Решить систему сравнений. Системы сравнений. и единственное решение исходного сравнения есть

Сравнение чисел по модулю

Подготовила проект: Зутикова Ирина

МАОУ «Лицей №6»

Класс: 10«а»

Научный руководитель: Желтова Ольга Николаевна

Тамбов

2016

  • Проблема
  • Цель проекта
  • Гипотеза
  • Задачи проекта и план их достижения
  • Сравнения и их свойства
  • Примеры задач и их решения
  • Используемые сайты и литература

Проблема:

Большинство учеников редко используют сравнение чисел по модулю для решений нестандартных и олимпиадных заданий.

Цель проекта:

Показать, как с помощью сравнения чисел по модулю можно решать нестандартные и олимпиадные задания.

Гипотеза:

Более глубокое изучение темы «Сравнение чисел по модулю» поможет ученикам решать некоторые нестандартные и олимпиадные задания.

Задачи проекта и план их достижения:

1.Подробно изучить тему «Сравнение чисел по модулю».

2.Решить несколько нестандартных и олимпиадных заданий, используя сравнение чисел по модулю.

3.Создать памятку для учеников на тему «Сравнение чисел по модулю».

4.Провести урок по теме «Сравнение чисел по модулю» в 10«а» классе.

5.Дать классу домашнее задание по теме «Сравнение по модулю».

6.Сравнить время выполнения задания до и после изучения темы «Сравнение по модулю».

7.Сделать выводы.

Прежде чем начать подробно изучать тему «Сравнение чисел по модулю», я решила сравнить, как она представлена в различных учебниках.

  • Алгебра и начала математического анализа. Углубленный уровень. 10 класс (Ю.М.Колягин и др.)
  • Математика: алгебра, функции, анализ данных. 7 класс (Л.Г.Петерсон и др.)
  • Алгебра и начала математического анализа. Профильный уровень. 10 класс (Е.П.Нелин и др.)
  • Алгебра и начала математического анализа. Профильный уровень. 10 класс (Г.К.Муравин и др.)

Как я выяснила, в некоторых учебниках эта тема даже не затрагивается, не смотря на углубленный уровень. А наиболее понятно и доступно тема представлена в учебнике Л.Г.Петерсона (Глава: Введение в теорию делимости), поэтому попробуем разобраться в «Сравнении чисел по модулю», опираясь на теорию из этого учебника.

Сравнения и их свойства.

Определение: Если два целых числа a и b имеют одинаковые остатки при делении на некоторое целое число m (m>0), то говорят, что a и b сравнимы по модулю m , и пишут:

Теорема: тогда и только тогда, когда разность aи bделится на m.

Свойства:

  1. Рефлексивность сравнений. Любое число aсравнимо само с собой по модулю m (m>0; a,m-целые числа).
  2. Симметричность сравнений. Если число a сравнимо с числом b по модулю m, то число b сравнимо с числом a по тому же модулю(m>0; a,b,m-целые числа).
  3. Транзитивность сравнений. Если число a сравнимо с числом b по модулю m, а число b сравнимо с числом cпо тому же модулю, то число a сравнимо с числом c по модулю m(m>0; a,b,c,m-целые числа).
  4. Если число a сравнимо с числом b по модулю m, то число a n сравнимо счислом b n по модулю m(m>0; a,b,m-целые числа;n-натуральное число).

Примеры задач и их решения.

1.Найти последнюю цифру числа 3 999 .

Решение:

Т.к. последняя цифра числа - это остаток от деления на 10, то

3 999 =3 3 *3 996 =3 3 *(3 4 ) 249 =7*81 249 7(mod 10)

(Т.к. 34=81 1(mod 10);81 n 1(mod10) (по свойству))

Ответ:7.

2.Доказать,что 2 4n -1 делится на 15 без остатка. (Физтех2012)

Решение:

Т.к. 16 1(mod 15), то

16 n -1 0(mod 15) (по свойству); 16n= (2 4 ) n

2 4n -1 0(mod 15)

3.Доказать, что 12 2n+1 +11 n+2 делится без остатка на 133.

Решение:

12 2n+1 =12*144 n 12*11 n (mod 133) (по свойству)

12 2n+1 +11 n+2 =12*11 n +11 n *121=11 n *(12+121) =11 n *133

Число (11 n *133)без остатка делится на 133. Следовательно,(12 2n+1 +11 n+2 )делится без остатка на 133.

