Сила звука измеряется в. Что такое звук: его громкость, кодирование и качество. Математическое вычисление децибел

Звуковые волны характеризуются скоростью распространения, звуковым давлением, интенсивностью, спектральным составом и рядом других величин.

Для образования единиц акустики, как и механики, достаточно трех основных единиц: длины L , массы M и времени T . Как правило, в акустике используется система единиц СИ. Вместе с тем на практике используются также и внесистемные единицы (децибел, фон, октава, атмосфера и др.) Перечислим здесь лишь некоторые из часто употребляемых акустических величин.

Скорость звука - фазовая скорость звуковых волн в упругой среде, обычно одинакова для всех частотных составляющих звука. Выражается в метрах в секунду (м/с ). Скорость звука в воздухе при температуре 0 С и давлении 1 атм (101325 Па) равна 331 м/с.

Звуковое давление р - переменная часть давления, возникающая при прохождении звуковой волны в среде. Распространяясь в среде, звуковая волна образует ее сгущения и разрежения, которые создают добавочные изменения давления по отношению к его средним значениям в среде.

Звуковое давление представляет собой переменную часть давления, т. е. колебания давления относительно среднего значения, частота которых соответствует частоте звуковой волны. Звуковое давление -- основная количественная характеристика звука .

Звуковое давление, как и всякое давление, измеряется в паскалях (1Па = 1 ньютон на м 2 ) и имеет размерность LMT . Иногда для характеристики звука применяется уровень звукового давления -- выраженное в дб отношение величины данного звукового давления р к пороговому значению звукового давления р о =2·10 -5 н/м 2 . При этом число децибел N=20 lg (p/p o ).

Звуковое давление в воздухе изменяется в широких пределах -- от 10 -5 н/м 2 вблизи порога слышимости до 10 3 н/м 2 при самых громких звуках, например шумах реактивных самолётов.

При значительном звуковом давлении наблюдается явление разрыва сплошности жидкости -- кавитация .

Звуковое давление следует отличать от радиационного давления звука .

Звуковое давление является наиболее важной характеристикой звука, потому что из всех акустических величин человеческое ухо воспринимает, в первую очередь, именно звуковое давление.

Акустическое радиационное давление (давление звукового излучения) - постоянное давление, испытываемое телом, находящимся в стационарном звуковом поле. Радиационное давление звука не следует смешивать со звуковым давлением , представляющим собой периодически меняющееся давление в среде, в которой распространяется звуковая волна.

Давление звука пропорционально плотности звуковой энергии и, следовательно, квадрату звукового давления. Оно мало по сравнению со звуковым давлением ; так, например, в звуковом поле в воздухе, в котором звуковое давление равно 10 2 н/м 2 , при нормальном падении звуковой волны на полностью отражающее звук препятствие Давление звука приблизительно равно 0,1 н/м 2 . Измерение радиационного давления звука производится радиометром . Зная величину давления звука, можно определить абсолютное значение интенсивности звука в данной среде.

Звуковая энергия W - энергия колебательного движения частиц упругой среды, заполняющей область звукового поля. Как и любая другая энергия, звуковая энергия выражается в джоулях (дж ) и имеет размерность LMT.

Плотность звуковой энергии w=dW/dV имеет размерность LMT и единицу измерения дж/м .

Поток звуковой энергии P=dW/dt , также как и звуковая мощность P=dW/dt - все эти энергетические величины выражаются в ваттах (Вт ) и имеет размерность LMT .

Интенсивность звука (плотность звуковой мощности), называемая также силой звука, - средняя по времени энергия, переносимая звуковой волной через единичную площадку, перпендикулярную к направлению распространения волны в единицу времени: I=dР/dS, имеет размерность МТ.

Для плоской синусоидальной бегущей волны интенсивность звука

I = pv/2 = p 2 /2rc,

где р -- амплитуда звукового давления, v -- амплитуда колебательной скорости , r -- плотность среды, с -- скорость звука в ней. В сферической бегущей волне интенсивность звука обратно пропорциональна квадрату расстояния от источника. В стоячей волне I = 0 , т. е. потока звуковой энергии в среднем нет.

