Репродукция днк содержащих вирусов. Основные стадии репродукции вируса в клетке хозяина. Особенности репродукции ЖК-вирусов. Этапы развития инфекционного процесса


Вирусы не способны к самостоятельному размножению. Необходимы условия для появления дочерних клеток- их обеспечивают биосинтетические процессы клетки- хозяина. Дизъюнктивный (разобщенный) тип репродукции.

Виды взаимодействия : 1)продуктивное- заканчивается гибелью клетки, после полной сборки дочерней популяций. 2)интегративное- нуклеиновая кислота вируса встраивается в клетку и функционирует как его составная часть. 3)абортивное- дочерни популяции не появляются, вирус взаимодействует с покоящейся клеткой. 4)интерференция вирусов- клетку инфицируют 2 вируса.

Стадии : 1)адсорбция на клетке 2)проникновение 3)раздевание- модификация нуклеопротеида.4)теневая фаза- синтез компонентов дочерних клеток.5)сборка дочерних популяций. 6) высвобождение дочерних вирионов (первый тип - взрывной или цитолиз- характеризуется выходом большого количества вирусов.. При этом клетка быстро погибает. Второй тип - почкование. Клетка остаётся не нарушенной идёт отпочкование от мембраны не нарушая мембрану клетки).

Репродукция -РНК-вирусов - У него РНК фрагментарная. Поступает в кл. слиянием мембран. Выход РНК- , кот. ничего не умеет делать. Образуется РНК+ , кот. идет в рибосомы, образуются структурные и не структурные белки это 1-е направление. 2-е направление: с помощью клеточной полимеразы где учавствует клеточная РНК-полимераза из + будут строится “-“ нити. Сборка. Отпочкование. Возможны мутации: где образуются с “-“ на + и идет из хромосом образуются ДНК полимеразы.

Репродукция +РНК-вирусов - выполняет функцию информационной, матричной, транспортной. Сначало адсорбция, виролексис (то же самое что ДНК), депротонизация высвобождается РНК+ , которые идут к рибосомам и образуется длинные полипептидные нити. Протеазы делают их короткими. А другое направление: на матрице + образуются “ – “ (минус) это репликативная форма становится двунитчатой + и “– “ и с “ –“ идет репликация на + ниточек. Короткие нити идут в рибосомы образуется РНК-полимераза идет синтез белковых структур. Идет сборка. Уходят через мембрану, испорченную М-белками. Ретровирусы (ВИЧ, онкогенные вир.) имеют фермент обратную транскриптазу. Она + . Обладают способностью встраиватся в хромосому клетки хозяина. РНК превращается в ДНК. Вирус попал в клетку путем слияния мембран, освобождается РНК+ (обратная транскриптаза), каторая на матрице РНК строит ДНК (минусовую). Клетка достраивает ДНК нормальную, которая направляется в ядро и клеточные ферменты разрезают и встраивают вирусную ДНК в хромосом клетки. Клеточные ферменты образуют РНК+ , матричную вир. РНК и в рибосомах идёт синтез белковых структур (М, структурные и не структурные белков, шипы). Выход почкованием и захват кл. мембраны (фрагменты).

Репродукция ДНК-вирусов. Проникает путем виропексиса. Ранняя стадия - вирусная ДНК проникает в кл, тренскрибируерся РНК-полимеразой. Считывается => транслируется часть вирусного генома => синтезируется «ранние белки». Поздняя стадия - синтез нуклеиновых кислот вируса. Вирусная ДНК упаковывается в вирионы дочерней популяции. Часть ДНК на синтез «поздних белков».

Репродукция вирусов (от англ, reproduce . воспроизводить) осуществляется в несколько стадий, последовательно сменяющих друг друга:

· адсорбция вируса на клетке;

· проникновение вируса в клетку;

· «раздевание» вируса;

· биосинтез вирусных компонентов в клетке;

· формирование вирусов;

· выход вирусов из клетки

Адсорбция.

Взаимодействие вируса с клеткой начинается с процесса адсорбции, т. е.

прикрепления вирусов к поверхности клетки. Это высокоспецифический процесс. Вирус адсорбируется на определенных участках клеточной мембраны, так называемых, рецепторах.

Клеточные рецепторы могут иметь разную химическую природу, представляя собой белки, углеводные компоненты белков и липидов, липиды. Число специфических рецепторов на поверхности одной клетки колеблется от 104 до 105. Следовательно, на клетке могут адсорбироваться десятки и даже сотни вирусных частиц.

Поверхностные структуры вируса, «узнающие» специфические клеточные рецепторы и взаимодействующие с ними, называются прикрепительными белками. Обычно эту функцию выполняет один из поверхностных белков капсида или суперкапсида. Способность вирусов избирательно поражать определенные клетки органов и тканей организма называют тропизмом вирусов (от греч. tropos . направление).

Проникновение в клетку .

Существует два способа проникновения вирусов животных в клетку: виропексис и слияние вирусной оболочки с клеточной мембраной. При виропексисе после адсорбции вирусов происходят инвагинация (впячивание) участка клеточной мембраны и образование внутриклеточной вакуоли, которая содержит вирусную частицу. Вакуоль с вирусом может транспортироваться в любом направлении в разные участки цитоплазмы или ядро клетки. Процесс слияния осуществляется одним из поверхностных вирусных белков капсидной или суперкапсидной оболочки. По-видимому, оба механизма проникновения вируса в клетку не исключают, а дополняют друг друга.