4.Найти остаток от деления на 15 числа 2 2015 .

Решение:

Т.к.16 1(mod 15), то

2 2015 8(mod 15)

Ответ:8.

5.Найти остаток от деления на 17 числа 2 2015 . (Физтех2015)

Решение:

2 2015 =2 3 *2 2012 =8*16 503

Т.к.16 -1(mod 17), то

2 2015 -8(mod 15)

8 9(mod 17)

Ответ:9.

6.Доказать, что число 11 100 -1 делится на 100 без остатка. (Физтех2015)

Решение:

11 100 =121 50

121 50 21 50 (mod 100) (по свойству)

21 50 =441 25

441 25 41 25 (mod 100) (по свойству)

41 25 =41*1681 12

1681 12 (-19) 12 (mod 100) (по свойству)

41*(-19) 12 =41*361 6

361 6 (-39) 6 (mod 100)(по свойству)

41*(-39) 6 =41*1521 3

1521 3 21 3 (mod100) (по свойству)

41*21 3 =41*21*441

441 41(mod 100) (по свойству)

21*41 2 =21*1681

1681 -19(mod 100) (по свойству)

21*(-19)=-399

399 1(mod 100) (по свойству)

Значит 11 100 1(mod 100)

11 100 -1 0(mod 100) (по свойству)

7.Даны три числа: 1771,1935,2222. Найти число, при делении на которое остатки трёх данных чисел будут равны. (ВШЭ2016)

Решение:

Пусть неизвестное нам число будет равно а,тогда

2222 1935(mod a); 1935 1771(mod a); 2222 1771(mod a)

2222-1935 0(moda) (посвойству); 1935-1771 0(moda) (по свойству); 2222-1771 0(moda) (по свойству)

287 0(mod a); 164 0(mod a); 451 0(mod a)

287-164 0(moda) (по свойству); 451-287 0(moda)(по свойству)

123 0(mod a); 164 0(mod a)

164-123 0(mod a) (посвойству)

41

  • Олимпиада ВШЭ2016
  • Рассмотрим систему сравнений

    Где f1(x), f2(x), …. , fs(x)€Z[x].

    Теорема 1. Пусть M = - наименьшее общее кратное чисел m1,m2,…,ms . Если а удовлетворяет системе (2), то и любое число из класса а по модулю М удовлетворяет этой системе.

    Доказательство. Пусть b€ классу а. Так как а ≡ b(mod M), то а ≡b(mod m), i= 1,2,...,s (свойство сравнений 16). Следовательно, b, как и а, удовлетворяет каждому сравнению системы, что и доказывает теорему. Поэтому естественно считать решением системы (2) класс по модулю М.

    Определение. Решением системы сравнений (2) называется класс чисел по модулю М = , удовлетворяющих каждому сравнению системы.

    12. Сразу заметим, что нечётные числа не удовлетворяют второму сравнению. Взяв чётные числа из полной системы вычетов по модулю 12, непосредственной проверкой убеждаемся, что 2-му сравнению удовлетворяют числа 2, -2, 6, а система имеет два решения: х ≡ 2(mod l2), х ≡ -2(mod 12).

    Рассмотрим систему сравнений 1-ой степени (3)

    Теорема2. Пусть d=(m1,m2), М = .

    Если с1 - с2 не делится на d, то система (3) не имеет решений.

    Если (c1 -c2):d, то система (3) имеет одно решение - класс по модулю М.

    Доказательство. Из 1-го сравнения x = c1+m1t, t€Z. Подставляем во 2-е сравнение: с1+ m1t ≡ c2(mod m2) или

    m1t ≡ c2-cl (mod m2). Это сравнение имеет решение только если (с2 – с1): d.

    И решение представляет собой класс по модулю (теорема 4 из §2).

    Пусть решение , то есть , где k€Z.

    M== , то есть x≡c1+m1t0(mod M) - решение

    Примеры.

    1. :2, система имеет одно решение класс по модулю 24. Из 1-го сравнения х =2+6t. Подставив вместо х во 2-е сравнение, имеем: 2 + 6t≡ 4(tnod 8); 6t≡ 2(mod 8); -2t≡2(mod8); t≡-1(mod 4); t=-1+4k; x=2+6(-1+4k); x=-4+24k, то есть x≡-4(mod 24).

    2. 7-3 не делится на 3, система не имеет решений.

