Топология локальных сетей. Достоинства и недостатки FDDI. Топологии FDDI. Принцип работы FDDI. Передача маркера в FDDI

ANSI . Уровень стандартизации сети достаточно высок.

В отличие от других стандартных локальных сетей, стандарт FDDI изначально ориентировался на высокую скорость передачи (100 Мбит/с) и на применение наиболее перспективного оптоволоконного кабеля. Поэтому в данном случае разработчики не были стеснены рамками старых стандартов, ориентировавшихся на низкие скорости и электрический кабель .

Выбор оптоволокна в качестве среды передачи определил такие преимущества новой сети, как высокая помехозащищенность, максимальная секретность передачи информации и прекрасная гальваническая развязка абонентов. Высокая скорость передачи , которая в случае оптоволоконного кабеля достигается гораздо проще, позволяет решать многие задачи, недоступные менее скоростным сетям, например, передачу изображений в реальном масштабе времени. Кроме того, оптоволоконный кабель легко решает проблему передачи данных на расстояние нескольких километров без ретрансляции, что позволяет строить большие по размерам сети, охватывающие даже целые города и имеющие при этом все преимущества локальных сетей (в частности, низкий уровень ошибок). Все это определило популярность сети FDDI , хотя она распространена еще не так широко, как Ethernet и Token-Ring.

За основу стандарта FDDI был взят метод маркерного доступа, предусмотренный международным стандартом IEEE 802.5 (Token-Ring). Несущественные отличия от этого стандарта определяются необходимостью обеспечить высокую скорость передачи информации на большие расстояния. Топология сети FDDI – это кольцо, наиболее подходящая топология для оптоволоконного кабеля. В сети применяется два разнонаправленных оптоволоконных кабеля, один из которых обычно находится в резерве, однако такое решение позволяет использовать и полнодуплексную передачу информации (одновременно в двух направлениях) с удвоенной эффективной скоростью в 200 Мбит/с (при этом каждый из двух каналов работает на скорости 100 Мбит/с). Применяется и звездно-кольцевая топология с концентраторами, включенными в кольцо (как в Token-Ring).

Основные технические характеристики сети FDDI .

  • Максимальное количество абонентов сети – 1000.
  • Максимальная протяженность кольца сети – 20 километров.
  • Максимальное расстояние между абонентами сети – 2 километра.
  • Среда передачи – многомодовый оптоволоконный кабель (возможно применение электрической витой пары).
  • Метод доступа – маркерный.
  • Скорость передачи информации – 100 Мбит/с (200 Мбит/с для дуплексного режима передачи ).

Стандарт FDDI имеет значительные преимущества по сравнению со всеми рассмотренными ранее сетями. Например, сеть Fast Ethernet , имеющая такую же пропускную способность 100 Мбит/с, не может сравниться с FDDI по допустимым размерам сети. К тому же маркерный метод доступа FDDI обеспечивает в отличие от CSMA/CD гарантированное время доступа и отсутствие конфликтов при любом уровне нагрузки.

Ограничение на общую длину сети в 20 км связано не с затуханием сигналов в кабеле, а с необходимостью ограничения времени полного прохождения сигнала по кольцу для обеспечения предельно допустимого времени доступа. А вот максимальное расстояние между абонентами (2 км при многомодовом кабеле) определяется как раз затуханием сигналов в кабеле (оно не должно превышать 11 дБ). Предусмотрена также возможность применения одномодового кабеля, и в этом случае расстояние между абонентами может достигать 45 километров, а полная длина кольца – 200 километров.

Имеется также реализация FDDI на электрическом кабеле ( CDDI – Copper Distributed Data Interface или TPDDI – Twisted Pair Distributed Data Interface ). При этом используется кабель категории 5 с разъемами RJ-45 . Максимальное расстояние между абонентами в этом случае должно быть не более 100 метров. Стоимость оборудования сети на электрическом кабеле в несколько раз меньше. Но эта версия сети уже не имеет столь очевидных преимуществ перед конкурентами, как изначальная оптоволоконная FDDI . Электрические версии FDDI стандартизованы гораздо хуже оптоволоконных, поэтому совместимость оборудования разных производителей не гарантируется.