Интенсивность звука измеряется в системе единиц СИ в вт/м 2 . Интенсивность звука оценивается также уровнем интенсивности по шкале децибел; число децибел

N = 10 lg (I/I 0 ) ,

где I -- интенсивность данного звука, I 0 = 10 -12 вт/м 2 .

Интенсивность звука и выражается в ваттах на квадратный метр (Вт/м ).

Акустическое сопротивление - физическая величина, аналогичная сопротивлению электрической цепи. Имеет размерность LMT и выражается в паскаль-секундах на кубический метр.

Спектр звука - частотная характеристика звука, описывающая его спектральный состав по отношению к какой-либо акустической величине (обычно звуковому давлению силе звука и т.д.). Как правило, в акустической практике приходится иметь дело со сплошными спектрами, когда энергия звуковых колебаний распределяется непрерывно в определенном диапазоне частот. Вместе с тем, при решении определенных задач (градуировка, прием-передача калибровочных сигналов и т.д.) возникает необходимость в использовании линейчатых - дискретных частотных составляющих спектра.

Некоторые акустические величины, связанные с восприятием звука человеком (интенсивность звука, звуковое давление, затухание звуковых волн и др.), имеют экспоненциальный характер изменения и вследствие этого могут изменяться по величине в очень широких пределах - на несколько порядков.

В свою очередь, человеческое ухо обладает огромным диапазоном восприимчивости: оно улавливает тишайший шелест листвы и одновременно выдерживает сотрясающие удары грома. Эта способность слухового восприятия человека описана в эмпирическом психофизиологическом законе Вебера-Фехнера следующим образом: ощущение пропорционально логарифму раздражения.

Если воздействие возрастает в 10 раз, его десятичный логарифм увеличивается на единицу и ощущение возрастает также на некоторую единицу. А при росте воздействия в миллион раз его логарифм, а вместе с тем и ощущение возрастают всего лишь на шесть тех же единиц. Из этого факта следует важный вывод: психофизиологический закон обусловливает изменение амплитуды и частоты воспринимаемых звуков в столь широких пределах, что использовать линейные шкалы практически невозможно и необходимо прибегать к логарифмическому масштабу. Но этот же закон делает применение в акустике логарифмических величин и их единиц вполне естественным.

Относительный уровень акустической величины с использованием логарифмического масштаба определяется как логарифм отношения данного значения Х величины к пороговому (исходному) значению Х этой величины. принятому за начало отсчета:

уровень величины = lg Х/Х .

Например, уровень интенсивности звука - это десятичный логарифм отношения данного значения интенсивности звука I к пороговому значению I интенсивности звука.

Относительный уровень обозначают буквой L с индексом, указывающим на вид акустической величины, например Lp - уровень звукового давления. В качестве исходных уровней принимают следующие:

  • o уровень звукового давления - 20 мкПа;
  • o уровень звуковой мощности - 10 -12 Вт;
  • o уровень интенсивности звука - 0,01 Вт/м 2 .

При необходимости указать исходную величину ее значение помещают в скобках после обозначения логарифмической величины и букв re (начальные буквы слова referens). Например, для уровня звукового давления L p (re 20 мкПа)=20 дБ.

При использовании логарифмических величин для уровня величины указываются основание логарифмов (десять, корень квадратный из десяти, два и т.д.), пороговое значение величины и сам параметр (уровень звукового давления, уровень интенсивности звука и т.д.). Для количественной оценки уровней и других логарифмических величин применяются единицы бел и децибел.

Бел имеет два разных значения: одно - с основанием логарифма, равным десяти, а второе - с основанием, равным корню квадратному из десяти. Десятичное основание логарифма применяется для энергетических величин, а основание - для силовых величин.

Бел (Б) есть возрастание энергетической величины (звуковой мощности Р , энергии W , интенсивности I или другой энергетической величины) в 10 раз:

1 бел = lg (Р 2 /Р 1) при Р 2 = 10 Р 1 . (1.2.1)

Поскольку энергетические величины пропорциональны квадратам силовых величин (звукового давления, электрического тока и т.п.), бел также представляет возрастание силовой величины в = 3,162 раза.

Однако на практике наибольшее распространение получил не бел, а его дольная единица - децибел (дБ): 1дБ = 0,1 Б.