«Раздевание» вируса

Процесс «раздевания» заключается в удалении защитных вирусных оболочек и

освобождении внутреннего компонента вируса, способного вызвать инфекционный процесс. «Раздевание» вирусов происходит постепенно, в несколько этапов, в определенных участках цитоплазмы или ядра клетки, для чего клетка использует набор специальных ферментов. В случае проникновения вируса путем слияния вирусной оболочки с клеточной мембраной процесс проникновения вируса в клетку сочетается с первым этапом его «раздевания». Конечными продуктами «раздевания» являются сердцевина, нуклеокапсид или нуклеиновая кислота вируса.



Биосинтез компонентов вируса .

Проникшая в клетку вирусная нуклеиновая кислота несет генетическую информацию, которая успешно конкурирует с генетической информацией клетки. Она дезорганизует работу клеточных систем, подавляет собственный метаболизм клетки и заставляет ее синтезировать новые вирусные белки и нуклеиновые кислоты, идущие на построение вирусного потомства. Реализация генетической информации вируса осуществляется в соответствии с хорошо известными из биологии процессами транскрипции (от лат.transcriptio . переписывание, т.е. синтез информационных РНК, комплементарных матричным ДНК или РНК), трансляции (от лат. translatio . передача, т. е. синтез белков на рибосомах клетки с участием иРНК) и репликации (от лат. replicatio . повторение, т. е. синтез молекул нуклеиновой кислоты, гомологичных геному). Поскольку генетический аппарат вирусов остаточно разнообразен, то передача наследственной информации в отношении синтеза иРНК различна. Основные схемы реализации вирусной генетической информации могут быть представлены следующим образом:

Для синтеза иРНК одни вирусы используют клеточные ферменты, другие - собственный набор ферментов (полимераз).

Вирусная нуклеиновая кислота кодирует синтез двух классов белков: неструктурных белков-ферментов, которые обслуживают процесс репродукции вирусов на разных его этапах, и структурных белков, которые войдут в состав вирусных частиц потомства. Синтез компонентов вируса (белков и нуклеиновых кислот) разобщен во времени и пространстве, т. е. протекает в разных структурах ядра и цитоплазмы клетки. Вот почему этот уникальный способ размножения вирусов называется дисъюнктивным (от лат. disjunctus - разобщенный).



Формирование (сборка) вирусов .

Синтезированные вирусные нуклеиновые кислоты и белки обладают способностью специфически узнавать друг друга и при достаточной их концентрации самопроизвольно соединяются в результате гидрофобных, ионных и водородных связей.

Существуют следующие общие принципы сборки вирусов, имеющих разную структуру:

· формирование вирусов является многоступенчатым процессом і с образованием промежуточных форм;

· сборка просто устроенных вирусов заключается во взаимодействии молекул вирусных нуклеиновых кислот с капсидными белками и образовании нуклеокапсидов (например, вирусы полиомиелита). У сложно устроенных вирусов сначала формируются нуклеокапсиды, с которыми взаимодействуют белки суперкапсидных оболочек (например, вирусы гриппа);

· формирование вирусов происходит не во внутриклеточной жидкости, а на ядерных или цитоплазматических мембранах клетки;

· сложно организованные вирусы в процессе формирования включают в свой состав компоненты клетки-хозяина (липиды, углеводы).

Выход вирусов из клетки.

Различают два основных типа выхода вирусного потомства из клетки. Первый тип. взрывной. характеризуется одновременным выходом большого

количества вирусов. При этом клетка быстро погибает. Такой способ выхода характерен для вирусов, не имеющих суперкапсидной оболочки. Второй тип - почкование. Он присущ вирусам, имеющим суперкапсидную оболочку. На заключительном этапе сборки нуклеокапсиды сложно устроенных вирусов фиксируются на клеточной плазматической мембране, модифицированной вирусными белками, и постепенно выпячивают ее. В результате выпячивания образуется «почка», содержащая нуклеокапсид. Затем «почка» отделяется от клетки. Таким образом, внешняя оболочка этих вирусов формируется в процессе их выхода из клетки. При таком механизме клетка может продолжительное время продуцировать вирус, сохраняя в той или иной мере свои основные функции.

Время, необходимое для осуществления полного цикла репродукции вирусов, варьирует от 5-6 ч (вирусы гриппа, натуральной оспы и др.) до нескольких суток (вирусы кори, аденовирусы и др.).

Образовавшиеся вирусы способны инфицировать новые клетки и проходить в них указанный выше цикл репродукции.

Питательные Среды. Требования, предъявляемые к питательным средам. Типы питательных сред.

Питательные среды должны содержать в достаточном количестве источники углерода, азота, неорганические соли, в ряде случаев - ро­стовые факторы (витамины, аминокислоты), быть влажными, чтобы процесс простой диффузии проходил без затруднения, прозрачными (по возможнос­ти), чтобы визуально или под микроскопом можно было наблюдать рост микробов, стерильными, иметь оптимальные концентрации водородных ионов (рН среды) и окислительно-восстановительный потенциал. Источ­ником азота для микроорганизмов являются белки, но большинство мик­робов неспособны усваивать нативный белок, поэтому используются про­дукты кислотного и ферментного расщепления белка: пептон, казеин.

Исходными компонентами искусственной питательной среды является мясная вода, кислотный и ферментный гидролизат казеина, свернутой крови. К основе добавляют хлорид натрия, пептон

Мясная вода содержит минеральные вещества, углеводы, витамины. Для получения мясной воды нежирное мясо, очищенное от сухожилий, измельчают на мясорубке, заливают двойным объемом воды, кипятят на огне, фильтруют, доливают водопроводной воды до первоначального объема, разливают по бутылкам истерилизуют.

Казеин пищевой кислотный содержит полноценный набор аминокислот, характеризуется высокой питательностью, является отходом молочной промышленности. Из казеина готовят перевар.