Таблица 8.1. Код 4В/5В
Информация Код 4В/5В Информация Код 4В/5В
0000 11110 1000 10010
0001 01001 1001 10011
0010 10100 1010 10110
0011 10101 1011 10111
0100 01010 1100 11010
0101 01011 1101 11011
0110 01110 1110 11100
0111 01111 1111 11101

Для передачи данных в FDDI применяется уже упоминавшийся в третьей главе код 4В/5В (см. табл. 8.1), специально разработанный для этого стандарта. Главный принцип кода – избежать длинных последовательностей нулей и единиц. Код 4В/5В обеспечивает скорость передачи 100 Мбит/с при пропускной способности кабеля 125 миллионов сигналов в секунду (или 125 МБод), а не 200 МБод, как в случае манчестерского кода . При этом каждым четырем битам передаваемой информации (каждому полубайту или нибблу) ставится в соответствие пять передаваемых по кабелю битов. Это позволяет приемнику восстанавливать синхронизацию приходящих данных один раз на четыре принятых бита. Таким образом, достигается компромисс между простейшим кодом NRZ и самосинхронизирующимся на каждом бите манчестерским кодом . Дополнительно сигналы кодируются кодом NRZI (в случае TPDDI) и MLT -3 (в случае FDDI ).

Стандарт FDDI для достижения высокой гибкости сети предусматривает включение в кольцо абонентов двух типов:

  • Абоненты (станции) класса А (абоненты двойного подключения, DAS – Dual-Attachment Stations ) подключаются к обоим (внутреннему и внешнему) кольцам сети. При этом реализуется возможность обмена со скоростью до 200 Мбит/с или резервирования кабеля сети (при повреждении основного кабеля используется резервный). Аппаратура этого класса применяется в самых критичных с точки зрения быстродействия частях сети.
  • Абоненты (станции) класса В (абоненты одинарного подключения, SAS – Single-Attachment Stations ) подключаются только к одному (внешнему) кольцу сети. Они более простые и дешевые, по сравнению с адаптерами класса А, но не имеют их возможностей. В сеть они могут включаться только через концентратор или обходной коммутатор, отключающий их в случае аварии.

Кроме собственно абонентов (компьютеров, терминалов и т.д.) в сети используются связные

интерфейс распределенных данных - это первая технология локальных сетей, в которой средой передачи данных является волоконно-оптический кабель. Основные характеристики технологии

Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Разработчики технологии FDDI ставили перед собой в качестве наиболее приоритетных следующие цели:

Повысить битовую скорость передачи данных до 100 Мбит/с;

Повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода - повреждения кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т. п.;

Максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного (чувствительного к задержкам) трафиков.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Наличие двух колец - это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят воспользоваться этим повышенным потенциалом надежности, должны быть подключены к обоим кольцам. В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным, вновь образуя единое кольцо. Этот режим работы сети называется Wrap, то есть «свертывание» или «сворачивание» колец. Операция свертывания производится средствами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются в одном направлении (на диаграммах это направление изображается против часовой стрелки), а по вторичному - в обратном (изображается по часовой стрелке)

Топология сети FDDI - это кольцо, причем применяется два разнонаправленных оптоволоконных кабеля, что позволяет в принципе использовать полнодуплексную передачу информации с удвоенной эффективной скоростью в 200 Мбит/с (при этом каждый из двух каналов работает на скорости 100 Мбит/с). Применяется и звездно-кольцевая топология с концентраторами, включенными в кольцо. Форматы маркера (рис. 5.15) и пакета (рис. 5.16) сети FDDI несколько отличаются от форматов, используемых в сети Token-Ring. Назначение полей следующее.



Преамбула используется для синхронизации. Первоначально она содержит 64 бита, но абоненты, через которых проходит пакет, могут менять ее размер.

Начальный разделитель выполняет функцию признака начала кадра.

Рис. 5.15. Формат маркера FDDI

Адреса приемника и источника могут быть 6-байтовыми (аналогично Ethernet и Token-Ring) или 2-байтовыми.

Поле данных может быть переменной длины, но суммарная длина пакета не должна превышать 4500 байт.