Децибел соответствует изменению энергетической величины в 10 0,1 = = 1,259 раза или силовой величины в = 1,121 раза. Существует также самостоятельное определение децибела: децибел - уровень звукового давления р , для которого выполняется соотношение 20 lg (р/р 0) = 1, где р 0 - пороговое звуковое давление, равное 20 мкПа.

Звуковая мощность - это количество звуковой энергии, излучаемой в единицу времени в ваттах.

Уровень звуковой мощности - логарифм отношения данной звуковой мощности к исходной звуковой мощности. Уровень звуковой мощности в децибелах равен десятикратному логарифму при основании, равном десяти от этого отношения:

L p = 10 lg(P/P 0),

где Р звуковая мощность, Вт, Р 0 пороговая звуковая мощность, Р 0 = 10 -12 Вт = 1 пВт, если нет другого указания.

Так как мощность акустического сигнала пропорциональна квадрату его амплитуды (мощность звука пропорциональна квадрату амплитуды звукового давления), то усилению амплитуды сигнала в один бел соответствует величина

Один децибел, соответствующий изменению амплитуды в у 10 раз, представляет сравнительно малую величину. Поэтому в децибелах

Если бы А (щ) было отношением мощностей, то перед логарифмом в правой части (1.2.2) должен был бы стоять множитель 10. Так как А (щ) представляет собой отношение не мощностей, а выходной и входной величин (перемещений, скоростей, напряжений, токов и т. п.), то увеличение этого отношения в десять раз будет соответствовать увеличению отношения мощностей в сто раз, что соответствует двум белам или двадцати децибелам. Поэтому в правой части (1.2.2) стоит множитель 20.

Уровень интенсивности звука (уровень плотности потока звукового давления) - логарифм отношения данной интенсивности звука в указанном направлении к исходной интенсивности. Уровень интенсивности в децибелах равен десятикратному логарифму при основании, равном десяти от этого отношения. Если нет другого указания, за исходную интенсивность звука принимают 1 пВт/м 2 .

Уровень звукового давления - логарифм отношения данного звукового давления к исходному звуковому давлению. Уровень звукового давления в децибелах равен двадцати логарифмам этого отношения при основании, равном десяти. Если нет другого указания, тот за исходное звуковое давление в воздухе принимают 20 мкПа и 1 мкПа в других средах и предполагается, что звуковые давления выражены через средние квадратичные значения.

Помимо объективных акустических характеристик существуют также субъективные характеристики звука, характеризующие слуховое восприятие звуков человеком. К ним относятся: громкость звука, порог слышимости, порог болевого ощущения и другие.

Громкость звука - величина, характеризующая уровень слухового ощущения звука. Громкость звука сложным образом зависит от звукового давления (интенсивности звука), от частоты и формы звуковых колебаний. При неизменной частоте и форме колебаний громкость звука растет с увеличением звукового давления. Наибольшей чувствительностью человек обладает к звукам в интервале частот 1 - 5 кГц.

Громкость звука данной частоты оценивают, сравнивая ее с громкостью чистого тона частотой 1000 Гц, вводя для этого логарифмическую величину «уровень громкости». Уровень громкости оценивают в фонах.

Фон есть уровень громкости, для которого уровень звукового давления равногромкого с ним звука стандартного чистого тона с частотой 1000 Гц равен 1 дБ. Для стандартного тона уровень громкости в фонах совпадает с уровнем звукового давления в децибелах.

Порог слышимости - звуковое давление, при котором слышны самые слабые звуки данной частоты. Наименьший порог слышимости соответствует частотам в интервале 1 - 5 Г кГц.

Порог болевого ощущения - звуковое давление, при котором нормальное слуховое ощущение переходит в болезненное раздражение органов слуха. В диапазоне частот 1 - 5 кГц порог болевого ощущения составляет около 120 дБ.

Ключевые слова : скорость звука, звуковое давление, плотность звуковой энергии, поток звуковой энергии, интенсивность звука, акустическое сопротивление, спектр звука, психофизиологический закон, уровень акустической величины, логарифмическая величина, логарифм, бел, децибел, громкость, порог слышимости, порог болевого ощущения.