    Следствие 1. Система сравнений (4)

    Либо не имеет решений, либо имеет одно решение – класс по модулю M=.

    Доказательство. Если система первых двух сравнений не имеет решений, то и (4) ие имеет решений. Если она имеет решение х ≡ a(mod), то, добавив к этому сравнению третье сравнение системы, получим снова систему вида (3), которая либо имеет одно решение, либо не имеет решений. Если имеет решение, то будем так продолжить, пока не исчерпаем все сравнения системы (4). Если решение есть, то это класс по модулю М.

    Замечание. Здесь использовано свойство НОК: =.

    Следствие 2 . Если m1,m2,…,ms попарно взаимно простые, то система (4) имеет одно решение - класс по модулю M=m1m2…ms.

    Пример:

    Так как модули попарно взаимно простые, система имеет одно решение - класс по модулю 105 = 5*3*7. Из первого сравнения

    Подставляем во второе сравнение: 2 +5t≡ 0(mod 3) или 2t≡-2(mod3), t=-1+3k, x=2+5(-1+3k), x=-3+15k. Подставим в третье сравнение:

    3+15k≡5(mod7), 15k≡8(mod 7), k=1+7l. тогда x=-3+15(1+7l); x=12+105l; x≡12(mod 105).

    Познакомимся с другим способом решения этой системы, (Используем то, что система имеет одно решение.) Умножим обе части и модуль первого сравнения на 21, второго-на 35б третьего – на 15: из суммы первого и третьего вычтем второе:

    (36 -35)х ≡ 75 + 42(modl05); x≡117(mod105); x≡12(mod105).

    Рассмотрим теперь систему сравнений первой степени общего вида

    Если некоторое сравнение этой системы не имеет решений, то и система не имеет решений. Если же каждое сравнение системы (5) разрешимо, то решим его относительно х и получим равносильную систему вида (4):

    Где (теорема 4, §2).

    По следствию 1 система либо не имеет решений, либо имеет одно решение.

    Пример:

    Решив каждое сравнение системы, получим равносильную систему

    Эта система имеет одно решение - класс по модулю 105. Умножив первое сравнение и модуль на 3, а второе на 35, получим

    Вычитая из второго сравнения первое, умноженное на 11, получаем 2х ≡-62(modl05), откуда х ≡ -31(modl05).

    Задачи, сводящиеся к рассмотрению системы сравнений 1-ой степени, рассматривались в арифметике китайского математика Сун Тзу, жившего примерно в начале нашей эры. У него вопрос ставился в следующей форме- найти число, дающее заданные остатки при делении на заданные числа. Он даёт и способ решения, эквивалентный следующей теореме.

    Теорема (китайская теорема об остатках). Пусть m1,m2,…,ms- попарно взаимно простые числа, М = mlm2...ms, β1, β2,…, βs подобраны так, что

    Тогда решение системы

    Будет иметь вид x≡x0(mod M).

    Доказательство. Поскольку получим x0≡

    Аналогичным образом проверяем, что x0≡c2(mod m2),…, x0≡cs(mod ms), то есть x0 удовлетворяет всем

    сравнениям системы.

    10. Сравнения 1-й степени. Неопределённые уравнения

    § 2. Сравнения 1-й степени. Неопределённые уравнения

    Сравнение 1-ой степени может быть приведено к виду ax≡b(mod m).

    Теорема 4. Если (a,m) = 1, то сравнение ах ≡b(mod m) (2) имеет единственное решение.

    Доказательство. Возьмём 0,1,2,...,m-1 - полную систему вычетов по модулю m. Так как (а,m) = 1, то 0,а,2а,...,(m-1)а - тоже полная система вычетов (теорема 3, §2, гл 2.). В ней найдётся одно и только одно число, сравнимое с b по модулю m (принадлежащее тому же классу, что и b). Пусть это ах 0 , то есть ax 0 € классу b или ax 0 ≡b(mod m). x ≡x 0 (mod m) - единственное решение (2). Теорема доказана.

    Теорема 5. Если (а, m)= 1, то решением сравнения ах≡b(mod m) является класс х 0 ≡a φ (m)-1 b(mod m).

    Доказательство. Так как (a,m) = 1, то по т. Эйлерa а φ(m) ≡1(mod m). Легко видно, что x 0 ≡a φ (m)-1 b (mod m)- решение сравнения (2). Действительно,a(a φ (m)-1 b)≡a φ (m) b≡b(mod m). Из теоремы 4 следует, что это решение единственное.