Поле контрольной суммы содержит 32-битную циклическую контрольную сумму пакета.

Конечный разделитель определяет конец кадра.

Байт состояния пакета включает в себя бит обнаружения ошибки, бит распознавания адреса и бит копирования (все аналогично Token-Ring).

Рис. 5.16. Формат пакета FDDI

Формат байта управления сети FDDI следующий (рис. 5.17):

Бит класса пакета определяет, синхронный или асинхронный это пакет.

Бит длины адреса определяет, какой адрес (6-байтовый или 2-байтовый) используется в данном пакете.

Поле формата кадра определяет, управляющий это кадр или информационный.



Поле типа кадра определяет, к какому типу относится данный кадр.

Рис. 5.17. Формат байта управления

В заключение отметим, что несмотря на очевидные преимущества FDDI данная сеть не получила пока широкого распространения, что связано главным образом с высокой стоимостью ее аппаратуры (порядка тысячи долларов). Основная область применения FDDI сейчас - это базовые, опорные (Backbone) сети, объединяющие несколько сетей. Применяется FDDI и для соединения мощных рабочих станций или серверов, требующих высокоскоростного обмена. Предполагается, что сеть Fast Ethernet может потеснить FDDI, однако преимущества оптоволоконного кабеля, маркерного метода управления и рекордный допустимый размер сети ставят в настоящее время FDDI вне конкуренции. А в тех случаях, когда стоимость аппаратуры имеет решающее значение, можно на некритичных участках применять версию FDDI на основе витой пары (TPDDI). К тому же стоимость аппаратуры FDDI может сильно уменьшится с увеличением объема ев выпуска.

21.Сетевые устройства: повторитель, концентратор, мост, коммутатор, маршрутизатор, шлюз .Повторители

Повторитель (repeater) - аппаратное устройство, функционирующее на физическом уровне эталонной модели OSI и обеспечивающее соединение двух сегментов одной и той же компьютерной сети.

Повторители реализуют одну из самых простых форм межсетевого обмена. Они просто регенерируют, или повторяют, пакеты данных между кабельными сегментами. По сути повторители физически расширяют сеть. Кроме того, они обеспечивают высокий уровень отказоустойчивости, осуществляя электрическую развязку сетей, вследствие чего проблема, возникшая в одном кабельном сегменте, не затрагивает другие сегменты. Однако вместе с пакетами они повторяют и помеховый сигнал, не делая различий между ним и пакетами данных.

Выбор лучшей топологии для конкретной сети зависит от таких вещей, как предполагаемый порядок взаимодействия узлов, используемые протоколы, типы приложений, надежность, расширяемость, физическое размещение в здании, а также от уже внедренных технологий. Неверная топология (или комбинация топологий) может негативно сказаться на производительности сети, ее продуктивности и возможностях расширения.

В этом разделе описаны основные типы сетевых топологий. Большинство сетей значительно более сложны и реализованы с использованием комбинации топологий.

Топология «кольцо»


Топология «кольцо» (ring topology) – это последовательное соединение устройств однонаправленными линиями связи, как показано на Рисунке 5-18. Эти связи образуют замкнутое кольцо, не имеющее подключения к центральной системе (имеющейся в топологии «звезда»). В физическом кольце каждый узел зависит от предшествующих узлов. В простой системе, в случае неисправности одной системы, она окажет негативное влияние на все остальные системы, поскольку все они взаимосвязаны. Сегодня большинство сетей обладают избыточностью или другими механизмами, которые могут защитить сеть в случае неисправности одной рабочей станции, но некоторые неудобства при этом вероятно все равно возникнут.

Рисунок 5-18. Топология «кольцо» образует замкнутое соединение


Топология «шина»


В простой топологии «шина» (bus topology), единственный кабель проходит по всей длине сети. Узлы подключаются к сети «в разрыв» кабеля. Данные передаются по всей длине кабеля, и каждый узел может просмотреть любой передаваемых пакетов. Каждый узел решает, принять ему пакет или проигнорировать его, ориентируясь на указанный в пакете адрес компьютера-получателя.

Существует два основных типа топологии «шина»: линейная и древовидная. Линейная топология «шина» имеет один кабель, к которому подсоединены все узлы. Древовидная топология «шина» имеет отдельные ответвления от единого кабеля, к каждому ответвлению может быть подключено множество узлов.

