другого такого же инструмента, который позволит создавать сложные фигуры.
  4. Реалистичность.
  5. Простота в создании работ.

Недостатки фрактальной графики тоже присутствуют. Во-первых, без компьютера здесь не обойтись. Причем, чем длиннее количество повторений, тем больше загружается процессор. Соответственно, только качественное компьютерное оборудование способно справиться с построением сложных изображений.

Во-вторых, присутствуют ограничения в исходных математических фигурах. Некоторые изображения создать посредством фракталов не удастся.

Сходства и различия между фракталом и вектором

Векторная и фрактальная графика очень различаются между собой:

  1. По кодированию изображений. Вектор задействует контуры разных геометрических фигур, фрактал - математическую формулу, в основе которой лежит треугольник.
  2. По применению. Вектор используют везде, где нужно получить четкий контур. Фрактальная графика более специализирована, она нашла свое применение в математике и искусстве.
  3. По аналогам. Векторными аналогами являются слайды или функции на графиках. У фракталов это - снежинки или кристаллы.

Несмотря на многообразие отличительных черт, эти два вида графики объединяет качество изображения. Оно остается неизменным, независимо от уровня масштабирования.

Трехмерная, векторная, растровая, фрактальная графика схожи в одном - все они широко используются в решении различных компьютерных задач. Чтобы получить действительно качественное изображение, нужно задействовать каждую из них.

Уникальные особенности фракталов

Графика фрактальная не имеет аналогов. Она уникальна в своем роде. Во-первых, один ее небольшой участок может рассказать сразу обо всем рисунке или изображении. Информация обо всем фрактале доступна, т.к. он является самоподобным.

В центре любого изображения, относящегося к данному типу графики, располагается равносторонний треугольник. Все остальные детали рисунка являются либо его частями, либо уменьшенными/увеличенными копиями. То есть, в составлении изображения принимает участие один конкретный элемент.

Для того чтобы использовать фрактальную графику, не нужны никакие объекты, хранящиеся в памяти компьютера. Приступить к созданию можно, имея под рукой одну только математическую формулу.

Заключение

Графика фрактальная очень реалистична. Происходит это потому, что ее детали и элементы постоянно встречаются в окружении человека - горы, облака, морские берега, различные природные явления. Часть из них остается постоянно в одном и том же состоянии, вроде деревьев, каменистых участков. Остальные же непрерывно меняются, как мерцающее огненное пламя или кровь, двигающаяся по сосудам.

Развитие фрактальных технологий на сегодняшний день - одна из прогрессирующих областей науки. Она используется не только в компьютерной графике. Возможно, если ученым удастся докопаться до их сути, человек начнет намного лучше понимать этот мир.

Фрактальная графика, как и векторная, основана на математических вычислениях. Базовым элементом фрактальной графики является сама математическая формула, то есть никаких объектов в памяти компьютера не хранится и изображение строится исключительно по уравнениям. Таким способом строят как простейшие регулярные структуры, так и сложные иллюстрации, имитирующие природные ландшафты и трехмерные объекты.

Понятия фрактал, фрактальная геометрия, появившиеся в конце 70-х, сегодня прочно вошли в обиход математиков и компьютерных художников.

Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому . Из всех типов фракталов наиболее наглядными являются геометрические фигуры. В двухмерном случае их получают с помощью некоторой ломаной (или поверхности в трехмерном случае), называемой генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор в соответствующем масштабе. В результате бесконечного повторения этой процедуры получается геометрический фрактал.

Одним из основных свойств фракталов является самоподобие . Объект называется самоподобным , когда увеличенные части объекта походят на сам объект и друг на друга (в простейшем случае небольшая часть фрактала содержит информацию обо всём фрактале) . Например, снежинка несёт информацию о снежном сугробе, а горный камень имеет те же самые очертания, что и горный хребет. Благодаря этому свойству можно использовать фракталы для генерирования поверхности местности, которая походит на саму себя, независимо от масштаба, в котором она отображена. В компьютерной графике это используется благодаря компактности математического аппарата, необходимого для ее реализации. Так, с помощью нескольких математических коэффициентов можно задать линии и поверхности очень сложной формы.

