Теория интегратор со сбросом на оу. Схемы на оу с конденсаторами в цепи обратной связи

Энциклопедичный YouTube

    1 / 1

    Динамичный интегратор «Энвижн Груп»

Субтитры

Математическое описание

Математическая модель интегратора имеет вид:

y (t) = k ∫ 0 t 1 x (t) d t + y 0 {\displaystyle y(t)=k\int \limits _{0}^{t_{1}}x(t)\,dt+y_{0}} , где x (t) {\displaystyle x(t)} - входная функция времени, y (t) {\displaystyle y(t)} - выходная функция времени - результат интегрирования за время от до t = t 1 {\displaystyle t=t_{1}} , k {\displaystyle k} - коэффициент пропорциональности, имеет размерность обратную времени, y 0 {\displaystyle y_{0}} - начальное значение выходной переменной в момент времени t = 0 {\displaystyle t=0} .

Типы

Аналоговые

В этих приборах входная величина представлена в аналоговом виде, но выходная величина не обязательно аналоговая, даже чаще представлена в цифровом виде, например, в бытовых счетчиках.

Механические вычислительные интеграторы

Исторически первые интеграторы для вычислений. Представляли собой механические устройства, где величины представлялись в виде углов поворотов и угловых скоростей различных валов, шестерён, фигурных кулачков для вычисления функций. В годы Первой мировой войны широко использовались в приборах управления стрельбой, например, корабельных орудий и приборах управления зенитным огнём .

Со временем в подобные вычислители стали вводить различные электромеханические устройства, электрические автоматические следящие системы. Расцвет таких вычислителей с интеграторами пришёлся на годы Второй мировой войны и первые послевоенные годы. Например, вычислители автоматических оптических бомбометательных прицелов бомбардировщиков B-29 (в прицеле ОБП-48 Ту-4) были электромеханическими.

В различные приборы учета расхода и сейчас входят механические интеграторы в виде механических счётчиков - нескольких сцеплённых счётных цифровых колец.

Пневматические интеграторы

Принцип действия этих интеграторов основан на вытеснении жидкости из мерного объёма, как, например в мерных газовых бюретках, всплывании мерных сосудов или перемещений поршня, снабжённого проградуированной шкалой . В этих приборах выполняется интегрирование объёмного расхода газа.

Гидравлические интеграторы

По сути объём жидкости в некотором сосуде является интегралом от расхода жидкости в этот сосуд. Если снабдить сосуд шкалой, проградуированной, например, в единицах объёма, то получается простейший интегратор расхода жидкости.

Такой интегратор применялся в водяных часах - клепсидре , изобретённых ещё в античные времена .

Электронные аналоговые интеграторы

Сейчас это наиболее распространённый тип интеграторов. Мало типов радиотехнических или электронных устройств, где бы не применялись такие интеграторы. Схемотехнически строится на активных и пассивных компонентах. В зависимости от конкретной задачи, обеспечения нужной точности интегрирования, удобства применения, стоимости, строится по схемам различной сложности.

В простейшем случай представляет собой RC-фильтр нижних частот - соединение конденсатора и резистора как показано на рисунке. Дифференциальное уравнение, описывающее эту цепь:

I = C d U a d t = U e − U a R {\displaystyle I=C{\frac {dU_{a}}{dt}}={\frac {U_{e}-U_{a}}{R}}} ,

где I {\displaystyle I} - ток цепи, входной ток, C {\displaystyle C} - ёмкость конденсатора, R {\displaystyle R} - сопротивление резистора, - входное напряжение интегрирующей цепочки, U a {\displaystyle U_{a}} - выходное напряжение.

Общее решение этого уравнения при произвольном изменении U e {\displaystyle U_{e}} :

U a (t) = 1 R C ∫ − ∞ t U e (τ) e − (τ − t) / R C d τ {\displaystyle U_{a}(t)={\frac {1}{RC}}\int \limits _{-\infty }^{t}{U_{e}({\tau })}e^{-(\tau -t)/RC}\,d{\tau }} .