В простой реализации топологии «шина», если одна рабочая станция выходит из строя, она оказывает негативное влияние на другие системы, т.к. они в определенной степени взаимозависимы. Подключение всех узлов к одному кабелю – это единая точка отказа. Традиционно Ethernet использует топологию «звезда».

Топология «звезда»


В топологии «звезда» (star topology) все узлы подключаются к центральному устройству, такому как коммутатор (switch). Каждый узел имеет выделенное подключение к центральному устройству. Центральное устройство должно обеспечивать достаточную пропускную способность, чтобы не стать «бутылочным горлышком» для всей сети. Использование центрального устройства потенциально является единой точкой отказа, поэтому должна быть обеспечена некоторая избыточность. Коммутаторы могут быть настроены в плоской или иерархической реализации, которую могут использовать крупные компании.

Когда одна рабочая станция выходит из строя в топологии «звезда», это не оказывает воздействия на другие системы, как в топологиях «шина» или «кольцо». В топологии «звезда» каждая система независима от других, но она зависит от центрального устройства. Эта топология обычно требует меньше проводов, чем другие топологии, и, как следствие, существует меньше шансов разрыва провода, а задача выявления проблем существено упрощается.

Не многие сети используют в чистом виде топологию линейной «шины» или «кольцо» в локальной сети. Топология «кольцо» может быть использована для магистральной сети, но большинство локальных вычислительных сетей (LAN) создается на базе топологии «звезда», поскольку это повышает отказоустойчивость сети и позволяет ей не зависеть от проблем отдельных узлов. Помните, что существует разница между физической топологией и методами доступа к среде передачи информации. Даже если сеть построена как Token Ring или Ethernet, это говорит только о том, как подключен к среде передачи информации каждый узел этой сети и как проходит трафик. Хотя Token Ring обычно работает через «кольцо», а Ethernet подразумевает реализацию «шины», эти термины относятся только к логической организаций сети, реализующейся на канальном уровне. Если при этом физически проще организовать «звезду», то так и делают.

Полносвязная топология


В полносвязной топологии (mesh topology) все системы и ресурсы подключены друг к другу иными способами по сравнению с вышеуказанными топологиями, как показано на рисунке 5-19. Эта схема обычно представляет собой сеть связанных друг с другом маршрутизаторов и коммутаторамов , обеспечивающих множественные маршруты передачи данных между всеми узлами в сети. При полной реализации полносвязной топологии (full mesh), каждый узел напрямую соединен с каждым другим из других узлов, что обеспечивает наивысшую степень отказоустойчивости. При частичной реализации полносвязной топологии (partial mesh), не все узлы связаны напрямую. Интернет – это пример сети с частичной реализацией полносвязной топологии.

Рисунок 5-19. В полносвязной топологии все узлы соединены друг с другом, что обеспечивает наличие избыточных связей


Резюме по различным сетевым топологиям и их наиболее важные характеристики представлены в таблице 5-2.

Таблица 5-2. Резюме по сетевым топологиям


Независимо от используемой топологии, большинство сетей LAN имеет магистраль (backbone), являющуюся комбинацией кабелей и протоколов, которая связывает отдельные сетевые сегменты. Магистраль работает на более высокой скорости, чем отдельные сетевые сегменты, что позволяет быстро передавать данные из одной сети в другую. В то время как для сетевых сегментов лучше использовать UTP и Ethernet , для магистрали лучше подходит FDDI или Fast Ethernet . В качестве аналогии можно привести пример городских улиц и автомобильных магистралей. На улицах (в сетевых сегментах) машины (данные) движутся медленно, но улицы соединены с магистралями, которые позволяют машинам быстро перемещаться из одного места в другое. Точно также магистраль позволяет данным быстро перемещаться на большие расстояния.
ПРИМЕЧАНИЕ. При использовании топологии «кольцо» или «шина» все узлы между системами отправителя и получателя имеют доступ к передаваемым данным. Это упрощает для атакующего задачу получения потенциально критичных данных.