Сегодня разработаны алгоритмы синтеза коэффициентов фрактала, позволяющего воспроизвести копию любой картинки сколь угодно близкой к исходному оригиналу. С точки зрения машинной графики фрактальная геометрия незаменима при генерации искусственных облаков, гор, поверхности моря. Благодаря фрактальной графике найден способ эффективной реализации сложных неевклидовых объектов, образы которых весьма похожи на природные.

Геометрические фракталы на экране монитора – это узоры, построенные самим компьютером по заданной программе. Они очень красивы и необычны, поэтому считаются как новый вид компьютерного искусства. Помимо фрактальной живописи существует фрактальная анимация и фрактальная музыка.



Отличие фрактальных графических редакторов от прочих графических редакторов:

1. Создатель фракталов – это художник, скульптор, фотограф, изобретатель и учёный в одном лице. Он сам задает форму рисунка математической формулой, исследуя сходимость процесса, варьируя его параметры, выбирая вид изображения и палитру цветов, то есть творит рисунок с нуля.

2. Реальный художник, работающий без компьютера, никогда не достигнет с помощью кисти, карандаша и пера тех возможностей, которые заложены в программе Painter (Пэинтэ) программистами.

3. Благодаря математическому описанию объектов фрактальная графика экономна в объёме дискового пространства.

Обзор основных фрактальных программ

Лидером и основателем на рынке фрактальной графики до 2000 года (проданы программные продукты канадской корпорации Corel) являлась компания Meta Creations (Мета Креашинс) фирма Fractal Design (Фрэктал Дэзигн), спектр её продуктов охватывает многие области компьютерной графики.

1. Fractal Design Painter (Фректал Дезигн Пэинтэ) – программа для создания и обработки высокохудожественных растровых иллюстраций. Поддерживает многослойность изображений и возможность использования фильтров Photoshop, позволяет эмулировать большое число художественных инструментов: карандаши, кисти, пастели, разнообразные типы красок.

2. Design Painter (Дэзигн Пэинтэ) – эта программа «номер один» для художников, использующих фрактальную графику. Для максимального удобства работы рекомендуется использовать графический планшет, поскольку в отличие от мыши он позволяет более точно передавать путь движения кисти.

3. Fractal Design Expression (Фрэктал Дэзигн Экспрэшин) – программа комбинирует в себе растровую и векторную технику. Вы рисуете векторные объекты, как в CorelDraw, редактируете их по опорным узлам и выполняете все прочие векторные операции. Но каждой линии, фигуре можно назначить любой растровый тип кисти. Кистей множество, т.к. это продукт Fractal Design (Фрэктал Дэзигн), фирма знаменитая своей имитацией реальных инструментов художника. Здесь эмулируются практически все реальные растровые художественные инструменты и краски, а результат работы является векторное изображение.

4. Fractal Design Detailer (Фрэктал Дэзигн Дэтэйлэ) – позволяет раскрашивать поверхности 3D-моделей.

5. Fractal Design Poser (Фрэктал Дэзигн Поузэ) – позволяет интегрировать 2D-изображения, 3D-сцены, web-графику и анимацию.

6. Add Dabbler (Эд Дэбле) – средство для обучения рисованию.

7. Add Depth (Эд Дэпс) – используется для создания 3D-заставок, текстов и других 3D-эффектов.

8. Painter 3D (Пэинтэ 3Д)– используется для наложения иллюстраций и текстур на 3D-модели с последующим их редактированием. Иллюстрации и текстуры могут быть приготовлены в самой программе или импортированы из программ Fractal Design Painter (Фрэктал Дэзигн Пэинтэ) и Adobe Photoshop.

9. Bryce (Брайсе) – в программе реализовано новое для компьютерной графики направление – создание натуральных трёхмерных ландшафтов. С её помощью можно создавать такие природные явления, как туман, солнечный и лунный свет, множественные отражения и преломления.

Все эти программы функционируют на платформе Windows, но с покупкой их фирмой Corel ожидается их локализация и появление Linux-версий.