    Рассмотрим методы решений сравнения ах ≡b(mod m).

    1. Метод подбора. Взяв полную систему вычетов по модулю m, выбираем числа, удовлетворяющие сравнению.

    2. Использование теоремы Эйлера (теорема 5).

    3. Метод преобразования коэффициентов. Надо попытаться преобразовать коэффициенты так, чтобы правую часть можно было бы разделить на коэффициент при х. Преобразования, о которых идёт речь, следующие: замена коэффициентов абсолютно наименьшими вычетами, замена числа b сравнимым по модулю числом (прибавлением числа, кратного модулю) с тем, чтобы последнее делилось на а, переход от а и b к другим, сравнимым с ними числам, у которых оказался бы общий делитель и т.п. При этом пользуемся свойствами сравнений и основанными на них теоремами о равносильных сравнениях.

    1) 223x ≡ 115(mod ll).

    Сначала заменим коэффициенты наименьшими по абсолютной величине вычетами: Зх ≡ 5(mod 11). Если воспользоваться теоремой

    Эйлера, то

    х≡3 φ(11)-1 *5=3 9 *5≡(3 3) 3 *5≡(27) 3 *5≡5 3 *5≡125*5≡4*5≡9(modll).

    Однако проще преобразовать коэффициенты. Заменим сравнение равносильным, прибавив к правой части число, кратное модулю:

    3x ≡ 5 + 22(mod 11). Разделив обе части на число 3, взаимно простое с модулем, получим х ≡ 9(mod l1).

    2) 111x≡ 8(mod 34).

    Используем метод преобразования коэффициентов.

    (111-3*34)x≡8(mod 34), 9x≡8+34≡42(mod 34), 3x≡14(mod 34), 3x≡14+34≡48(mod 34), x≡16(mod 34).

    Теорема 6. Если (a, m) = d и b не делится на d, то сравнение (1) не имеет решений.

    Доказательство (от противного). Пусть класс x 0 - решение, то есть ax 0 ≡b (mod m) или (ax 0 -b):m, а, следовательно, (ax 0 -b):d. Но a:d, тогда иb:d - противоречие. Следовательно, сравнение не имеет решений.

    Теорема 7. Если (a,m)= d, d>1, b:d, то сравнение(1) имеет d

    решений, которые составляют один класс вычетов по модулю и находится по формулам

    Где с удовлетворяет вспомогательному сравнению

    Замечание. Согласно теореме сравнение (1) решается следующим образом.

    1) Убедившись, что (a,m) = d, d> 1 и b:d, делим обе части в сравнения (2) на d и получаем вспомогательное сравнение a 1 x≡b 1 (mod m 1) , где . Сравнение имеет единственное решение. Пусть класс с – это решение.

    2) Записываем ответ x 0 ≡c(mod m), x 1 ≡c+m 1 (mod m), x 2 ≡c+2m 1 (mod m), … , x d -1 ≡c+(d-1)m 1 (mod m).

    Доказательство. Вспомогательное сравнение по теореме 2(3) равносильно исходному сравнению (2). Так как ( 1, То вспомогательное сравнение имеет единственное решение – класс по модулю m 1 = . Пусть x≡c(mod m 1) – это решение. Класс чисел с по модулю m 1 распадается на d классов по модулю m: .

    Действительно, любое число из класса х0 по модулю m 1 имеет вид x 0 +m 1 t. Разделим t с остатком на d: t = dq +r, где 0≤r

    Итак, сравнение (1) имеет d решений по модулю m: х0 , x0+m1,..., х0 +(d-1)m1.(сверху черточки горизонтальные)

    Примеры.

    1) 20x≡ 15(mod 108). Так как (20,108) = 4 и 15 не делится на 4, то решений нет.

    2) 20x≡ 44(mod 108). (20,108) = 4 и 44:4, следовательно, сравнение имеет четыре решения. Разделив обе части и модуль на 4,получим:

    5х≡11(mod 27); 5 x≡11-81 ≡ -70(mod27), х ≡ -14 ≡ 13(mod 27). Тогда х≡13 + 27r(mod 108), где г= 0,1,2,3. I jj

    Ответ: x≡13(modl08); х ≡ 40(modl08); х ≡ 67(modl08); x≡94(modl08).