Пептон – продукт неполного переваривания белка, содержит альбумозы, пептоны и полипептиды аминокислот в незначительном коли­честве, состав их зависит от глубины расщепления белка. Пептон представляет собой порошок светло-желтого цвета, хорошо растворяется в воде, не свертывается при нагревании. Используется как источник азота и углерода.

При приготовлении сред все компоненты смешивают воде, греют или кипятят для растворения агар-агара, прозрачность придают путем фильтрования через ватно-марлевые или тканевые фильтры или осветляют добавлением куриного белка или свежей сыворотки крови, устанавливают рН среды с помощью индикаторов колориметрическим или электрометрическим способом и стерилизуют.

Классификация питательных сред


Питательные Транспортные Консервирующие


Естественные Искусственные

Синтетические

Простые Специальные Дифференциально- Элективные (Селективные)

диагностические


Плотные Жидкие

Естественные среды представляют собой природные субстраты (молоко, кровь, желчь, сыворотка, картофель). Искусственные содержат смесь природных органических веществ и продуктов их кислотного или ферментативного распада. Синтетические среды состоят из буферной солевой основы и растворов аминокислот, углеводов, пуринов, пиримидинов, нуклеотидов, нуклеозидов, жирных кислот, витаминов в точно установленных дозировках. В качестве источников азота в них используются аминокислоты. Достоинство этих сред в том, что они имеют постоянный состав, по ним можно определить потребности микробов в тех или иных питательных веществах.

Плотные питательные среды готовят из жидких с добавлением уплотнителя. В качестве уплотнителя обычно применяют агар-агар. Агар-агар – продукт, получаемый из морских водорослей, представляет собой желтоватый порошок или пластинки, содержит высокомолекулярные полисахариды, не расщепляется большинством микроорганизмов, не разрушается при автоклавировании, питательную ценность сред не изменяет, не подавляет рост микробов. Для иммунологических и бактериологических полей используется вымороженный, осветленный агар, который при кипячении или автоклавировании смеси порошка с водой расплавляется при температуре 85-100°С, а при охлаждении до 45-48°С образует гель.

Для приготовления, плотных питательных сред агар-агар добавляют в концентрации от 1,5 до 3%.

Простые среды.

Мясо-пептонный бульон (МПБ) является белковой основой всех сред. Существует несколько способов приготовления МПБ:

а) на мясной воде с добавлением готового пептона – это так называемый мясопептонный бульон;

б) на переварах продуктов гидролиза исходного сырья при помощи ферментов (трипсина – бульон Хоттингера, пепсина – бульон Мартена).

Мясо-пептонный агар (МПА) – получают путей добавления к МПБ arap-arapa (l,5-3%). Если МПА распределен по диагонали пробирки или флакона – это скошенный агар. Для его получения пробирки для засты­вания среды оставляют в наклонном положении. Если среда распределе­на в пробирке вертикально высотой 5-7 см, это агар столбиком. МПА, застывший в чашках Петри в виде пластинки – пластинчатый агар. Если среда имеет вертикальный слой высотой 2-3 см, и диагональный слой такой же величины, это полускошенный агар.

Специальные питательные среды – среды, на которых создаются условия для выращивания тех бактерий, которые не растут на простых средах. Кровяной агар или кровяной бульон – получают путем добавле­ния к питательной среде 5-10% подогретой стерильной дефибринированной крови барана, кролика лошади, человека. Среда используется для выделения стрептококков, пневмококков и других бактерий, а также для изучения гемолитической активности. Сывороточный бульон или сывороточный агар получают, путем добавления к простым средам 15-20% лошадиной или бычьей сыворотки. Среда применяется для выделения пневмококков, менингококков. Желчный бульон или желчный агар получают путем добавления к питательной среде медицинской желчи без консерванта, или свежеполученной от крупного рогатого скота. Среда применяется для выделения брюшнотифозных, паратифозных и дизенте­рийных палочек. Специальные среды для культивирования анаэробных бактерий: среда Китта-Тароцци состоит из питательного бульона, глю­козы и кусочков печени или мясного фарша для адсорбции кислорода.

Желатин – животный белок, продукт частичного гидролиза коллагена. Имеет вид бесцветных или светло-желтых пластинок без запаха и вкуса. В холодной воде набухает, сильно поглощая воду. При темпера­туре 30°С растворяется, при охлаждении до 20-22°С превращается в гель (студень). Используется в микробиологии для изучения протеолитических ферментов.

Дифференциально-диагностические среды позволяют различить один вид микроба от другого. Принцип построения дифференциально-диагностических сред основан на разной биохимической активности бактерий. В состав дифференциально-диагностических сред входит основная пи­тательная среда, обеспечивающая размножение бактерий, определенный химический субстрат, различное отношение к которому является диагнос­тическим признаком, индикатор, изменение цвета которого свидетельству­ет о разложении субстрата и образовании кислых продуктов.

Агар Эндо – плотная среда, применяется для выделения и первичной идентификации энтеробактерий. В состав ее входят, кроме питательной основы, лактоза и основной фуксин, обесцвеченный сульфитом и фосфатом натрия. Правильно приготовленная среда бесцветна или имеет слегка розовый оттенок. Колонии бактерий (кишечная палочка), ферментирующие лактозу, окрашиваются на ней в красный цвет; бактерии, не ферментирующие лактозу (сальмонеллы), остаются бесцветными.

Среда Левина (лактозоэозинметиленовый агар) – среда для выделения энтеробактерий. Колонии лактозоферментирующих бактерий окрашены в темно-синий или черный цвет, колонии лактозоотрицательных бактерий вырастают под цвет среды (светло-фиолетового цвета).