Контрольные вопросы

  • 1. Укажите диапазон звуковых волн.
  • 2. Перечислите акустические величины и укажите единицу измерения.
  • 3. Что такое спектр звука?
  • 4. В чем состоит психофизиологический закон Вебера-Фехнера?
  • 5. Почему в акустике целесообразно использовать логарифмические величины?
  • 6. Что такое относительный уровень акустической величины?
  • 7. Что такое бел?
  • 8. Что такое децибел и как он связан с белом?
  • 9. Дайте определение уровня звуковой мощности, уровня интенсивности звука, уровня звукового давления.
  • 10. Что такое громкость звука?
  • 11. Что такое порог слышимости?
  • 12. Что такое порог болевого ощущения?

В статье вы узнаете, что такое звук, каков его смертельный уровень громкости, а также скорость в воздухе и других средах. Также поговорим про частоту, кодирование и качество звука.

Еще рассмотрим дискретизацию, форматы и мощность звука. Но сначала дадим определение музыки, как упорядоченному звуку — противоположность неупорядоченному хаотическому, который мы воспринимаем, как шум.

— это звуковые волны, которые образуются в результате колебаний и изменения атмосферы, а также объектов вокруг нас.

Даже при разговоре вы слышите своего собеседника потому, что он воздействует на воздух. Также, когда вы играете на музыкальном инструменте, бьете ли вы по барабану или дергаете струну, вы производите этим колебания определенной частоты, которой в окружающем воздухе производит звуковые волны.

Звуковые волны бывают упорядоченные и хаотические . Когда они упорядоченные и периодические (повторяются через какой-то промежуток времени), мы слышим определенную частоту или высоту звука.

То есть мы можем определить частоту, как количество повторения события в заданный промежуток времени. Таким образом, когда звуковые волны хаотичны, мы воспринимаем их как шум .

Но когда волны упорядочены и периодически повторяются, то мы можем измерить их количеством повторяющихся циклов в секунду.

Частота дискретизации звука

Частота дискретизации звука — это количество измерений уровня сигнала за 1 секунду. Герц (Гц) или Hertz (Hz) — это научная единица измерения, определяющая количество повторений какого-то события в секунду. Эту единицу мы будем использовать!

Частота дискретизации звука

Наверное, вы очень часто видели такую аббревиатуру — Гц или Hz. Например, в плагинах эквалайзеров. В них единицами измерения являются герцы и килогерцы (то есть 1000 Гц).

Обычно человек слышит звуковые волны от 20 Гц до 20 000 Гц (или 20 кГц). Все, что меньше 20 Гц — это инфразвук . Все, что больше 20 кГц — это ультразвук .

Давайте я открою плагин эквалайзера и покажу вам как это выглядит. Вам, наверное, знакомы эти цифры.


Частоты звука

С помощью эквалайзера вы можете ослаблять или усиливать определенные частоты в пределах слышимого человеком диапазона.

Небольшой пример!

Здесь у меня запись звуковой волны, которая была сгенерирована на частоте 1000 Гц (или 1 кГц). Если увеличить масштаб и посмотреть на ее форму, то мы увидим, что она правильная и повторяющиеся (периодическая).

Повторяющиеся (периодическая) звуковая волна

В одной секунде здесь происходит тысяча повторяющихся циклов. Для сравнения, давайте посмотрим на звуковую волну, которую мы воспринимаем как шум.


Неупорядоченный звук

Тут нет какой-то конкретной повторяющейся частоты. Также нет определенного тона или высоты. Звуковая волна не упорядочена. Если мы взглянем на форму этой волны, то увидим, что в ней нет ничего повторяющегося или периодического.

Давайте перейдем в более насыщенную часть волны. Мы увеличиваем масштаб и видим, что она не постоянная.


Неупорядоченная волна при масштабировании

Из-за отсутствия цикличности мы не в состоянии услышать какую-то определенную частоту в этой волне. Поэтому мы воспринимаем ее как шум.

Смертельный уровень звука

Хочу немного упомянуть про смертельный уровень звука для человека. Он берет свое начало от 180 дБ и выше.

Стоит сразу сказать, что по нормативным нормам, безопасным уровнем громкости шума считается не более 55 дБ (децибел) днем и 40 дБ ночью. Даже при длительном воздействии на слух, этот уровень не нанесет вреда.