    Применение теории сравнений к решению неопределённых уравнении

    Рассмотрим неопределённое или, как его иначе называют, Диофантово уравнение первой степени с двумя неизвестными ах + by = с, где a,b,c€Z. Требуется решить это уравнение в целых числах. Если (a,b)=d и с не делится на d, то очевидно, чТО сравнение не имеет решений в целых числах. Если же с делится на d, ТО поделим обе части уравнения на d. Поэтому достаточно рассмотреть случай, когда (а, b) =1.

    Так как ах отличается от с на число, кратное b, то ах ≡ c(mod b) (без ограничения общности можно считать, что b > 0). Решая это сравнение, получим х ≡x1 (mod b) или x=x1+bt, где t€Z. Для определения Соответствующих значений у имеем уравнение а(х1 + bt) + by = с, откуда

    Причём -целое число, оно является частным значением неизвестного y, соответствующим x1(получается, как и x1, при t=0). А общее решение уравнения примет вид систему уравнений x=x1+bt, y=y1-at, где t- любое целое число.

    Заметим , что 1) уравнение ах + by = с можно было решать, начав со сравнения by ≡ c(mod а), так как by отличается от с на число, кратное а;

    2)в качестве модуля удобнее выбирать наименьший из модулей а и b.

    Пример , 50x – 42y= 34.

    Разделим обе части уравнения на 2.

    25х ≡ 17(mod2l); 4х ≡ 17 (mod 21) или 4х ≡ 17-21 ≡ -4(mod21).

    х ≡ -1 (mod 21), то есть x=-1+21t, t€Z. Подставим найденное х в уравнение. 25(-1 + 21t)- 21y= 17; 21у =-42 + 25* 21t и у =-2 + 25t.

    Определение 1. Если два числа 1) a и b при делении на p дают один и тот же остаток r , то такие числа называются равноостаточными или сравнимыми по модулю p .

    Утверждение 1. Пусть p какое нибудь положительное число. Тогда всякое число a всегда и притом единственным способом может быть представлено в виде

    Но эти числа можно получить задав r равным 0, 1, 2,..., p −1. Следовательно sp+r=a получит всевозможные целые значения.

    Покажем, что это представление единственно. Предположим, что p можно представить двумя способами a=sp+r и a=s 1 p +r 1 . Тогда

    (2)

    Так как r 1 принимает один из чисел 0,1, ..., p −1, то абсолютное значение r 1 −r меньше p . Но из (2) следует, что r 1 −r кратно p . Следовательно r 1 =r и s 1 =s .

    Число r называется вычетом числа a по модулю p (другими словами, число r называется остатком от деления числа a на p ).

    Утверждение 2. Если два числа a и b сравнимы по модулю p , то a−b делится на p .

    Действительно. Если два числа a и b сравнимы по модулю p , то они при делении на p имеют один и тот же остаток p . Тогда

    делится на p , т.к. правая часть уравнения (3) делится на p .

    Утверждение 3. Если разность двух чисел делится на p , то эти числа сравнимы по модулю p .

    Доказательство. Обозначим через r и r 1 остатки от деления a и b на p . Тогда

    Примеры 25≡39 (mod 7), −18≡14 (mod 4).

    Из первого примера следует, что 25 при делении на 7 дает тот же остаток, что и 39. Действительно 25=3·7+4 (остаток 4). 39=3·7+4 (остаток 4). При рассмотрении второго примера нужно учитывать, что остаток должен быть неотрицательным числом, меньшим, чем модуль (т.е. 4). Тогда можно записать: −18=−5·4+2 (остаток 2), 14=3·4+2 (остаток 2). Следовательно −18 при делении на 4 дает остаток 2, и 14 при делении на 4 дает остаток 2.

    Свойства сравнений по модулю

    Свойство 1. Для любого a и p всегда

    не всегда следует сравнение

    где λ это наибольший общий делитель чисел m и p .

    Доказательство. Пусть λ наибольший общий делитель чисел m и p . Тогда

    Так как m(a−b) делится на k , то

    Следовательно

    и m является один из делителей числа p , то

    где h=pqs.

    Заметим, что можно допустить сравнения по отрицательным модулям, т.е. сравнение a≡b mod (p ) означает и в этом случае, что разность a−b делится на p . Все свойства сравнений остаются в силе и для отрицательных модулей.

    На n они дают одинаковые остатки.

