Регрессионный анализ. Простая линейная регрессия

Основная особенность регрессионного анализа: при его помощи можно получить конкретные сведения о том, какую форму и характер имеет зависимость между исследуемыми переменными.

Последовательность этапов регрессионного анализа

Рассмотрим кратко этапы регрессионного анализа.

    Формулировка задачи. На этом этапе формируются предварительные гипотезы о зависимости исследуемых явлений.

    Определение зависимых и независимых (объясняющих) переменных.

    Сбор статистических данных. Данные должны быть собраны для каждой из переменных, включенных в регрессионную модель.

    Формулировка гипотезы о форме связи (простая или множественная, линейная или нелинейная).

    Определение функции регрессии (заключается в расчете численных значений параметров уравнения регрессии)

    Оценка точности регрессионного анализа.

    Интерпретация полученных результатов. Полученные результаты регрессионного анализа сравниваются с предварительными гипотезами. Оценивается корректность и правдоподобие полученных результатов.

    Предсказание неизвестных значений зависимой переменной.

При помощи регрессионного анализа возможно решение задачи прогнозирования и классификации. Прогнозные значения вычисляются путем подстановки в уравнение регрессии параметров значений объясняющих переменных. Решение задачи классификации осуществляется таким образом: линия регрессии делит все множество объектов на два класса, и та часть множества, где значение функции больше нуля, принадлежит к одному классу, а та, где оно меньше нуля, - к другому классу.

Задачи регрессионного анализа

Рассмотрим основные задачи регрессионного анализа: установление формы зависимости, определение функции регрессии , оценка неизвестных значений зависимой переменной.

Установление формы зависимости.

Характер и форма зависимости между переменными могут образовывать следующие разновидности регрессии:

    положительная линейная регрессия (выражается в равномерном росте функции);

    положительная равноускоренно возрастающая регрессия;

    положительная равнозамедленно возрастающая регрессия;

    отрицательная линейная регрессия (выражается в равномерном падении функции);

    отрицательная равноускоренно убывающая регрессия;

    отрицательная равнозамедленно убывающая регрессия.

Однако описанные разновидности обычно встречаются не в чистом виде, а в сочетании друг с другом. В таком случае говорят о комбинированных формах регрессии.

Определение функции регрессии.

Вторая задача сводится к выяснению действия на зависимую переменную главных факторов или причин, при неизменных прочих равных условиях, и при условии исключения воздействия на зависимую переменную случайных элементов. Функция регрессии определяется в виде математического уравнения того или иного типа.

Оценка неизвестных значений зависимой переменной.

Решение этой задачи сводится к решению задачи одного из типов:

    Оценка значений зависимой переменной внутри рассматриваемого интервала исходных данных, т.е. пропущенных значений; при этом решается задача интерполяции.

    Оценка будущих значений зависимой переменной, т.е. нахождение значений вне заданного интервала исходных данных; при этом решается задача экстраполяции.

Обе задачи решаются путем подстановки в уравнение регрессии найденных оценок параметров значений независимых переменных. Результат решения уравнения представляет собой оценку значения целевой (зависимой) переменной.

Рассмотрим некоторые предположения, на которые опирается регрессионный анализ.

Предположение линейности, т.е. предполагается, что связь между рассматриваемыми переменными является линейной. Так, в рассматриваемом примере мы построили диаграмму рассеивания и смогли увидеть явную линейную связь. Если же на диаграмме рассеивания переменных мы видим явное отсутствие линейной связи, т.е. присутствует нелинейная связь, следует использовать нелинейные методы анализа.

Предположение о нормальности остатков . Оно допускает, что распределение разницы предсказанных и наблюдаемых значений является нормальным. Для визуального определения характера распределения можно воспользоваться гистограммамиостатков .

При использовании регрессионного анализа следует учитывать его основное ограничение. Оно состоит в том, что регрессионный анализ позволяет обнаружить лишь зависимости, а не связи, лежащие в основе этих зависимостей.

Регрессионный анализ дает возможность оценить степень связи между переменными путем вычисления предполагаемого значения переменной на основании нескольких известных значений.

Уравнение регрессии.

Уравнение регрессии выглядит следующим образом: Y=a+b*X

При помощи этого уравнения переменная Y выражается через константу a и угол наклона прямой (или угловой коэффициент) b, умноженный на значение переменной X. Константу a также называют свободным членом, а угловой коэффициент - коэффициентом регрессии или B-коэффициентом.