Уровни громкости звука
(дБ) Определение Источник
0 Совсем не лышно
5 Почти не слышно
10 Почти не слышно Тихий шелест листьев
15 Еле слышно Шелест листвы
20 — 25 Едва слышно Шепот человека на расстоянии 1 метр
30 Тихо Тиканье настенных часов (допустимый максимум по нормам для жилых помещений ночью с 23 до 7 часов )
35 Довольно слышно Приглушенный разговор
40 Довольно слышно Обычная речь (норма для жилых помещений днем с 7 до 23 часов )
45 Довольно слышно Разговор
50 Отчетливо слышно Пишущая машинка
55 Отчетливо слышно Разговор (европейская норма для офисных помещений класса А )
60 (норма для контор )
65 Громкий разговор (1м)
70 Громкие разговоры (1м)
75 Крик и смех (1м)
80 Очень шумно Крик, мотоцикл с глушителем
85 Очень шумно Громкий крик, мотоцикл с глушителем
90 Очень шумно Громкие крики, грузовой железнодорожный вагон (7м)
95 Очень шумно Вагон метро (в 7 метрах снаружи или внутри вагона)
100 Крайне шумно Оркестр, гром (по европейским нормам, это максимально допустимое звуковое давление для наушников )
105 Крайне шумно В старых самолетах
110 Крайне шумно Вертолет
115 Крайне шумно Пескоструйный аппарат (1м)
120-125 Почти невыносимо Отбойный молоток
130 Болевой порог Самолет на старте
135 — 140 Контузия Взлетающий реактивный самолет
145 Контузия Старт ракеты
150 — 155 Контузия, травмы
160 Шок, травма Ударная волна от сверхзвукового самолета
165+ Разрыв барабанных перепонок и легких
180+ Смерть

Скорость звука в км в час и метры в секунду

Скорость звука — это скорость распространения волн в среде. Ниже даю таблицу скоростей распространения в различных средах.

Скорость звука в воздухе намного меньше чем в твердых средах. А скорость звука в воде намного выше, чем в воздухе. Составляет она 1430 м/с. В итоге, распространение идет быстрее и слышимость намного дальше.

Мощность звука — это энергия, которая передается звуковой волной через рассматриваемую поверхность за единицу времени. Измеряется в (Вт). Бывает мгновенное значение и среднее (за период времени).

Давайте продолжим работать с определениями из раздела теория музыки!

Высота и нота

Высота — это музыкальный термин, который обозначает почти тоже самое, что и частота. Исключение составляет то, что она не имеет единицы измерения. Вместо того чтобы определять звук количеством циклов в секунду в диапазоне 20 — 20 000 Гц, мы обозначаем определенные значения частот латинскими буквами.

Музыкальные инструменты производят периодические звуковые волны правильной формы, которые мы называем тонами или нотами.

То есть другими словами, — это своего рода моментальный снимок периодической звуковой волны определенной частоты. Высота этой ноты говорит нам о том, насколько нота высока или низка по своему звучанию. При этом более низкие ноты имеют более длинные волны. А высокие, более короткие.

Давайте посмотрим на звуковую волну в 1 кГц. Сейчас я увеличу масштаб, и вы увидите каково расстояние между циклами.

Звуковая волна в 1 кГц

Теперь давайте взглянем на волну в 500 Гц. Тут частота в 2 раза меньше и расстояние между циклами больше.

Звуковая волна в 500 Гц

Теперь возьмем волну в 80 Гц. Тут будет еще шире и высота намного ниже.

Звук в 80 Гц

Мы видим взаимосвязь между высотой звука и формой его волны.

Каждая музыкальная нота основана на одной основополагающей частоте (основном тоне). Но помимо тона в музыке состоит и из дополнительных резонансных частот или обертонов.

Давайте я покажу вам еще один пример!

Ниже волна в 440 Гц. Это стандарт в мире музыке для настройки инструментов. Соответствует он ноте ля.

Чистая звуковая волна в 440 Гц

Мы слышим только основной тон (чистую звуковую волну). Если увеличить масштаб, то увидим, что она периодическая.

А теперь давайте посмотрим на волну той же частоты, но сыгранную на пианино.