    Эквивалентные формулировки: a и b сравнимы по модулю n , если их разность a - b делится на n , или если a может быть представлено в виде a = b + k n , где k - некоторое целое число. Например: 32 и −10 сравнимы по модулю 7, так как

    Утверждение « a и b сравнимы по модулю n » записывается в виде:

    Свойства равенства по модулю

    Отношение сравнения по модулю обладает свойствами

    Любые два целых числа a и b сравнимы по модулю 1.

    Для того, чтобы числа a и b были сравнимы по модулю n , необходимо и достаточно, чтобы их разность делилась на n .

    Если числа и попарно сравнимы по модулю n , то их суммы и , а также произведения и тоже сравнимы по модулю n .

    Если числа a и b сравнимы по модулю n , то их степени a k и b k тоже сравнимы по модулю n при любом натуральном k .

    Если числа a и b сравнимы по модулю n , и n делится на m , то a и b сравнимы по модулю m .

    Для того, чтобы числа a и b были сравнимы по модулю n , представленному в виде его канонического разложения на простые сомножители p i

    необходимо и достаточно, чтобы

    Отношение сравнения является отношением эквивалентности и обладает многими свойствами обычных равенств. Например, их можно складывать и перемножать: если

    Сравнения, однако, нельзя, вообще говоря, делить друг на друга или на другие числа. Пример: , однако, сократив на 2, мы получаем ошибочное сравнение: . Правила сокращения для сравнений следующие.

    Нельзя также выполнять операции со сравнениями, если их модули не совпадают.

    Другие свойства:

    Связанные определения

    Классы вычетов

    Множество всех чисел, сравнимых с a по модулю n называется классом вычетов a по модулю n , и обычно обозначается [a ] n или . Таким образом, сравнение равносильно равенству классов вычетов [a ] n = [b ] n .

    Поскольку сравнение по модулю n является отношением эквивалентности на множестве целых чисел , то классы вычетов по модулю n представляют собой классы эквивалентности; их количество равно n . Множество всех классов вычетов по модулю n обозначается или .

    Операции сложения и умножения на индуцируют соответствующие операции на множестве :

    [a ] n + [b ] n = [a + b ] n

    Относительно этих операций множество является конечным кольцом , а если n простое - конечным полем .

    Системы вычетов

    Система вычетов позволяет осуществлять арифметические операции над конечным набором чисел, не выходя за его пределы. Полная система вычетов по модулю n ― любой набор из n несравнимых между собой по модулю n целых чисел. Обычно в качестве полной системы вычетов по модулю n берутся наименьшие неотрицательные вычеты

    0,1,...,n − 1

    или абсолютно наименьшие вычеты, состоящие из чисел

    ,

    в случае нечётного n и чисел

    в случае чётного n .

    Решение сравнений

    Сравнения первой степени

    В теории чисел , криптографии и других областях науки часто возникает задача отыскания решений сравнения первой степени вида:

    Решение такого сравнения начинается с вычисления НОД (a, m)=d . При этом возможны 2 случая:

    • Если b не кратно d , то у сравнения нет решений.
    • Если b кратно d , то у сравнения существует единственное решение по модулю m / d , или, что то же самое, d решений по модулю m . В этом случае в результате сокращения исходного сравнения на d получается сравнение:

    где a 1 = a / d , b 1 = b / d и m 1 = m / d являются целыми числами, причем a 1 и m 1 взаимно просты. Поэтому число a 1 можно обратить по модулю m 1 , то есть найти такое число c , что (другими словами, ). Теперь решение находится умножением полученного сравнения на c :

    Практическое вычисление значения c можно осуществить разными способами: с помощью теоремы Эйлера , алгоритма Евклида , теории цепных дробей (см. алгоритм) и др. В частности, теорема Эйлера позволяет записать значение c в виде:

    Пример

    Для сравнения имеем d = 2 , поэтому по модулю 22 сравнение имеет два решения. Заменим 26 на 4, сравнимое с ним по модулю 22, и затем сократим все 3 числа на 2:

    Поскольку 2 взаимно просто с модулем 11, можно сократить левую и правую части на 2. В итоге получаем одно решение по модулю 11: , эквивалентное двум решениям по модулю 22: .

    Сравнения второй степени

    Решение сравнений второй степени сводится к выяснению, является ли данное число квадратичным вычетом (с помощью квадратичного закона взаимности) и последующему вычислению квадратного корня по данному модулю.