Произведение R C = T {\displaystyle RC=T} имеет размерность времени и его называют постоянной времени RC -цепи. Из приведённой формулы очевидно, что простейшая RC -цепь только приближённо выполняет функцию интегрирования из-за экспоненциального сомножителя в подинтегральном выражении. Точность интегрирования повышается при стремлении постоянной времени к бесконечности, что стремит экспоненту к 1. Но при этом выходное напряжение стремится к 0. Таким образом, при повышении точности интегрирования существенно снижается выходное напряжение простейшей интегрирующей цепи, что во многих практических применениях неприемлемо.

Для устранения этого недостатка в схемы интеграторов включают активные электронные компоненты . Простейший интегратор такого типа можно построить на биполярном транзисторе , включённом по схеме с общим эмиттером . В этой схеме значительно повышена точность интегрирования, так как напряжение база-эмиттер при изменении входного тока базы изменяется незначительно и приблизительно равно напряжению на прямосмещённом полупроводниковом p-n переходе . Если входное напряжение база-эмиттер пренебрежимо мало по сравнению с входным напряжением, то точностные свойства такого интегратора приближаются к свойствам идеального интегратора. Нужно отметить, что этот интегратор инвертирующий, то есть при подаче положительного напряжения на вход выходной сигнал будет уменьшаться.

Дальнейшее повышение точности электронных аналоговых интеграторов можно достичь применяя в качестве активных компонентов операционные усилители (ОУ). Упрощённая схема такого интегратора приведена на рисунке. Идеальный ОУ имеет бесконечный коэффициент усиления и бесконечное входное сопротивление (нулевой входной ток), современные реальные ОУ по этим параметрам приближаются к идеальным - имеют коэффициент усиления более нескольких сотен тысяч и входные токи менее 1 нА и даже пА. Поэтому при упрощенном анализе цепей с ОУ обычно допускают, что ОУ идеальный.

Цифровые интеграторы

В этих интеграторах и входной и выходной сигналы представлены в виде цифровых кодов. По своей сути являются сумматорами с накоплением. На псевдокоде их работу можно описать так:

Выход_интегратора:= Выход_интегратора + Вход * Интервал_выборки

Интервал выборки - время от момента получения предыдущего значения до момента получения текущего значения. Не обязательно, чтобы интервал выборки являлся истинным временем. При математическом моделировании реальных процессов (физических, биологических, др.) это может быть масштабированный временной интервал (растянутый или, наоборот, сжатый относительно истинного моделируемого времени) или даже величина невременно́й природы.

Цифровые интеграторы могут быть построены как аппаратно - в виде сумматоров с обратной связью, так и программно.

При аппаратной реализации интегратора по типу сумматора различают:

  • интегратор с параллельным переносом;
  • интегратор с последовательным переносом;
  • интегратор следящий.

Применение интеграторов

Трудно перечислить все области использования интеграторов, вот некоторые из них.

  • В инерциальных навигационных системах, например, летательных и космических аппаратов, боевых ракет. Двойное интегрирование сигналов датчиков ускорений и датчиков угловых ускорений позволяет вычислить координаты объекта и направления осей объекта не прибегая к внешним наблюдениям.
  • При учёте потребления веществ, сыпучих, жидких и газообразных сред.
  • Гутников В. С. Интегральная электроника в измерительных устройствах. 2-е изд., перераб. и доп. Л.: Энергоатомиздат. Ленингр. отделение, 1988. - 304 с.: илл.
  • Новицкий П. В. , Кнорринг В. Г. , Гутников В. С. Цифровые приборы с частотными датчиками. Л., «Энергия», 1970. - 424 с. илл.
  • Боярченков М. А., Черкашина А. Г. Магнитные элементы автоматики и вычислительной техники. Учебное пособие для студентов высших учебных заведений по специальности «Автоматика и телемеханика» вузов. М., «Высшая школа», 1976. - 383 с. илл.
  • Степаненко И. П. Основы теории транзисторов и транзисторных схем, изд. 3-е, перераб. и доп. М., «Энергия», 1973. - 608 с. илл.