Среды Гисса – набор определенных углеводов для изучения ферментативной активности бактерий и их дифференциации по этим признакам.

Элективные питательные среды содержат дополнительные вещества, задерживающие рост грамположительных бактерий. Селективные питательные среды стимулируют рост одних микробов и угнетают рост других. Селективные условия получают путем добавления в сре­ду химических веществ. Так как в этих средах патогенные бактерии размножаются и накапливаются, их называют также средами обогащения.

Среда Плоскирева – плотная питательная среда, содержащая со­ли желчных кислот, бриллиантовый зеленый, лактозу и индикатор. Эта среда является не только селективной, так как подавляет рост многих микробов и способствует лучшему росту возбудителей брюшного тифа, паратифов, дизентерии, но и дифференциально-диагностической, так как лактозоотрицательные бактерии (шигеллы) образуют на ней бесцветные колонии, а лактозоположительные – кирпично-красные.

Селенитовая среда - является лучшей средой обогащена для сальмонелл и дизентерийных микробов Зонне. Селенит натрии, содержащийся в среде, стимулирует рост этих бактерий и подавляет рост сопутствующей флоры.

Среда Мюллера служит для накопления сальмонелл. К питатель­ной среде добавлют мел, раствор Люголя и гипосульфит натрия. При взаимодействии этих веществ образуется тетратионат натрия, который угнетает рост кишечных палочек, но создает благоприятные условия для размножения сальмонелл.

Висмут-сульфит агар (среда Вильсона-Блера) – содержит соли висмута, бриллиантовую зелень. Сальмонеллы растут на этой среде в виде колоний чернота цвета. Другие виды бактерий на этой среде роста не дают.

Желточно-солевой агар (ЖСА) –среда для выделе­ния стафилококков, содержит до 10% хлорида натрия, что подавляет большинство бактерий, содержащихся в материале. Кроме того, эта сре­да является и дифференциально-диагностической, так как присутствие яичного желтка позволяет выявить фермент лецитиназу (лецитовителлазу), который образуют патогенные стафилококки. Лецитиназа расщеп­ляет лецитин на фосфорхолины и нерастворимые в воде жирные кисло­ты, поэтому среда вокруг лецитиназоположительных колоний мутнеет и появляется опалесцирующая зона в виде «радужного венчика».

Теллуритовые среды (сывороточно-теллуритовый агар, кровяно-теллуритовый агар) – селективные среды для выделения дифтерийных бактерий, содержат теллурит калия. Бесцветная соль теллура, содержащаяся в питательной среде, восстанавливается дифтерийными бактерия­ми до металла, окрашивающего колонии в черный цвет.

Щелочной агар элективен для холерных вибрионов, щелочная реакция среды (рН 9,0) не препятствует росту холерных вибрионов, но тормозит рост других микроорганизмов.

Консервирующие среды – среды, содержат добавки, предупреждающие размножение и гибель микробов, что способствует сохранению их жизнеспособности. Консервирующие среды применяются когда нет возможности быстрого посева на питательные среды. Для бактерий наиболее употребительны консерванты:

а) глицериновая смесь, состоящая из 0,5 л химически чистого
глицерина и 1,0 л физиологического раствора.

б) боратная смесь

в) фосфатно-буферная смесь

Для длительного сохранения свежевыделенных и производствен­ных культур применяют полужидкий голодный агар, в этой среде при пониженной жизнедеятельности микробов продукты обмена накапливаются незначительно, что способствует хорошему сохранению культур.

Специальные среды.

В бактериологии широко применяются сухие питательные среды промышленного производства, которые представляют собой гигроскопические порошки, содержащие все компоненты среды, кроме воды. Для их приготовления используются триптические перевары дешевых непищевых продуктов (рыбные отходы, мясокостная мука, технический казеин). Они удобны при транспортировке, могут длительно храниться, избавляют лаборатории от громадного процесса приготовления сред, приближают к разрешению вопроса о стандартизации сред. Медицинская промышлен­ность производит сухие среды Эндо, Левина, Плоскирева, висмутсульфит агар, питательный агар, углеводы с индикатором ВР и другие.

Термостаты

Для культивирования микроорганизмов используют термостаты.

Термостат – это аппарат, в котором поддерживают постоянную температуру. Прибор состоит из нагревателя, камеры, двойных стенок, между которыми циркулирует воздух или вода. Температура регулируется тер­морегулятором. Оптимальная температура для размножения большинства микроорганизмов 37°С.

11. Условия успешной антибиотикотерапии. Отрицательные стороны антибиотикотерапии. Действие антибиотиков на микробы в зависимости от дозы препарата. Методы определения чувствительности микробов к антибиотикам.

Рациональная антибиотикотерапия

Врач всегда должен помнить, что назначать антибиотики следует только при инфекциях бактериальной этиологии. Выбор антибиотиков должен основываться на знании их природной активности в отношении предполагаемых или установленных возбудителей заболевания, а также на локальных и региональных данных о резистентности микроорганизмов. Следует назначать только препараты с доказанной клинической эффективностью при инфекциях данной локализации, обращая при этом внимание на форму выпуска, профиль безопасности, возможность межлекарственных взаимодействий и др.

Обеспечить высокую эффективность лечения может только своевременное начало антибактериальной терапии. Не менее важными являются адекватное дозирование, оптимальная длительность курса антибактериальной терапии и своевременная оценка эффективности стартового антибиотика (через 48-72 ч от начала лечения). Существенную роль играет и оптимальное соотношение стоимость/эффективность. При выборе препарата и проведении антибактериальной терапии обязательно учитываются особенности пациента (возраст, масса тела, физиологические состояния (беременность, период лактации), иммунодефицитные состояния, сопутствующие заболевания, поведенческие стереотипы и др.) и течение заболевания (локализация, клинические проявления, тяжесть и др.).