В большинстве случав (если не всегда) наблюдается определенный разброс наблюдений относительно регрессионной прямой.

Остаток - это отклонение отдельной точки (наблюдения) от линии регрессии (предсказанного значения).

Для решения задачи регрессионного анализа в MS Excel выбираем в меню Сервис "Пакет анализа" и инструмент анализа "Регрессия". Задаем входные интервалы X и Y. Входной интервал Y - это диапазон зависимых анализируемых данных, он должен включать один столбец. Входной интервал X - это диапазон независимых данных, которые необходимо проанализировать. Число входных диапазонов должно быть не больше 16.

На выходе процедуры в выходном диапазоне получаем отчет, приведенный в таблице 8.3а -8.3в .

ВЫВОД ИТОГОВ

Таблица 8.3а. Регрессионная статистика

Регрессионная статистика

Множественный R

R-квадрат

Нормированный R-квадрат

Стандартная ошибка

Наблюдения

Сначала рассмотрим верхнюю часть расчетов, представленную в таблице 8.3а , - регрессионную статистику.

Величина R-квадрат , называемая также мерой определенности, характеризует качество полученной регрессионной прямой. Это качество выражается степенью соответствия между исходными данными и регрессионной моделью (расчетными данными). Мера определенности всегда находится в пределах интервала .

В большинстве случаев значение R-квадрат находится между этими значениями, называемыми экстремальными, т.е. между нулем и единицей.

Если значение R-квадрата близко к единице, это означает, что построенная модель объясняет почти всю изменчивость соответствующих переменных. И наоборот, значениеR-квадрата , близкое к нулю, означает плохое качество построенной модели.

В нашем примере мера определенности равна 0,99673, что говорит об очень хорошей подгонке регрессионной прямой к исходным данным.

множественный R - коэффициент множественной корреляции R - выражает степень зависимости независимых переменных (X) и зависимой переменной (Y).

Множественный R равен квадратному корню из коэффициента детерминации, эта величина принимает значения в интервале от нуля до единицы.

В простом линейном регрессионном анализе множественный R равен коэффициенту корреляции Пирсона. Действительно,множественный R в нашем случае равен коэффициенту корреляции Пирсона из предыдущего примера (0,998364).

Таблица 8.3б. Коэффициенты регрессии

Коэффициенты

Стандартная ошибка

t-статистика

Y-пересечение

Переменная X 1

* Приведен усеченный вариант расчетов

Теперь рассмотрим среднюю часть расчетов, представленную в таблице 8.3б . Здесь даны коэффициент регрессии b (2,305454545) и смещение по оси ординат, т.е. константа a (2,694545455).

Исходя из расчетов, можем записать уравнение регрессии таким образом:

Y= x*2,305454545+2,694545455

Направление связи между переменными определяется на основании знаков (отрицательный или положительный) коэффициентов регрессии (коэффициента b).

Если знак при коэффициенте регрессии - положительный, связь зависимой переменной с независимой будет положительной. В нашем случае знак коэффициента регрессии положительный, следовательно, связь также является положительной.

Если знак при коэффициенте регрессии - отрицательный, связь зависимой переменной с независимой является отрицательной (обратной).

В таблице 8.3в . представлены результаты выводаостатков . Для того чтобы эти результаты появились в отчете, необходимо при запуске инструмента "Регрессия" активировать чекбокс "Остатки".

ВЫВОД ОСТАТКА

Таблица 8.3в. Остатки

Наблюдение

Предсказанное Y

Остатки

Стандартные остатки

При помощи этой части отчета мы можем видеть отклонения каждой точки от построенной линии регрессии. Наибольшее абсолютное значение остатка в нашем случае - 0,778, наименьшее - 0,043. Для лучшей интерпретации этих данных воспользуемся графиком исходных данных и построенной линией регрессии, представленными нарис. 8.3 . Как видим, линия регрессии достаточно точно "подогнана" под значения исходных данных.

Следует учитывать, что рассматриваемый пример является достаточно простым и далеко не всегда возможно качественное построение регрессионной прямой линейного вида.

Рис. 8.3. Исходные данные и линия регрессии

Осталась нерассмотренной задача оценки неизвестных будущих значений зависимой переменной на основании известных значений независимой переменной, т.е. задача прогнозирования.

Имея уравнение регрессии, задача прогнозирования сводится к решению уравнения Y= x*2,305454545+2,694545455 с известными значениями x. Результаты прогнозирования зависимой переменной Y на шесть шагов вперед представлены в таблице 8.4 .