Широкое применение находят также устройства, и которых используются ОУ с реактивными элементами в цепи обратной связи. На рис. 5.8. а приведена схема простейшего интегратора. Чтобы понять, почему такая схема способна интегрировать, запишем выражение для тока, протекающего через конденсатор:

Если ОУ близок к идеальному с током I вх = 0 и значением К настолько большим, что потенциал инвертирующего входа можно считать равным нулю, то I R =- I C .Так как U c = - U вых , то можно записать

Разрешая это выражение относительно dU вых , находим

dU вых = (-1/RC)U вх dt,

а интегрируя его, получаем

Пределами интегрирования здесь являются моменты времени, соответствующие началу и концу интервала времени наблюдения сигнала. Для скачка входного сигнала U вх интеграл является линейной функцией времени:

Этим свойством интегратора широко пользуются при проектировании прецизионных генераторов линейно изменяющегося напряжения.


Рис. 5.8 Применение ОУ для интегрирования входного сигнала: а -- интегратор на ОУ на ОУ; б -- входной сигнал интегратора; в -- выходной сигнал интегратора

Пример. В схеме генератора R =10 кОм, С =0,1 мкф. На вход ОУ подаются прямоугольные импульсы в виде меандра с частотой 1 кГц и амплитудой 5 В. (см. рис. 5.8 б). Определить, какое будет выходное напряжение?

Решение. Поскольку сигнал периодический, для описания выходного напряжения достаточно рассмотреть только один полный период, например, длительностью t 3 - t 1 . Имеем U вх = 5B при t 1 < t < t 2 , U вх = - 5В при t 2 < t < t 3 .

Эту функцию можно интегрировать на каждом из ее полупериодов. Для описания выходного сигнала достаточно выяснить его форму и значение напряжений на концах каждого полупериода. Так как U вх в течение полпериода постоянно, то

представляет собой наклонную прямую на каждом полупериоде.

Напряжение на конденсаторе за первый полупериод, т. е. в интервале между t 1 и t 2 , изменяется на величину:

Аналогично находим изменение напряжения на выходе за второй полупериод между t 3 и t 2

В установившемся режиме, на выходе получится симметричный двуполярный сигнал (без постоянной составляющей). Поскольку скорость изменения выходного напряжения одинакова по абсолютной величине и противоположна по знаку, то на границах полупериодов выходное напряжение будет принимать значение 1.25В. Полученный выходной сигнал показан на рис. 5.8, в.

Если последовательно с конденсатором обратной связи включить сопротивление (рис. 5.9 а), то выходное напряжение окажется линейной функцией входного напряжения и интеграла по времени от входного напряжения. Такая схема фактически объединяет интегратор и усилитель. Напряжение на ее выходе имеет вид

U вых = -(R ос /R 1 )U вх -1/(R 1 C) U вх dt.

Заметим, что интегратор-усилитель может иметь более одного входа.

Разностный интегратор (рис. 5.9 б) формирует интеграл по времени от разности двух сигналов. Его схему можно получить, если на рис. 5.3 г вместо резисторов nR 1 и nR 2 включить конденсаторы С 1 = С 2 = С . Выходное напряжение в этой схеме имеет вид

U вых = (1/RC)(U 2 - U 1 )dt.

Количество входов интегратора не обязательно равно одному. Схема суммирующего интегратора с n входами показана на рис. 5.9 в. Из рисунка видно, что

i C = iR 1 + iR 2 + iR n ,

-С(dU вых /dt) = (U 1 /R 1 ) + (U 2 /R 1 ) + + (U n /R n ).

При R1 = R2 = Rn =R имеем

dU вых /dt = -(U 1 + U 2 + +U n ) /CR.

Проинтегрировав это равенство, получим


Рис. 5.9 Разновидности интеграторов на ОУ: а -- интегратор усилитель, б -- разностный интегратор, в -- суммирующий интегратор

Любой интегратор, предназначенный для интегрирования в течение длительного времени, необходимо периодически сбрасывать в некоторое заданное начальное состояние (например, нулевое). Кроме того, желательно иметь возможность останавливать на некоторое время изменение выходного напряжения (режим фиксации); это дает возможность последовательно считывать несколько значений выходного напряжения и гарантирует неизменность выходного напряжения в течение времени, необходимого для такого считывания. Трехрежимный интегратор, схема которого приведена на рис. 5.10 обеспечивает возможность производить интегрирование, фиксировать выходной сигнал и периодически сбрасывать интегратор в исходное состояние. Схема имеет следующие режимы:

  • · Рабочий -- собственно интегрирование.
  • · Фиксации (сравнения) -- в течение определенного интервала времени выходной сигнал не меняется.
  • · Установка начальных условий (или сброс) -- интегратор возвращается в исходное состояние.