Отрицательные стороны антибиотикотерапии

  • Дисбактериоз: антибиотики убивают полезную и патогенную микрофлору. Выраженность дисбактериоза зависит от дозы, продолжительности, типа лекарства и возраста человека. Как правило, после основной болезни маленьким детям приходится восстанавливать микрофлору. Как этого избежать? Параллельно с антибиотиками (2–3 раза в день) и 2 недели после лечения пить пробиотики (эубиотики) – бактерии для микрофлоры кишечника. Тогда дисбактериоза не будет либо его проявления уменьшатся.
  • Опасно пить женщинам в первом триместре беременности. Но если имеется болезнь, угрожающая жизни матери и ребенку, врач выбирает наименьшее зло. Не рекомендуется принимать кормящим грудью женщинам.
  • Индивидуальная непереносимость, аллергия или побочные эффекты. Об этом необходимо уведомить врача перед назначением антибиотика или после назначения, если побочные явления появились впервые, и врач сменит лекарство.

Важное условие рациональной антибиотикотерапии - правильный выбор препарата и назначение достаточных доз, способных оказать пагубное действие на
микроорганизм. Назначение препарата в малых дозах может способствовать развитию резистентности микробов.

Определение чувствительности к антибиотикам

А) методом дисков.

На поверхность питательного агара засевают газоном испытуемую культуру (стафилококк, кишечная палочка). Чашки приоткрывают и подсушивают при комнатной температуре 10-15 минут. Затем накладывают диски пинцетом на расстоянии 2 см друг от друга и от краев чашки. Чашки помещают в термостат для инкубации на 18-20 часов, перевернутыми кверху дном, после чего учитывают результат. Чашки помещают кверху дном на темную матовую поверхность, учет проводят в отраженном свете. С помощью линейки и измерителя определяют диаметр зон задержки роста вокруг дисков, включая диаметр дисков. Оценку результатов проводят по таблицам, которые содержат пограничные значения диаметров зон задержки роста для устойчивых, умеренно устойчивых и чувствительных микроорганизмов.

Б) методом серийных разведении.

Этот метод является количественным, так как позволяет определить минимальную ингибирующую концентрацию, т.е. наименьшую концентрацию антибиотика, ингибирующую рост исследуемой культуры. Исследование начинают с приготовления основного раствора, из которого готовят все последующие разведения в бульоне (в объеме 1 мл), после чего к каждому разведению до­бавляют 0,1 мл исследуемой бактериальной суспензии, содержащей 10 6 -10 7 бактериальных клеток в 1 мл. Для контроля ис­пользуют посев культуры на бульон без антибиотика. Посевы инкубируют при 37°С 18-20 часов. В контроле появится рост (пробирка станет мутной). Пробирки с прозрачной питательной средой указывают на задержку роста испытуемой культуры, а последняя пробирка с прозрачной питательной средой содержит наименьшую ингибирующую дозу антибиотика, определяющую сте­пень чувствительности испытуемой культуры к антибиотику.

Репродукция ДНК-содержащих вирусов.

Под воздействием ферментов у ДНК-содержащих вирусов осуществляется синтез и-РНК, и-РНК посылается на рибосомы чувствительной клетки. На рибосомах клетки начинается синтез ранних вирионных белков (наделены свойствами – ферментами, блокируют клеточный метаболизм).

Ранние вирионные белки дают начало образованию ранних вирионных кислот.

По мере накопления ранних вирионных белков они блокируют себя и процесс перестраивается на рибосомном аппарате. Идет сборка вирионов и вновь сформировавшиеся вирионы покидают клетку-мать.

Этапы развития инфекционного процесса. Разгар болезни, стихание болезни и реконвалесценция.

Этапы развития инфекционного процесса

Инфекционный процесс, независимо от характера возбудителя, включает в себя несколько стереотипных этапов развития:

Начальный этап – преодоление естественных барьеров организма хозяина: механического (кожа, слизистые, движение ресничек эпителия, перистальтика кишечника и др.); химического (бактерицидное действие желудочного сока, желчных кислот, лизоцима, антител); экологического (антагонистической активности нормальной микрофлоры).

Проникновение микроорганизма в макроорганизм обозначается как инфективность. Факторами распространения инфекционных возбудителей во внутренней среде организма являются: ферменты (гиалуронидаза, коллагеназа, нейроминидаза); жгутики (у холерного вибриона, кишечной палочки, протея); ундулирующая мембрана (у спирохет и некоторых простейших).

2. Следующий этап в развитии инфекционного процесса связан с адгезией и колонизацией возбудителем открытых полостей организма. Факторы адгезии и колонизации обеспечивают взаимодействие инфекционного патогенного агента со специфическими рецепторами клеток тех органов и тканей, к которым обнаруживается тропизм. Адгезивные молекулы представляют собой вещества белковой и полисахаридной природы, экспрессируемые на поверхности клеток. Вслед за адгезией неизменно возникают размножение и образование большого количества однородных микробов (колоний) в случае недостаточности местных и системных механизмов резистентности и специфических иммунологических механизмов защиты.

Интервал времени от инфицирования организма до появления первых клинических признаков болезни получил название инкубационного периода.

Инкубационный период - Обычно между проникновением инфекционного агента в организм и проявлением клинических признаков существует определённый для каждой болезни промежуток времени - инкубационный период, характерный только для экзогенных инфекций. В этот период возбудитель размножается, происходит накопление как возбудителя, так и выделяемых им токсинов до определённой пороговой величины, за которой организм начинает отвечать клинически выраженными реакциями. Продолжительность инкубационного периода может варьироваться от нескольких часов и суток до нескольких лет.