Таблица 8.4. Результаты прогнозирования переменной Y

Y(прогнозируемое)

Таким образом, в результате использования регрессионного анализа в пакете Microsoft Excel мы:

    построили уравнение регрессии;

    установили форму зависимости и направление связи между переменными - положительная линейная регрессия, которая выражается в равномерном росте функции;

    установили направление связи между переменными;

    оценили качество полученной регрессионной прямой;

    смогли увидеть отклонения расчетных данных от данных исходного набора;

    предсказали будущие значения зависимой переменной.

Если функция регрессии определена, интерпретирована и обоснована, и оценка точности регрессионного анализа соответствует требованиям, можно считать, что построенная модель и прогнозные значения обладают достаточной надежностью.

Прогнозные значения, полученные таким способом, являются средними значениями, которые можно ожидать.

В этой работе мы рассмотрели основные характеристики описательной статистики и среди них такие понятия, каксреднее значение ,медиана ,максимум ,минимум и другие характеристики вариации данных.

Также было кратко рассмотрено понятие выбросов . Рассмотренные характеристики относятся к так называемому исследовательскому анализу данных, его выводы могут относиться не к генеральной совокупности, а лишь к выборке данных. Исследовательский анализ данных используется для получения первичных выводов и формирования гипотез относительно генеральной совокупности.

Также были рассмотрены основы корреляционного и регрессионного анализа, их задачи и возможности практического использования.

Лекция 4

  1. Элементы статистического анализа модели
  2. Проверка статистической значимости параметров уравнения регрессии
  3. Анализ дисперсии
  4. Проверка общего качества уравнения регрессии
  5. F-статистика. Распределение Фишера в регрессионном анализе.

Оценивая зависимость между эндогенными и экзогенными переменными (y и x) по выборочным данным не всегда удается на первом этапе получить удачную модель регрессии. При этом каждый раз следует оценивать качество полученной модели. Качество модели оценивается по 2м направлениям:

· Статистическая оценка качества модели

Статистический анализ модели включает следующие элементы:

  • Проверку статистической значимости параметров уравнения регрессии
  • Проверку общего качества уравнения регрессии
  • Проверку свойств данных, выполнение которых предполагалось при оценивании уравнения

Статистическая значимость параметров уравнения регрессии определяется по t-статистике или статистике Стьюдента. Так:

tb – t-статистика для коэффициента регрессии b

mb – стандартная ошибка коэффициента регрессии.

Так же рассчитывают t-статистику для коэффициентов корреляции R:

Таким образом tb^2=t r ^2=F. То есть проверка статистической значимости коэффициента регрессии b равносильна проверке статистической значимости коэффициента корреляции

Коэффициент корреляции показывает тесноту корреляционной связи(между х и у).

Для линейной регрессии коэффициент корреляции:

Для определения тесноты связи используют обычно таблицу Чеглока

R 0,1 – 0,3 слабая

R 0,3 – 0,5 умеренная

R 0,5-,07 заметная

R 0,7-0,9 высокая

R 0,9 до 0,99 весьма высокая связь между х и у

Коэффициент корреляции -1

Часто для практических целей рассчитывают коэффициент эластичности, бета-коэффициент:

Эластичностью функции у=f(x) называется предел отношения относительных переменных у и х

Эластичность показывает на сколько %-в изменится у при изменении х на 1 %.

Для парной линейной регрессии коэффициент эластичности вычисляется по формуле:

Он показывает на сколько %-в изменится у в среднем при изменении х в среднем на 1 %.

Бетта-коэффициент равен:

– среднее квадрат отклонение x

– Среднее квадрат отклонение у

Бетта-коэффициент показывает на какую величину от своего среднего квадратического отклонения изменится у при изменении х на величину своего среднего квадратического отклонения.


Анализ дисперсии

В анализе дисперсии особое место занимает разложение общей суммы квадратов отклонений переменой у от у среднего на две части: на сумму объясненную регрессией и сумму, не объясненную регрессией.

Общая сумма квадратов отклонений равна сумме квадратов отклонений объясненной регрессией плюс остаточной сумме квадратов отклонений.

Эти суммы связаны с числом степеней свободы df – это число свободы независимого варьирования признаков.

Так общая сумма квадратов отклонений имеет общее число степеней свободы (n – 1).

Сумма квадратов отклонений объясненная регрессией имеет степень свободы 1, так как переменная зависит от одной величины – коэффициента регрессии b.