В рабочем режиме интегрирование производится обычным образом и в качестве трехрежимного интегратора может быть использован любой из описанных выше интеграторов. При большой длительности интегрирования накапливается большая ошибка за счет интегрирования входного тока, напряжения смещения и тока утечки конденсатора. Максимальное время непрерывной работы интегратора определяется величиной суммарной ошибки, допустимой в данном конкретном применении. В рабочем режиме сигнал на выходе схемы рис. 5.10 имеет вид

U вых =-(1/R 1 C) U 1 dt + U нс .,

где U нс - значение напряжения, которое выходное напряжение интегратора принимает в режиме сброса. Это напряжение сброса равно

U нс =-(R ос /R 2 )U 2 .

Напряжение сброса равно нулю, если U 2 = 0. Максимальное время, в течение которого интегратор может непрерывно работать, можно найти следующим образом. Так как С=It/U , а t = CU/I , то имеем

t раб.мак.=CU ош / I вх,

где I вх -- ток смещения ОУ, U ош -- максимально допустимое напряжение ошибки за счет входного тока.

В режиме выдержки (хранения) (K1, K2 разомкнуты) входное сопротивление отсоединяется от интегратора. При этом напряжение на конденсаторе остается практически постоянным, так как входное сопротивление ОУ велико. Однако, это напряжение не будет удерживаться на конденсаторе бесконечно долго, потому что ни входное сопротивление усилителя, ни сопротивление утечки конденсатора не бесконечны. Если ток утечки конденсатора достаточно мал, то напряжение на конденсаторе будет уменьшаться по экспоненциальному закону с постоянной времени = СR вх ус .

Рис. 5.10

В режиме сброса конденсатор вынужден зарядиться или разрядиться до напряжения, определяемой цепью обратной связи R ос и R 2 . Чтобы сброс происходил достаточно быстро, резисторы выбираются настолько малой величины, насколько позволяет усилитель. В качестве ключей обычно применяют ключи на биполярных или полевых транзисторах.

Погрешность интегратора в первую очередь определяется таким параметром ОУ, как напряжение смещения и входной ток. Напряжение смещения интегрируется как ступенчатая функция, что дает дополнительный линейно нарастающий (или спадающий) выходной сигнал, полярность и наклон которого определяется соответственно полярностью и величиной U см . Ток I вх течет через конденсатор обратной связи, что также приводит к появлению наклонного выходного сигнала. В результате действия этих эффектов (они никогда не компенсируют друг друга полностью, но могут складываться и вычитаться) конденсатор обратной связи через некоторое время неизбежно зарядится до максимально возможного выходного напряжения усилителя. Такое постоянное нарастание заряда на конденсаторе накладывает ограничение на интервал времени, в течение которого может быть осуществлено интегрирование с достаточной точностью. Кроме того, U см2 -U см1 добавляется к напряжению на конденсаторе, т. е. к выходному напряжению. В итоге выражение для U вых интегратора принимает вид

Последние три члена в правой части приведенного равенства соответствуют указанным выше ошибкам, а первый -- описываемому полезному выходному сигналу. Для уменьшения ошибки интегрирования необходимо использовать ОУ с малыми значениями I см и U см , большим значением К, периодически разряжать конденсатор до некоторого заранее выбранного значения.

Операцию дифференцирования выполняет схема, приведенная на рис. 5.11.

Она создает выходное напряжение, пропорциональное скорости изменения входного. При дифференцировании входного сигнала усилитель должен пропускать только переменную составляющую входного напряжения и коэффициент усиления дифференциатора должен возрастать при увеличении скорости изменения входного сигнала.

1 с =С.

Рис. 5.11

Напряжение U c равно входному напряжению U вх , так как потенциал инвертирующего входа близок к нулю. Ели предположить, что ОУ идеален, то ток через Rос можно считать равным току через конденсатор, т. е. I R =I C . Но U вых = -RI R =-I C R , поэтому

U вых = -RC dU вх /dt.