LAN – это сеть, которая предоставляет общие коммуникации и ресурсы на относительно небольшой площади. Различия между LAN и WAN определяются физической средой, протоколами инкапсуляции и функциональностью. Например, LAN может использовать кабели 10Base-T , протоколы IPX/SPX и позволять взаимодействовать пользователям, находящимся в пределах здания. WAN, в свою очередь, может использовать оптоволоконные кабели, протокол L2TP и может позволять пользователям одного здания взаимодействовать с пользователями другого здания или даже другого штата (или страны). WAN соединяет сети LAN на больших расстояниях. Наиболее существенные отличия между этими двумя технологиями находятся на канальном уровне .
Вопрос : Говорят, что LAN охватывает относительно небольшую площадь. При каких размерах сеть перестают быть LAN?
Ответ : Когда две отдельные сети LAN соединены маршрутизатором, в результате образуется объединенная сеть (internetwork), которая не является большой LAN. Каждая отдельная LAN имеет собственную схему адресации, широковещательный домен (broadcast domain) и коммуникационные механизмы. Если две сети LAN соединены с помощью других технологий канального уровня, таких как Frame Relay или X.25 , они образуют WAN.
Термин «локальная» в контексте LAN означает не столько географическую область, сколько ограничения LAN с точки зрения общей среды передачи данных, количества подключенных к ней устройств и компьютеров, скорости передачи данных, используемых типов кабелей и устройств. Если сетевой администратор строит очень большую LAN, предпочтительнее организовать ее в виде нескольких LAN, т.к. большой объем трафика нанесет удар по производительности, либо кабели будут слишком длинными и скажется фактор затухания сигнала (attenuation). Сеть, в которой установлено слишком много узлов, маршрутизаторов, мостов, коммутаторов может быть очень сложна – в особенности с точки зрения администрирования, что станет открытой дверью для ошибок, конфликтов и «дыр» в безопасности. Сетевой администратор должен следовать спецификациям используемой им технологии, и когда он достигнет предела, ему следует подумать о реализации двух или более небольших LAN вместо одной большой LAN. Сети LAN определяет их физическая топология, технологии канального уровня, протоколы и используемые устройства. Об этом мы поговорим в следующих разделах.
  • IEEE LAN/MAN Standards Committee
  • Internetworking Technology Handbook, Chapter 2, “Introduction to LAN Protocols,” Cisco Systems, Inc.
Ethernet – это сетевая технология (LAN-sharing), позволяющая нескольким устройствам взаимодействовать в рамках одной сети. Ethernet обычно использует топологию «звезда» или «шина». Если используется топология линейной шины, все устройства подключаются к одному кабелю. Если используется топология «звезда», каждое устройство кабелем соединяется с центральным устройством (например, с коммутатором). Ethernet был разработан в 1970-х годах и стал доступен для применения в бизнесе в 1980 году. Он был назван стандартом IEEE 802.3.

В своей короткой Ethernet истории прошел эволюцию с реализации на коаксиальном кабеле , работающем на скорости 10 Mб/с, до 5-й категории витой пары , работающей на скоростях 100 Мб/с, 1 Гб/с и даже 10 Гб/с.

Ethernet определяется следующими характеристиками:

  • Общая среда (все устройства используют среду поочередно, возможно возникновение коллизий)
  • Использует широковещательные (broadcast) и коллизионные (collision) домены
  • Использует метод множественного доступа с контролем несущей и обнаружением коллизий (CSMA/CD – Carrier sense multiple access with collision detection)
  • Поддерживает полный дуплекс при реализации на витой паре
  • Может использовать среду с коаксиальным кабелем или витой парой
  • Определен стандартом IEEE 802.3
Ethernet определяет, каким образом компьютеры совместно используют общую сеть и как они обрабатывают коллизии, а также вопросы целостности данных, механизмы коммуникаций, упровление передачей. Это обычные характеристики Ethernet, но кроме того Ethernet поддерживает множество типов кабельных схем и скоростей передачи. Существует несколько типов реализации Ethernet, приведенных в таблице 5-3. В следующих разделах будут обсуждаться реализации 10Base2 , 10Base5 и 10Base-T , которые используются чаще всего.