Продромальный период - Как правило, первоначальные клинические проявления не несут каких-либо патогномоничных для конкретной инфекции признаков. Обычны слабость, головная боль, чувство разбитости. Этот этап инфекционной болезни называется продромальным периодом, или «стадией предвестников». Его продолжительность не превышает 24-48 ч.

Период развития болезни - в течение этой фазы проявляются черты индивидуальности болезни либо общие для многих инфекционных процессов признаки (лихорадка, воспалительные изменения и др.). В клинически выраженной фазе можно выделить стадии нарастания симптомов, расцвета болезни и угасания проявлений.

Реконвалесценция - Период выздоровления, или реконвалесценции, как конечный период инфекционной болезни может быть быстрым (кризис) или медленным (лизис), а также характеризоваться переходом в хроническое состояние. В благоприятных случаях клинические проявления обычно исчезают быстрее, чем наступает нормализация морфологических нарушений органов и тканей и полное удаление возбудителя из организма. Выздоровление может быть полным либо сопровождаться развитием осложнений (например, со стороны ЦНС, костно-мышечного аппарата или сердечно-сосудистой системы). Период окончательного удаления инфекционного агента может затягиваться и для некоторых инфекций (например, сыпного тифа) может исчисляться десятилетиями.

Репродукция вируса в клетке происходит в несколько фаз (рис.7):

Первая фаза - адсорбция вируса на поверхности клетки, чувстви­тельной к данному вирусу.

Вторая фаза - проникновение вируса в клетку хозяина путем виропексиса.

Третья фаза - «раздевание» вирионов, освобождение нуклеи­новой кислоты вируса от суперкапсида и капсида. У ряда вирусов проникновение нуклеиновой кислоты в клетку происходит путем сли­яния оболочки вириона и клетки-хозяина. В этом случае вторая и тре­тья фазы объединяются в одну.

В зависимости от типа нуклеиновой кислоты этот процесс совер­шается следующим образом.

1. Репродукция происходит в ядрх: аденовирусы, герпес,папо-вавирусы. Используют ДНК-зависимую РНК - полимеразу клетки.

2. Репродукция происходит в цитоплазме: вирусы имеют свою ДНК-зависимую РНК полимеразу. РНК-содержащие.

1. Рибовирусы с позитивным геномом (плюс-нитиевые): пикор-

на-, тога-, коронавирусы. Транскрипции нет.

РНК ->белок

2. Рибовирусы с негативным геномом (минус- нитиевые): грипп,

корь, паротит, орто-, парамиксовирусы.

(-)РНК -> иРНК -> белок (иРНК комплементарная (-)РНК) Этот процесс идет при участии специального вирусного фермен­та - вирионная РНК-зависимая PHK-полимераза (в клетке такого фермента быть не может).

3. Ретровирусы

(-)РНК -> ДНК -> иРНК ->белок (и РНК гомологична РНК) В этом случае процесс образования ДНК на базе (-)РНК возмо­жен при участии фермента - РНК-зависимой ДНК-полимеразы (об­ратной транскриптазы или ревертазы)

Четвертая фаза - синтез компонентов вириона. Нуклеиновая кис­лота вируса образуется путем репликации. На рибосомы клетки транс­лируется информация вирусной иРНК, и в них синтезируется вирус-специфический белок.

Пятая фаза - сборка вириона. Путем самосборки образуются нуклеокапсиды.

Шестая фаза - выход вирионов из клетки. Простые вирусы, на­пример, вирус полиомиелита, при выходе из клетки разрушают ее. Сложноорганизованные вирусы, например, вирус гриппа, выходят из клетки путем почкования. Внешняя оболочка вируса (суперкапсид) формируется в процессе выхода вируса из клетки. Клетка при таком процессе на какое-то время остается живой.

Описанные типы взаимодействия вируса с клеткой называются продуктивными, так как приводят к продукции зрелых вирионов.

Иной путь - интегративный - заключается в том, что после проник­новения вируса в клетку и "раздевания" вирус­ная нуклеиновая кисло­та интегрирует в клеточ­ный геном, то есть встраивается в опреде­ленном месте в хромосо­му клетки и затем в виде так называемого прови-руса реплицируется вме­сте с ней. Для ДНК- и РНК-содержащих виру­сов этот процесс совер­шается по-разному. В первом случае вирусная ДНК интегрирует в кле­точный геном. В случае РНК-содержащих виру­сов вначале происходит обратная транскрипция: на матрице вирусной РНК при участии фермента "обратной транскриптазы" образуется ДНК, которая встраи­вается в клеточный геном. Провирус несет дополнительную генетичес­кую информацию, поэтому клетка приобретает новые свойства. Виру­сы, способные осуществить такой тип взаимодействия с клеткой, на­зываются интегративными. К интегративным вирусам относятся неко­торые онкогенные вирусы, вирус гепатита В, вирус герпеса, вирус им­мунодефицита человека, умеренные бактериофаги.

1. Периоды осуществления продуктивной вирусной инфекции

2. Репликация вируса

3. Трансляция

Стадии репродукции вирусов.

1 - адсорбция вириона на клетке; 2 - проникновение вириона в клетку путем виропексиса; 3 - вирус внутри вакуоли клетки; 4 - раздевание вириона вируса;

5 - репликация вирусной нуклеиновой кислоты; 6 - синтез вирусных белков на рибосомах клетки; 7 - формирование вириона; 8 - выход вириона из клетки путем почкования.