С увеличением частоты входного сигнала уменьшается реактивное сопротивление Х С . При этом возрастает коэффициент усиления дифференциатора по отношению к высокочастотным составляющим на входе. Однако это возрастание коэффициента усиления ограничивается частотными свойствами ОУ.

Особенностью схемы дифференциатора является также ее склонность к самовозбуждению, что требует принятия мер для динамической стабилизации дифференциатора.

Представляет опасность и значительное увеличение усиления дифференциатора, обусловленное свойством входной цепи на достаточно высоких частотах. В результате высокочастотные составляющие спектра собственного шума ОУ после значительного усиления накладываются на полезный сигнал и искажают его. Поэтому на практике применяют модифицированную схему, которая выполняет функцию дифференцирования входных сигналов до частоты 1 = 1/(R 1 C 1 ) , выполняет функцию усилителя в диапазоне частот от 1 = 1(/R 1 C 1 ) , до 2 = 1/(R 2 C 2 ) и является интегратором на частотах выше 2 .

Рис. 5.12 а -- схема дифференцирующего устройства, применяемого на практике; б -- логарифмическая амплитудно-частотная характеристика дифференциатора

На рис. 5.12 б приведена логарифмическая амплитудно-частотная характеристика ОУ, которая обеспечивает нормальную работу рассматриваемой схемы в режимах дифференциатора, усилителя и интегратора. Это позволяет устранить влияние собственной полосы пропускания ОУ на участке частот, где осуществляется интегрирование.



На основе операционных усилителей можно строить почти идеальные интеграторы на которые не распространяется ограничение U вых « U вх. На рис. 4.47 показана такая схема. Входной ток U вх /R протекает через конденсатор С. В связи с тем что инвертирующий вход имеет потенциальное заземление, выходное напряжение определяется следующим образом:

U вх /R = - C(dU вх /dt) или U вх = 1/RC ∫U вх dt + const.

Безусловно, входным сигналом может быть и ток, в этом случае резистор R не нужен. Представленной здесь схеме присущ один недостаток, связанный с тем, что выходное напряжение имеет тенденцию к дрейфу, обусловленному сдвигами ОУ и током смещения (обратной связи по постоянному току, которая нарушает правило 3 из разд. 4.08 , здесь нет). Это нежелательное явление можно ослабить, если использовать ОУ на полевых транзисторах, отрегулировать входное напряжение сдвига ОУ и выбрать большие величины для R и С. Кроме того, на практике часто прибегают к периодическому сбросу в нуль интегратора с помощью подключенного к конденсатору переключателя (обычно на полевом транзисторе), поэтому играет роль только кратковременный дрейф. В качестве примера рассмотрим интегратор, в котором использован ОУ на полевых транзисторах типа LF411 (ток смещения составляет 25 пА), настроенный на нуль (напряжение сдвига составляет не более 0,2 мВ). Резистор и конденсатор выбраны так: R = 10 МОм и С = 10 мкФ; для такой схемы дрейф не превышает 0,005 В за 1000 с.


Рис. 4.47. Интегратор


Если остаточный дрейф по-прежнему слишком велик для конкретного случая использования интегратора, то к конденсатору С следует подключить большой резистор R 2 , который обеспечит стабильное смещение за счет обратной связи по постоянному току. Такое подключение приведет к ослаблению интегрирующих свойств на очень низкой частоте: ƒ разд. 4.09) описанный выше прием может привести к увеличению эффективного входного напряжения сдвига. Например, если схема, показанная на рис. 4.49, подключена к источнику с большим импедансом (скажем, на вход поступает ток от фотодиода и входной резистор опущен), то выходной сдвиг будет в 100 раз превышать U сдв. Если в той же схеме есть резистор обратной связи величиной 10 МОм, то выходное напряжение равно U сдв (сдвигом, обусловленным входным током, можно пренебречь).


Рис. 4.48. Интеграторы на основе ОУ с переключателями для сброса.