    История

    Китайская теорема об остатках , известная уже много столетий, утверждает (на современном математическом языке), что кольцо вычетов по модулю произведения нескольких взаимно простых чисел является

    Сравнение с одним неизвестным x имеет вид

    Где . Еслиa n не делится на m , то и называется степенью сравнения.

    Решением сравнения называется всякое целое число x 0 , для которого

    Если х 0 удовлетворяет сравнению, то, согласно свойству 9 сравнений, этому сравнению будут удовлетворять все целые числа, сравнимые с x 0 по модулю m . Поэтому все решения сравнения, принадлежащие одному классу вычетов по модулю т , будем рассматривать как одно решение. Таким образом, сравнение имеет столько решений, сколько элементов полной системы вычетов ему удовлетворяет.

    Сравнения, множества решений которых совпадают, называются равносильными.

    2.2.1 Сравнения первой степени

    Сравнение первой степени с одним неизвестным х имеет вид

    (2.2)

    Теорема2.4. Для того чтобы сравнение имело хотя бы одно решение, необходимо и достаточно, чтобы число b делилось на НОД(a , m ).

    Доказательство. Сначала докажем необходимость. Пусть d = НОД(a , m ) и х 0 - решение сравнения. Тогда, то есть разностьах 0 b делится на т. Значит, существует такое целое число q , что ах 0 b = qm . Отсюда b = ах 0 qm . А поскольку d , как общий делитель, делит числа а и т, то уменьшаемое и вычитаемое делятся на d , а значит и b делится на d .

    Теперь докажем достаточность. Пусть d - наибольший общий делитель чисел а и т, и b делится на d . Тогда по определению делимости существуют такие целые числа a 1 , b 1 1 , что.

    Расширенным алгоритмом Евклида найдем линейное представление числа 1 = НОД(a 1 , m 1 ):

    для некоторых x 0 , y 0 . Домножим обе части последнего равенства на b 1 d :

    или, что то же самое,

    ,

    то есть , и- решение сравнения. □

    Пример2.10. Сравнение 9х = 6 (mod 12) имеет решение, так как НОД(9, 12) = 3 и 6 делится на 3. □

    Пример2.11. Сравнение = 9 (mod 12) не имеет решений, так как НОД(6, 12) = 6, а 9 не делится на 6. □

    Теорема 2.5. Пусть сравнение (2.2) разрешимо и d = НОД(a , m ). Тогда множество решений сравнения (2.2) состоит из d классов вычетов по модулю т, а именно, если х 0 - одно из решений, то все другие решения - это

    Доказательство. Пусть х 0 - решение сравнения (2.2), то есть и, . Значит, существует такое q , что ах 0 b = qm . Подставляя теперь в последнее равенство вместо х 0 произвольное решение вида, где, получаем выражение

    , делящееся на m . □

    Пример 2.12. Сравнение 9х =6 (mod 12) имеет ровно три решения, так как НОД(9, 12)=3. Эти решения: х 0 = 2, х 0 + 4 = 6, х 0 + 2∙4=10.□

    Пример2.13. Сравнение 11х =2 (mod 15) имеет единственное решение х 0 = 7,таккакНОД(11,15)=1.□

    Покажем, как решать сравнение первой степени. Не умаляя общности, будем считать, что НОД(a , т) = 1. Тогда решение сравнения (2.2) можно искать, например, по алгоритму Евклида. Действительно, используя расширенный алгоритм Евклида, представим число 1 в виде линейной комбинации чисел a и т :

    Умножим обе части этого равенства на b , получим: b = abq + mrb , откуда abq - b = - mrb , то есть a ∙ (bq ) = b (mod m ) и bq - решение срав­нения (2.2).

    Еще один путь решения - использовать теорему Эйлера. Опять считаем, что НОД(а, т) = 1. Применяем теорему Эйлера: . Умножим обе части сравнения наb : . Переписывая последнее выражение в виде , получаем, что- решение сравнения (2.2).

    Пусть теперь НОД(a , m ) = d >1. Тогда a = a t d , m = m t d , где НОД(а 1 , m 1) = 1. Кроме того, необходимо b = b 1 d , для того чтобы сравнение было разрешимо. Если х 0 - решение сравнения а 1 x = b 1 (mod m 1), причем единственное, поскольку НОД(а 1 , m 1) = 1, то х 0 будет решением и сравнения а 1 xd = db 1 (mod m 1), то есть исходного сравнения (2.2). Остальные d - 1 решений находим по теореме 2.5.