20. ИНТЕРФЕРЕНЦИЯ ВИРУСОВ (от лат. inter, здесь - взаимно и ferio - ударяю, поражаю), тип взаимодействия между вирусами, при к-ром наблюдается подавление репродукции одного вируса другим в клетках, смешанно заражённых двумя вирусами. Проявляется на разных стадиях вирусной инфекции и м. б. обусловлена конкуренцией за клеточные рецепторы при адсорбции вируса на клеточной поверхности, за участки репликации нуклеиновой к-ты и трансляции, истощением метаболитов в клетке, индукцией интерферона и др. причинами. И. в. используют для обнаружения, идентификации и титрования нецитопатогенных вирусов.

Интерфероны - ряд белков со сходными свойствами, выделяемых клетками организма в ответ на вторжение вируса. Благодаря интерферонам клетки становятся невосприимчивыми по отношению к вирусу. «Определяемый в качестве интерферона фактор должен быть белковой природы, обладать антивирусной активностью по отношению к разным вирусам, по крайней мере, в гомологичных клетках, опосредованной клеточными метаболическими процессами, включа-ми синтез РНК и белка».

Индукторы интерферона - вещества природного или синтетического происхождения, стимулирующие в организме человека продукцию собственного интерферона, который способствует формированию защитного барьера, препятствующего инфицированию организма вирусами и бактериями, а также регулирует состояние иммунной системы и ингибирует рост злокачественных клеток. Перспективными интерфероногенами являются низкомолекулярные производные акридонуксусной кислоты (карбоксиметилакридон - CMA), а также различные производные флуоренонов. Примером известнейших лекарственных препаратов-индукторов интерферона являются циклоферон, тилорон.

21. Диплоидные клеточные штаммы . Это клетки одного типа, которые способны претерпевать in vitro до 100 делений, сохраняя при этом сбой исходный диплоидный набор хромосом (Хейфлик, 1965). Диплоидные штаммы фибробластов, полученные из эмбрионов человека, широко используются в диагностической вирусологии и при производстве вакцин, а также применяются в экспериментальных исследованиях. Следует иметь в виду, что некоторые возможности вирусного генома реализуются лишь в клетках, сохраняющих нормальный уровень дифференцировки.


Жёлтая лихорадка (амариллез) - острое геморрагическое трансмиссивное заболевание вирусной этиологии, тропический зооантропоноз Африки и Южной Америки. Передаётся с укусом комаров.

Как пишет Милан Даниэль, у жёлтой лихорадки много общего с малярией. Не только то, что и она подчас не на шутку ввязывалась в историю человеческого общества и отчасти сходна с ней по эпидемиологии, но и то, что она сходна с нею в некоторых клинических признаках; и не случайно из древнейших исторических сведений очень трудно заключить, о какой из двух болезней шла речь в том или ином случае и не шла ли речь о комбинации обеих. Вот почему авторы расходятся и в определении самого старого источника. Некоторые склонны считать таковым запись 1598 г. о гибели воинов Георга Клиффорда, графа из Камберленда на острове Пуэрто-Рико. Однако обычно отсчёт ведут от описания эпидемии на полуострове Юкатан в 1648 г.

В то время население Центральной Америки и островов Карибской области страдало от тяжёлых, повторяющихся эпидемий, и именно тогда на острове Барбадос родилось и название болезни: yellow fever, или «жёлтая горячка»; так именовали болезнь английские врачи, а испанцы употребляли название vomito negro («чёрная рвота»). Среди английских моряков и солдат, больше всего и болевших ею, в обращении было название «Жёлтый Джек».

Жёлтая лихорадка существует в двух эпидемиологических формах: лихорадки джунглей (передаётся комарами от заражённых обезьян) и лихорадки населённых пунктов (передается комаром Aedes aegypti от больного человека здоровому). Последняя вызывает большинство вспышек и эпидемий.

Ежегодно жёлтая лихорадка поражает около 200 тыс. человек, из которых 30 тыс. погибает. Около 90 % всех случаев заболевания диагностируются в Африке. Возбудитель - арбовирус Viscerophilus tropicus из семейства флавивирусов. Диаметр вирусных частиц - 17-25 нм. Способен длительно (более года) сохраняться в замороженном состоянии и при высушивании. Вирус быстро гибнет при нагревании до 60 °C, под воздействием ультрафиолетовых лучей, эфира, хлорсодержащих препаратов и при воздействии обычных дезинфекционных средств.

Клиника - Инкубационный период колеблется от 3 до 6 суток, изредка до 10 дней. Клиническая картина заболевания характеризуется двухфазным течением.

Течение заболевания варьирует по тяжести от умеренного лихорадочного состояния до тяжёлого гепатита с геморрагической лихорадкой. Тяжёлое течение характеризуется внезапным началом, сопровождающимся лихорадкой до 39-41 °С, ознобом, сильной головной болью, болью в мышцах спины и конечностей, тошнотой, рвотой. Характерен внешний вид больного: желтушное прокрашивание кожи вследствие поражения печени (отсюда название заболевания); лицо красное, одутловатое, веки отечны. После короткого светлого промежутка может наступить шок, геморрагический синдром с развитием острой почечной недостаточности, развивается острая печеночная недостаточность. При молниеносно протекающем развитии болезни больной умирает через 3-4 дня. Летальность заболевания составляет от 5-10 % до 15-20 %, а во время эпидемических вспышек - до 50-60 %. Жёлтая лихорадка относится к карантинным болезням. У перенесших болезнь людей возникает пожизненный иммунитет.

Лечение - Специфических препаратов для лечения жёлтой лихорадки не существует. Оказание помощи сводится к симптоматическому лечению, включающему покой, использование нестероидных противовоспалительных препаратов (следует избегать ацетилсалициловой кислоты!), инфузионные растворы.