Схемная компенсация утечки полевого транзистора. Рассмотрим интегратор с переключателем на полевом транзисторе (рис. 4.48). Ток утечки перехода сток-исток протекает через суммирующий переход даже в том случае, когда полевой транзистор находится в состоянии ВЫКЛ. Эта ошибка может быть преобладающей в интеграторе в случае использования операционного усилителя с очень малым входным током и конденсатора с небольшой утечкой. Например, превосходный «электрометрический» ОУ типа AD549 со входами на полевых транзисторах обладает входным током величиной 0,06 пА (максимум), а высококачественный металлизированный тефлоновый или полистироловый конденсатор емкостью 0,01 мкФ обладает сопротивлением утечки величиной 10 7 МОм (минимум). При таких условиях интегратор, без учета схемы сброса, поддерживает на суммирующем переходе прямой ток величиной ниже 1 пА (для худшего случая, когда выходной сигнал составляет 10 В двойной амплитуды), что соответствует величине изменения dU/dt на выходе, равной 0,01 мВ с. Для сравнения посмотрите, чему равна утечка такого популярного МОП - транзистора, как например 2N4351 (в режиме обогащения). При U ист-сток = 10 В и U ист-затв = 0 В максимальный ток утечки равен 10 нА. Иными словами, утечка полевого транзистора в 10000 раз больше, чем утечка всех остальных элементов, взятых вместе.


На рис. 4.50 показано интересное схемное решение оба n- канальных МОП - транзистора переключаются вместе, однако транзистор Т 1 переключается тогда, когда напряжение на затворе равно нулю и + 15 В, при этом в состоянии ВЫКЛ (напряжение на затворе равно нулю) утечка затвора (а также утечка перехода сток-исток) полностью исключается. В состоянии ВКЛ конденсатор как и прежде, разряжается, но при удвоенном R вкл. В состоянии ВЫКЛ небольшой ток утечки транзистора Т 2 через резистор R 2 стекает на землю, создавая пренебрежимо малое падение напряжения. Через суммирующий переход ток утечки не протекает. Так как к истоку стоку и подложке транзистора Т 1 приложено одно и тоже напряжение. Сравните эту схему со схемой пикового детектора с нулевой утечкой, приведенной на рис. 4. 40 .


До сих пор рассматривались усилители, собираемые из отдельных дис­кретных компонентов – транзисторов, диодов, резисторов. При исполь­зовании технологии интегральных схем все эти необходимые дискретные компоненты могут быть сформированы в одной монолитной ИС. Именно по такой технологии в настоящее время изготавливаются операционные усилители (ОУ). Первоначально они были разработаны для выполнения определенных математических операций (отсюда название), но затем бы­стро нашли применение в самых различных электронных схемах.

Идеальный операционный усилитель - это идеальный усилитель с бесконечно большим коэффициентом усиления, бесконечно широкой по­лосой пропускания и совершенно плоской АЧХ, бесконечным входным со­противлением, нулевым выходным сопротивлением и полным отсутстви­ем дрейфа нуля. На практике операционный усилитель имеет следующие свойства:

1) очень высокий коэффициент усиления (свыше 50000);

2) очень широкую полосу пропускания и плоскую АЧХ;

3) очень высокое входное сопротивление;

4) очень низкое выходное сопротивление;

5) очень слабый дрейф нуля.

Рис. 31.1.

На рис. 31.1 показано условное обозначение операционного усилителя. ОУ имеет два входа: инвертирующий вход (-), сигнал на котором нахо­дится в противофазе с выходным сигналом, и неинвертирующий вход (+), сигнал на котором совпадает по фазе с выходным сигналом.

Применения

Диапазон применений ОУ исключительно широк. Он может использо­ваться в качестве инвертирующего, неинвертирующего, суммирующего и дифференциального усилителей, как повторитель напряжения, интегра­тор и компаратор. Внешние компоненты, подключаемые к ОУ, опреде­ляют его конкретное применение. Ниже рассматриваются некоторые из этих применений.

На рис. 31.2 показано применение ОУ в качестве инвертирующего уси­лителя. Поскольку ОУ обладает очень большим (почти бесконечным) коэффициентом усиления, то сигнал на его выходе вырабатывается при очень малом входном сигнале. Это означает, что инвертирующий вход ОУ (точку Р) можно считать виртуальной (мнимой) землей, т. е. точкой с практически нулевым потенциалом. Для получения коэффициента усиления ОУ требуемого уровня вводится очень глубокая отрицательная связь через резистор обратной связи R oc . Коэффициент усиления инвер­тирующего усилителя (рис. 31.2) можно рассчитать по формуле

Отрицательный знак указывает на инвертирование входного сигнала при его усилении.