Таблица 5-3. Типы Ethernet


10Base2 . 10Base2, ThinNet использует коаксиальный кабель. Максимальная длина кабеля составляет 185 метров, обеспечивается скорость передачи 10 Мбит/с, требуются BNC-коннекторы (British Naval Connector) для сетевых устройств.

10Base5 . 10Base5, ThickNet использует толстый коаксиальный кабель. При использовании ThickNet могут применяться более длинные сегменты кабеля, чем для ThinNet, поэтому ThickNet часто используется для магистральной сети. ThickNet более устойчив к электрическим помехам, чем ThinNet, поэтому обычно он предпочтительнее при прокладке кабеля через подверженное электрическим помехам пространство. При использовании ThickNet также требуются BNC-коннекторы, т.к. он тоже использует коаксиальный кабель.

10Base-T . 10Base-T использует витую пару с медными проводами вместо коаксиального кабеля. Витая пара использует один провод для передачи данных, а другой – для приема. 10Base-T обычно применяется в топологии «звезда», позволяющей легко настраивать сеть. В топологии «звезда» все системы подключены к центральному устройству в плоской или иерархической конфигурации.

Сети 10Base-T используют коннектор RJ-45 , который используется для подключения компьютеров. Провода чаще всего прокладывают по стенам и подключают к коммутационной панели. Коммутационная панель обычно подключается к концентратору 10Base-T, который открывает дверь к магистральному кабелю или центральному коммутатору. Этот тип конфигурации показан на рисунке 5-20.

Рисунок 5-20. Ethernet-узлы подключены к коммутационной панели, соединенной с магистральным кабелем через концентратор или коммутатор


Fast Ethernet: Ускоренный Ethernet. Не удивительно, что когда-то скорость 10 Мбит/с казалась заоблачной, но сейчас большинству пользователей требуется значительно большая скорость. Для реализации этой потребности был разработан Fast Ethernet.

Fast Ethernet – это обычный Ethernet, но работающий на скорости 100 Мбит/с по витой паре. Примерно в то же время, когда появился Fast Ethernet, была разработана другая технология 100 Мбит/с – 100-VG-AnyLAN . Эта технология не использовала традиционный CSMA/CD Ethernet, она работала по-другому.

Fast Ethernet использует традиционный CSMA/CD (о ней расказывается дальше в этом домене) и оригинальный формат кадра Ethernet. Именно поэтому он используется многими корпоративными средами LAN в настоящее время. В одной среде могут работать одновременно сетевые сегменты со скоростью 10 и 100 Мбит/с, соединенные через 10/100 концентратор или коммутатор.

В настоящее время существует четыре основных типа Fast Ethernet, они отличаются используемыми кабелями и дальностью передачи. Для более подробной информации о них пройдите по приведенным ниже ссылкам.

Лекция

Тема: Стандарты технологии Ethernet, TokenRing и FDDI.

Цель .

  1. Обучающая. Ввести основные понятия. Освоить методы разработки и способы представления элементов сети.
  2. Развивающая. Р азвивать логику, умение анализировать, сравнивать, делать выводы, высказывать свою мысль. Развивать внимание и аналитическое мышление.
  3. Воспитательная . Воспитывать интерес к языкам программирования, научным достижениям и открытиям. Воспитывать аккуратность, внимательность и дисциплинированность. Формирование самостоятельности и ответственности при повторении пройденного и изучении нового материала. Воспитывать чувство ответственности за напарника при работе в группе.

Межпредметные связи:

· Обеспечивающие: информатика.

· Обеспечиваемые: базы данных.

Методическое обеспечение и оборудование:

1. Методическая разработка к занятию.

2. Рабочая программа.

3. Инструктаж по технике безопасности.

Технические средства обучения: проэктор, компьютер.

Обеспечение рабочих мест:

  • Рабочие тетради.

Ход лекции.

  1. Организационный этап.
  2. Анализ и проверка домашнего задания.
  3. Фронтальный опрос по вопросам.

Решите задачи.

Стандарты технологии Ethernet

Ethernet - это самый распространенный на сегодняшний день стандарт локальных сетей. Общее количество сетей, использующих в настоящее время Ethernet, оценивается в 5 миллионов, а количество компьютеров, работающих с установленными сетевыми адаптерами Ethernet - в 50 миллионов.