24. Вирусы – микроорганизмы, составляющие царство Vira.

Отличительные признаки:

2) не имеют собственных белоксинтезирующих и энергетических систем;

3) не имеют клеточной организации;

4) обладают дизъюнктивным (разобщенным) способом репродукции (синтез белков и нуклеиновых кислот происходит в разных местах и в разное время);

6) вирусы проходят через бактериальные фильтры.

Вирусы могут существовать в двух формах: внеклеточной (вириона) и внутриклеточной (вируса).

По форме вирионы могут быть:

1) округлыми;

2) палочковидными;

3) в виде правильных многоугольников;

4) нитевидными и др.

Размеры их колеблются от 15–18 до 300–400 нм.

В центре вириона – вирусная нуклеиновая кислота, покрытая белковой оболочкой – капсидом, который имеет строго упорядоченную структуру. Капсидная оболочка построена из капсомеров. Нуклеиновая кислота и капсидная оболочка составляют нуклеокапсид.

Нуклеокапсид сложноорганизованных вирионов покрыт внешней оболочкой – суперкапсидом, которая может включать в себя множество функционально различных липидных, белковых, углеводных структур.

Строение ДНК– и РНК-вирусов принципиально не отличается от НК других микроорганизмов. У некоторых вирусов в ДНК встречается урацил.

ДНК может быть:

1) двухцепочечной;

2) одноцепочечной;

3) кольцевой;

4) двухцепочечной, но с одной более короткой цепью;

5) двухцепочечной, но с одной непрерывной, а с другой фрагментированной цепями.

РНК может быть:

1) однонитевой;

2) линейной двухнитевой;

3) линейной фрагментированной;

4) кольцевой;

Вирусные белки подразделяют на:

1) геномные – нуклеопротеиды. Обеспечивают репликацию вирусных нуклеиновых кислот и процессы репродукции вируса. Это ферменты, за счет которых происходит увеличение количества копий материнской молекулы, или белки, с помощью которых на матрице нуклеиновой кислоты синтезируются молекулы, обеспечивающие реализацию генетической информации;

2) белки капсидной оболочки – простые белки, обладающие способностью к самосборке. Они складываются в геометрически правильные структуры, в которых различают несколько типов симметрии: спиральный, кубический (образуют правильные многоугольники, число граней строго постоянно) или смешанный;

3) белки суперкапсидной оболочки – это сложные белки, разнообразные по функции. За счет них происходит взаимодействие вирусов с чувствительной клеткой. Выполняют защитную и рецепторную функции.

Среди белков суперкапсидной оболочки выделяют:

а) якорные белки (одним концом они располагаются на поверхности, а другим уходят в глубину; обеспечивают контакт вириона с клеткой);

б) ферменты (могут разрушать мембраны);

в) гемагглютинины (вызывают гемагглютинацию);

г) элементы клетки хозяина.

25 . Я́щур - острое вирусное заболевание из группы антропозоонозов (инфекционных болезней животных, которыми болеет также и человек), характеризующееся интоксикацией и везикулезно-эрозивным (пузырьково-язвенным) поражением слизистых оболочек ротовой и носовой полостей, а также кожи межпальцевых складок и околоногтевого ложа.

Этиология и эпидемиология

Возбудителем ящура является РНК-содержащий вирус из семейства пикорнавирусов, его размеры составляют от 8 до 20 нм. Характеризуется высокой степенью болезнетворности и дерматотропностью (сродством по отношению к коже). По антигенной структуре подразделяется на 7 серотипов, в каждом из которых различают несколько антигенных вариантов. На территории СНГ обычно встречаются вирусы типов О и А. Возбудитель ящура устойчив к высушиванию и замораживанию, но быстро погибает при нагревании до 60 °C, действии ультрафиолетовых лучей и обычных дезинфицирующих веществ дезинфектантов. Вирусы культивируют на тканевых культурах.

Ящур довольно широко распространен среди животных. В ряде стран заболевание носит характер эпизоотии (эпидемий среди животных), повторяющихся через определенные промежутки времени. Эпизоотия ящура имела место в 2001 г. в странах Северной Европы (в основном в Великобритании и Нидерландах). Наиболее подвержены инфекции молодые парнокопытные сельскохозяйственные животные (крупный рогатый скот, свиньи, козы, овцы, олени). От неё могут страдать также лошади, верблюды, собаки, кошки и грызуны. У животных, перенесших заболевание, и некоторых птиц установлено вирусоносительство, проявляющееся выделением возбудителя с испражнениями.

Инфекционный процесс у парнокопытных характеризуется тяжелым течением с вирусемией, афтозными высыпаниями и изъязвлениями в области слизистых оболочек полости рта, языка, носоглотки, носа, губ, на коже в межкопытных щелях, на вымени, иногда около рогов. Общая продолжительность болезни у животных - от 10 до 15 дней, продолжительность инкубационного периода - 2- 4 дня. При злокачественном течении ящура, особенно у коров, более чем у 50 % заболевших животных наступает смертельный исход в течение 2-3 суток.

Основной путь инфицирования людей - через сырое молоко больных животных и продукты его переработки, реже через мясо. У лиц, непосредственно контактирующих с больными животными, возможна прямая передача инфекции (при доении, уходе, лечении, убое), воздушно-капельный путь заражения (при дыхании, кашле животных), а также через предметы, загрязненные их выделениями. Описаны случаи внутрилабораторного инфицирования. От человека к человеку инфекция не передается. Дети более восприимчивы к ящуру, чем взрослые. Иммунитет типоспецифичен и зависит от наличия вируснейтрализующих антител.