Периодический звук пианино

Посмотрите, она тоже периодическая. Но в ней есть небольшие дополнения и нюансы. Все они в совокупности и дают нам понятие о том, как звучит пианино. Но помимо этого, обертона обуславливают и тот факт, что одни ноты будут иметь большее сродство к данной ноте чем другие.

Для примера можно сыграть туже ноту, но на октаву выше. По звучанию будет совсем иначе. Однако она будет родственной предыдущей ноте. То есть это та же нота, только сыгранная на октаву выше.

Такая родственная связь двух нот в разных октавах обусловлена наличием обертонов. Они постоянно присутствуют и определяют насколько близко или отдаленно определенные ноты связаны друг с другом.

Звуком называют механические колебания частиц упругой среды (воздух, вода, металл и т. п.), субъективно воспринимаемые органом слуха. Звуковые ощущения вызываются колебаниями среды, происходящими в диапазоне частот от 16 до 20 000 гц. Звуки с частотами, лежащими ниже этого диапазона, называются инфразвуком, а выше - ультразвуком.

Звуковое давление - переменное давление в среде, обусловленное распространением в ней звуковых волн. Величина звукового давления оценивается силой действия звуковой волны на единицу площади и выражается в ньютонах на квадратный метр (1 н/метр квадартный=10 бар).

Уровень звукового давления - отношение величины звукового давления к нулевому уровню, за который принято звуковое давление н/квадратный метр:

Скорость звука зависит от физических свойств среды, в которой распространяются механические колебания. Так, скорость звука в воздухе равна 344 м/сек при T=20°С, в воде 1 481 м/сек (при T=21,5°С), в дереве 3 320 м/сек и в стали 5 000 м/сек.

Сила звука (или интенсивность) - количество звуковой энергии, проходящей за единицу времени через единицу площади; измеряется в ваттах на квадратный метр (вт/м2).

Следует отметить, что звуковое давление и сила звука связаны между собой квадратичной зависимостью, т. е. при увеличении звукового давления в 2 раза сила звука возрастает в 4 раза.

Уровень силы звука - отношение силы данного звука к нулевому (стандартному) уровню, за который принята сила звука вт/м2, выраженное в децибелах:

Уровни звукового давления и силы звука, выраженные в децибелах, совпадают по величине.

Порог слышимости - наиболее тихий звук, который еще способен слышать человек на частоте 1000 гц, что соответствует звуковому давлению н/м2.

Громкость звука - интенсивность звукового ощущения, вызванная данным звуком у человека с нормальным слухом Громкость зависит от силы звука и его частоты, изменяется пропорционально логарифму силы звука и выражается количеством децибел, на которое данный звук превышает по интенсивности звук, принятый за порог слышимости. Единица измерения громкости - фон.

Порог болевого ощущения - звуковое давление или сила звука, воспринимаемые как болевое ощущение. Порог болевого ощущения мало зависит от частоты и наступает при звуковом давлении порядка 50 н/м2.

Динамический диапазон - диапазон громкостей звука, или разность уровней звукового давления самого громкого и самого тихого звуков, выраженная в децибелах.

Дифракция - отклонение от прямолинейного распространения звуковых волн.

Рефракция - изменение направления распространения звуковых волн, вызванное различиями в скорости на разных участках пути.

Интерференция - сложение волн одинаковой длины, приходящих в данную точку пространства по нескольким различным путям, вследствие чего амплитуда результирующей волны в разных точках оказывается различной, причем максимумы и минимумы этой амплитуды чередуются между собой.

Биения - интерференция двух звуковых колебаний, мало отличающихся по частоте. Амплитуда возникающих при этом колебаний периодически увеличивается или уменьшается во времени с частотой, равной разности интерферирующих колебаний.

Реверберация - остаточное «после-звучание» в закрытых помещениях. Образуется вследствие многократного отражения от поверхностей и одновременного поглощения звуковых волн. Реверберация характеризуется промежутком времени (в секундах), в течение которого сила звука уменьшается на 60 дб.

Тон - синусоидальное звуковое колебание. Высота тона определяется частотой звуковых колебаний и растет с увеличением частоты.

Основной тон - наиболее низкий тон, создаваемый источником звука.

Обертоны - все тоны, кроме основного, создаваемые источником звука. Если частоты обертонов в целое число раз больше частоты основного тона, то их называют гармоническими обертонами (гармониками).