Рис. 31.2.

Пример

Полагая R 1 = 1 кОм и R oc = 2,2 кОм, рассчитать коэффициент усиления и выходное напряжение инвертирующего усилителя, если на его вход подано на­пряжение 50 мВ.

Решение

Коэффициент усиления

Выходное напряжение = -2, 2 · 50 мВ = -110 мВ.

Суммирующий усилитель (рис. 31.3) вырабатывает выходное напряже­ние, величина которого пропорциональна сумме входных напряжений V 1 и V 2 . Для входного напряжения V 1 коэффициент усиления G V = - R oc / R 1 , а для входного напряжения V 2 G V = - R oc / R 1 .

Например, если R oc = R 1 = R 2 , то коэффициент усиления для обоих входов равен -5 кОм / 5 к0м = -1. Пусть V 1 = 1 В и V 2 = 2 В, тогда вклад в выходное напряжение, связанный с V 1 , составляет 1 · (-1) = -1 В, а вклад, связанный с V 2 , составляет 2 · (-1) = -2 В. Следовательно, полное выходное напряжение равно V вых = -1 - 2 = -3 В.

Пример 1

На входы суммирующего ОУ, показанного на рис. 31.4, подаются напряжения V 1 = 20 мВ и V 2 = -10 мВ. Рассчитайте выходное напряжение V вых .


Рис. 31.3.


Рис. 31.4.

Решение

Выходное напряжение для V 1 = -5/1 · 20 = -100 мВ.

Выходное напряжение для V 2 = -5/5 · (-10) = +10мВ.

Следовательно, полное выходное напряжение V вых = -100 + 10 = -90 мВ.

В этом случае операционный усилитель охвачен 100%-ной отрицательной обратной связью (рис. 31.5) и имеет результирующий коэффициент уси­ления, равный 1. Заметим, что выходной и входной сигналы повторителя напряжения совпадают по фазе.

Напряжение смещения

При нулевом входном сигнале выходной сигнал идеального ОУ равен ну­лю. На практике это не так: отличный от нуля сигнал (ток или напря­жение) присутствует на выходе ОУ даже при нулевом входном сигнале. Чтобы добиться нулевого выходного сигнала при нулевом входном, на вход ОУ подается входной ток смещения или напряжение смещения та­кой величины и полярности, чтобы выходной сигнал, соответствующий входному сигналу смещения, компенсировал исходный мешающий выход­ной сигнал.

Входной ток смещения обычно устанавливается с помощью дополни­тельного резистора R 2 , подключаемого к неинвертирующему входу ОУ, как показано на рис. 31.6.


Рис. 31.5. Повторитель напряже­ния. Рис. 31.6

Оптимальное сопротивление этого резистора определяется по формуле

Обычно, если коэффициент усиления больше четырех, номиналы рези­сторов R 2 и R 1 выбирают одинаковыми. Введение резистора R 2 не изме­няет коэффициент усиления инвертирующего усилителя, он по-прежнему остается равным - R oc / R 1 . Как мы увидим позже, в некоторых ИС преду­сматриваются выводы для установки нулевого напряжения на выходе ОУ.

Неинвертирующий усилитель

В этом случае входной сигнал подается на неинвертирующий вход ОУ, как показано на рис. 31.7.

Общие сведения

Подключение к ОУ цепи частотно-зависимой (комплексной) обратной связи позволяет создавать устройства, обладающие усилением и частотной избирательностью. Их частотная и фазовая характеристики определяются только видом и параметрами цепи обратной связи. К таким устройствам относятся интеграторы.

Интегратором называется устройство на основе операционного усилителя, выходной сигнал которого пропорционален интегралу от входного. Если обратная связь, которой охвачен ОУ, образуется конденсатором, то схема выполняет математическую операцию интегрирования по времени. Другими словами, она действует как накопитель, в котором входной сигнал суммируется на заданном отрезке времени. На основе операционных усилителей можно строить почти идеальные интеграторы на которые не распространяется ограничение «.