Ethernet - это сетевой стандарт, основанный на технологиях экспериментальной сети Ethernet Network, которую фирма Xerox разработала и реализовала в 1975 году. В 1980 году фирмы DEC, Intel и Xerox совместно разработали и опубликовали стандарт Ethernet версии II для сети, построенной на основе коаксиального кабеля.

Рис. Примитивы уровня LLC
а, в, с - без установления соединения, d - с установлением соединения

На основе стандарта Ethernet DIX был разработан стандарт IEEE 802.3, который во многом совпадает со своим предшественником, но некоторые различия все же имеются. В то время, как в стандарте IEEE 802.3 различаются уровни MAC и LLC, в оригинальном Ethernet оба эти уровня объединены в единый канальный уровень. В Ethernet определяется протокол тестирования конфигурации (Ethernet Configuration Test Protocol), который отсутствует в IEEE 802.3. Несколько отличается и формат кадра, хотя минимальные и максимальные размеры кадров в этих стандартах совпадают.

В зависимости от типа физической среды стандарт IEEE 802.3 имеет различные модификации - 10Base-5, 10Base-2, 10Base-T, 10Base-F.

Для передачи двоичной информации по кабелю для всех вариантов физического уровня технологии Ethernet используется манчестерский код.

Все виды стандартов Ethernet используют один и тот же метод разделения среды передачи данных - метод CSMA/CD.

Стандарты технологии Token Ring

Сети Token Ring характеризует разделяемая среда передачи данных, которая в данном случае состоит из отрезков кабеля, соединяющих все станции сети в кольцо. Кольцо рассматривается как общий разделяемый ресурс, и для доступа к нему требуется детерминированный алгоритм, основанный на передаче станциям права на использование кольца в определенном порядке. Это право передается с помощью кадра специального формата, называемого маркером или токеном (token).

Сети Token Ring работают с двумя битовыми скоростями - 4 и 16 Мбит/с. Смешение станций, работающих на различных скоростях, в одном кольце не допускается.

Технология Token Ring обладает свойствами отказоустойчивости. В сети Token Ring определены процедуры контроля работы сети, которые используют обратную связь кольцеобразной структуры - посланный кадр всегда возвращается в станцию – отправитель

Стандарты технологии FDDI

FDDI (Fiber Distributed Data Interface) - это стандарт или набор сетевых стандартов, ориентированных на передачу данных по волоконно-оптическом кабелю со скоростью 100 Мбит/с. Подавляющая часть спецификаций стандарта FDDI использует в качестве среды передачи оптическое волокно.

В настоящее время большинство сетевых технологий поддерживают волоконно-оптический интерфейс в качестве одного из вариантов физического уровня, но FDDI остается наиболее отработанной высокоскоростной технологией, стандарты на которую прошли проверку временем и устоялись, а оборудование различных производителей показывает хорошую степень совместимости.

При разработке технологии FDDI ставились в качестве наиболее приоритетных следующие цели:

Повышение битовой скорости передачи данных до 100 Мбит/с;

Повышение отказоустойчивости сети за счет стандартных процедур восстановления после отказов различного рода - повреждения кабеля, некорректной работы сетевого узла, возникновения высокого уровня помех на линии и т. п.;

Максимально эффективное использование потенциальной пропускной способности с как для асинхронного, так и для синхронного графиков.

Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи.

Два основных отличия в протоколах управления маркером в FDDI и IEEE 802.5 Token Ring следующие:

В Token Ring станция, передающая кадры, удерживает маркер до тех пор, пока не получит все отправленные пакеты. В FDDI же станция выпускает маркер непосредственно окончанием передачи кадра (кадров);

FDDI не использует приоритет и поля резервирования, которые Token Ring использует для выделения системных ресурсов.

В таблице указаны основные характеристики сети FDDI.

* Некоторые производители выпускают оборудование на расстояние передачи до 50 км.
** При указанной длине сеть будет продолжать корректно работать и сохранять целостность при появлении единичного разрыва кольца или при отключении одной из станций кольца (режим WRAP) - при этом длина пути обхода маркера не будет превышать 200 км.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-10-25