Тембр - «окраска» звука, которая определяется количеством, частотой и интенсивностью обертонов.

Комбинационные тоны - дополнительные тоны, возникающие вследствие нелинейности амплитудной характеристики усилителей и источников звука. Комбинационные тоны появляются при воздействии на систему двух или большего числа колебаний с различными частотами. Частота комбинационных тонов равна сумме и разности частот основных тонов и их гармоник.

Интервал - отношение частот двух сравниваемых звуков. Наименьший различимый интервал между двумя соседними по частоте музыкальными звуками (каждый музыкальный звук имеет строго определенную частоту) называется полутоном, а интервал частот с отношением 2:1 - октавой (музыкальная октава состоит из 12 полутонов); интервал с отношением 10: 1 называют декадой.

]Обычно, децибелами принято измерять громкость звука. Децибел – это десятичный логарифм. Это значит, что увеличение громкости на 10 децибел показывает, что звук стал в два раза громче, чем изначальный. Громкость звука в децибелах обычно описывается формулой 10Log 10 (I/10 -12) , где I - интенсивность звука в ваттах/метр квадратный.

Шаги

Сравнительная таблица уровней шума в децибелах

В приведенной ниже таблице описаны уровни децибел в порядке возрастания, и соответствующие им примеры источников звука. Также предоставлена информация о негативных последствиях для слуха напротив каждого уровня шума.

Уровни децибел для разных источников шума
Децибелы Пример источника Влияние на здоровье
0 Тишина Отсутствуют
10 Дыхание Отсутствуют
20 Шепот Отсутствуют
30 Тихий фоновый шум на природе Отсутствуют
40 Звуки в библиотеке, тихий фоновый шум в городе Отсутствуют
50 Спокойный разговор, обычный фоновый шум для пригорода Отсутствуют
60 Шум офиса или ресторана, громкий разговор Отсутствуют
70 Телевизор, шум шоссе с расстояния 15.2 метров (50 футов) Заметка; некоторым неприятен
80 Шум завода, кухонного комбайна, автомойки с расстояния 6.1 метра (20 футов) Возможны повреждения слуха при длительном воздействии
90 Газонокосилка, мотоцикл с расстояния 7.62 м (25 футов) Высока вероятность повреждения слуха при длительном воздействии
100 Лодочный мотор, отбойный молоток Высока вероятность серьезных повреждений слуха при длительном воздействии
110 Громкий рок-концерт, сталелитейный завод Может быть сразу больно; очень высока вероятность серьезных повреждений слуха при длительном воздействии
120 Цепная пила, гром Обычно наступает моментальная боль
130-150 Взлет истребителя с авианосца Возможна немедленная потеря слуха, или разрыв барабанной перепонки.

Измерение уровня звука с помощью приборов

    Используйте ваш компьютер. Со специальными программами и оборудованием, несложно измерить уровень шума в децибелах прямо на компьютере. Ниже перечислены только некоторые способы, как это можно сделать. Обратите внимание, что использование более качественного записывающего оборудования всегда даст лучший результат; другим словами, микрофона встроенного в ваш ноутбук может быть достаточно для некоторых задач, но высококачественный внешний микрофон даст более точный результат.

  1. Используйте мобильное приложение. Для измерения уровня звука в любом месте, мобильные приложения придутся как нельзя кстати. Микрофон на вашем мобильном устройстве скорее всего не даст такого качества, как внешний микрофон, подключенный к компьютеру, но он может быть на удивление точным. Например, точность считывания на мобильном телефоне вполне может отличаться на 5 децибел от профессионального оборудования. Ниже приведен список программ для считывания уровня звука в децибелах для разных мобильных платформ:

    • Для устройств Apple: Decibel 10th, Decibel Meter Pro, dB Meter, Sound Level Meter
    • Для устройств на Android: Sound Meter, Decibel Meter, Noise Meter, deciBel
    • Для телефонов на Windows: Decibel Meter Free, Cyberx Decibel Meter, Decibel Meter Pro
  2. Используйте профессиональный измеритель децибел. Обычно это недешево, но, возможно, это самый простой способ получить точные измерения уровня звука, который вас интересует. Также такое устройство называют "измеритель уровня звука", это специализированное устройство (можно купить в интернет-магазине или специализированных магазинах), которые использует чувствительный микрофон для измерения уровня шума вокруг и выдает точное значение в децибелах. Так как подобные устройства не пользуются большим спросом, они можно быть достаточно дорогими, зачастую цены на них начинаются с $200 даже за устройства начального класса.