Интегратор на операционном усилителе можно считать точным в силу очень большого коэффициента усиления (сотни тысяч) и очень малых входных токов (доли наноампера). При этом выходное напряжение оказывается практически равным минус напряжению на конденсаторе, ток через конденсатор - практически равным току через резистор и напряжение на резисторе - практически равным входному. Интегрирование можно представлять себе как определение площади под кривой. Поскольку интегратор на операционном усилителе производит действия над напряжениями в течение некоторого периода времени, результат его работы можно интерпретировать как сумму напряжений за некоторое время.

Принципиальные схемы и основные выражения

Схема интегратора на операционном усилителе приведена на рисунке 2.1.

Рисунок 2.1 - Интегратор на основе операционного усилителя

Математическую модель интегратора можно записать в таком виде:

где: x(t) - входная функция времени;

y(t) - выходная функция времени;

k - коэффициент передачи;

y0 - начальное значение выходной переменной.

В связи с тем что инвертирующий вход имеет потенциальное заземление, выходное напряжение определяется следующим образом:

Входным сигналом может быть и ток, в этом случае резистор R не нужен.

Основные проблемы и способы их решения

Основной проблемой в интеграторах является дрейф выходного напряжения, вызванный зарядом конденсатора, токами утечки, входными токами смещения и входным напряжением смещения ОУ. Если не принять никаких мер, на выходе схемы появится большое непостоянное смещение, которое, в конечном счете, приводит к насыщению ОУ. В представленной здесь схеме (см. рисунок 2.1) тоже присутствует этот недостаток - тенденция к дрейфу. Это нежелательное явление можно ослабить, если использовать ОУ на полевых транзисторах, отрегулировать входное напряжение сдвига ОУ и выбрать большие величины для R и С. Но на практике можно прибегнуть к сбросу на нуль интегратора с помощью переключателя подсоединенного к конденсатору. На рисунке 2.2 показан интегратор с переключателем для сброса.

Рисунок 2.2 - Интегратор с переключателем для сброса на нуль

Если остаточный дрейф по-прежнему слишком велик для конкретного случая использования интегратора, то к конденсатору С следует подключить большой резистор R2, который обеспечит стабильное смещение за счет обратной связи по постоянному току. Но следует указать что такое подключение приведет к ослаблению интегрирующих свойств на очень низкой частоте: . На рисунке 2.3 показано подключение резистора.

Рисунок 2.3 - Подключение резистора к схеме интегратора

Рассмотрев интегратор с переключателем на полевом транзисторе (см. рисунок 2.2), можно понять, что ток утечки перехода сток-исток2 2 Электрод, из которого в канал входят основные носители заряда, называют истоком. Электрод, через который из канала уходят основные носители заряда, называют стоком. протекает через суммирующий переход даже в том случае, когда полевой транзистор находится в состоянии ВЫКЛ. Эта ошибка может быть преобладающей в интеграторе в случае использования операционного усилителя с очень малым входным током и конденсатора с небольшой утечкой.

Применение интегратора на ОУ

Интегратор служит полезным источником линейно изменяющегося напряжения, необходимого для осциллографов в качестве сигнала развертки и используемого также при реализации некоторых методов аналого-цифрового преобразования. Если на вход интегратора подать неизменное по величине постоянное напряжения - , то на выходе получим:

На рисунке 2.4 показано линейно нарастающее напряжение с градиентом, как отклик интегратора на скачок напряжения. Когда на входе действует симметричное относительно земли периодическое прямоугольное колебание, это приводит к возникновению на выходе колебания треугольной формы.

Рисунок 2.4 - Линейно нарастающее напряжение, отклик интегратора

Интегратор так же можно использовать в схеме нужной для обнаружения ядерных частиц. Схема является зарядо-чувствительным усилителем или другими словами преобразователем заряда в напряжение у которой выходное напряжение пропорционально количеству заряда, поступившего на вход. В таком случае очень полезен интегратор на основе ОУ. В схеме представленной на рисунке 2.5 убирается резистор и входная клемма напрямую соединяется с инвертирующим входом.


Рисунок 2.5 - Электрометрический усилитель