    • Обратите внимание, что измеритель децибел/уровня звука может называть несколько иначе. Например, другое похожее устройство под названием "измеритель шума" делает то же самое, что и измеритель уровня звука.

    Математическое вычисление децибел

    1. Узнайте интенсивность звука в ваттах/метр квадратный. В повседневной жизни, децибелы применяются как простая мера громкости. Однако, все не так просто. В физике децибелы часто рассматривают как удобный способ выражения "интенсивности" звуковой волны. Чем больше амплитуда звуковой волны, тем больше энергии она передает, тем больше частиц воздуха колеблется на ее пути, и тем интенсивнее сам звук. Из-за прямой связи между интенсивностью звуковой волны и громкостью в децибелах, есть возможность найти значение децибел, зная только интенсивность уровня звука (которая обычно измеряется в ваттах/метр квадратный)

      • Заметьте, что для обычных звуков значение интенсивности очень мало. Например, звук с интенсивностью 5 ×10 -5 (или 0.00005) ватт/метр квадратный соответствует приблизительно 80 децибелам, что приблизительно соответствует громкости блендера или кухонного комбайна.
      • Для лучшего понимания отношения между интенсивностью и уровнем децибел, давайте решим одну задачу. Для примера возьмем такую: давайте считать, что мы – звукорежиссеры, и нам нужно опередить уровень фонового шума в студии звукозаписи, чтобы улучшить качество записываемого звука. После установки оборудования, мы зафиксировали фоновый шум интенсивностью 1 × 10 -11 (0.00000000001) ватт/метр квадратный . Далее используя эту информацию мы можем вычислить уровень фонового шума студии в децибелах.
    2. Поделите на 10 -12 . Если вы знаете интенсивность вашего звука, вы можете легко подставить ее в формулу 10Log 10 (I/10 -12) (где "I" – интенсивность в ваттах/метр квадратный) чтобы получить значение в децибелах. Для начала поделите 10 -12 (0.000000000001). 10 -12 отображает интенсивность звука с оценкой 0 на шкале децибел, сравнивая интенсивность вашего звука с этим числом, вы найдете его отношение к начальному значению.

      • В нашем примере мы разделили значение интенсивности 10 -11 на 10 -12 и получили 10 -11 /10 -12 = 10 .
    3. Вычислим Log 10 от этого числа и умножим его на 10. Чтобы закончить решение, вам осталось лишь взять логарифм по основанию 10 от получившегося числа и затем, наконец, умножить его на 10. Это подтверждает, что децибелы – это логарифмическое значение по основанию 10 – другими словами, увеличение уровня шума на 10 децибел говорит об удвоении громкости звука.

      • Наш пример легко решить. Log 10 (10) = 1. 1 ×10 = 10. Поэтому, значение фонового шума в нашей студии равняется 10 децибел . Это достаточно тихо, но все еще улавливаемо нашим высококачественным звукозаписывающим оборудованием, потому нам, вероятно, нужно устранить источник шума для достижения более высокого качества записи.
    4. Понимание логарифмической природы децибел. Как было сказано выше, децибелы – это логарифмические значения с основанием 10. Для любого данного значения децибел, шум на 10 децибел большой – громче изначального в два раза, а шум больший на 20 децибел – в четыре раза и так далее. Это дает возможность обозначить большой промежуток интенсивностей звука, которые могут быть восприняты человеческим ухом. Самый громкий звук, который человек может услышать, не испытывая боли – в миллиард раз более громкий, чем самый тихий звук, который человек может услышать. Используя децибелы, мы избегаем использования огромных чисел для описания обычных звуков - вместо этого нам достаточно трех цифр.

      • Подумайте, что проще использовать: 55 децибел или 3 × 10 -7 ватт/квадратный метр? Оба значения равны, но вместо использования научной формы записи (в виде очень малой доли числа), гораздо удобнее использовать децибелы, которые являются своего рода простым сокращением для легкого повседневного использования.