Между числом степеней свободы существует равенство, из которого:

N – 1 = 1 + n – 2

Разделим каждую сумму на соответствующее число степеней свободы, получим средний квадрат отклонений или дисперсию:

D общ = D факт + D ост

Оценить общее качество уравнения регрессии означает, установить соответствует ли математическая модель, выражающая зависимость между переменными экспериментальным данным и достаточно ли включенных в модель переменных, объясняющих у.

Оценить общие качества модели = оценить надежность модели = оценить достоверность уравнения регрессии.

Оценка общего качества модели регрессии осуществляется на основе дисперсионного анализа. Для оценки качества модели рассчитывают коэффициент детерминации:

В числителе выборочная оценка остаточной дисперсии, в знаменателе выборочная оценка общей дисперсии.

Коэффициент детерминации характеризует долю вариации зависимой переменной, объясненной с помощью уравнения регрессии.

Так, если R квадрат равен 0,97 это значит что на 97% изменений у обусловлено изменением х.

Чем ближе R квадрат к единице, тем сильнее статистически значимая линейная связь между х и у.

Для получения не смещенных оценок дисперсии(коэффициента детерминации) и числитель, и знаменатель в формуле делят на соответствующее число степеней свободы:

Для определения статистической значимости коэффициента детерминации R квадрат проверяется нулевая гипотеза для F-статистики, рассчитываемой по формуле:

Для парной линейной:

F-расчетная сравнивается со значением статистики в таблице. F-табличная рассматривается с числом степеней свободы m, n-m-1, при уровне значимости альфа.

Если F расч> F табл то нулевая гипотеза отвергается, принимается гипотеза о статистической значимости коэффициента детерминации R квадрат.

F-критерий Фишера = факторная дисперсия / на остаточную дисперсию:

Лекция №5

Проверка свойств данных, выполнение которых предполагалось при оценивании уравнения регрессии

1. Автокорреляция в остатках

2. Статистика Дарбина-Уотсона

3. Примеры

При оценивании параметров модели регрессии предполагается, что отклонении

1. В случае, если взаимосвязь между х и у не линейна.

2. Связь между переменными х и у линейна, но на исследуемый показатель воздействует фактор, не включенный в модель. Величина такого фактора может менять свою динамику за рассматриваемый период. Особенно это характерно для лаговых переменных.

Обе причины свидетельствуют о том, что полученное уравнение регрессии можно улучшить, оценив нелинейную зависимость или добавив в исходную модель дополнительный фактор.

Четвертая предпосылка метода наименьших квадратов говорит о том, что отклонения являются независимыми между собой, однако при исследовании и анализе исходных данных на практике встречаются ситуации, когда эти отклонения содержат тенденцию или циклические колебания.

Предполагается, что - независимые переменные (предикторы, объясняющие переменные) влияют на значения - зависимых переменных (откликов, объясняемых переменных). По имеющимся эмпирическим данным , требуется построить функцию , которая приближенно описывала бы изменение при изменении :

.

Предполагается, что множество допустимых функций, из которого подбирается , является параметрическим:

,

где - неизвестный параметр (вообще говоря, многомерный). При построении будем считать, что

, (1)

где первое слагаемое - закономерное изменение от , а второе - - случайная составляющая с нулевым средним; является условным математическим ожиданием при условии известного и называется регрессией по .

Пусть n раз измерены значения факторов и соответствующие значения переменной y ; предполагается, что

(2)

(второй индекс у x относится к номеру фактора, а первый – к номеру наблюдения); предполагается также, что

(3)

т.е. - некоррелированные случайные величины. Соотношения (2) удобно записывать в матричной форме:

, (4)

где - вектор-столбец значений зависимой переменной, t - символ транспонирования, - вектор-столбец (размерности k ) неизвестных коэффициентов регрессии, - вектор случайных отклонений,

-матрица ; в i -й строке находятся значения независимых переменных в i -м наблюдении первая переменная – константа, равная 1.

в начало

Оценка коэффициентов регрессии

Построим оценку для вектора так, чтобы вектор оценок зависимой переменной минимально (в смысле квадрата нормы разности) отличался от вектора заданных значений:

.

Решением является (если ранг матрицы равен k+1 ) оценка

(5)

Нетрудно проверить, что она несмещенная.

в начало

Проверка адекватности построенной регрессионной модели

Между значением , значением из регрессионной модели и значением тривиальной оценкой выборочного среднего существует следующее соотношение:

,

где .

По сути, член в левой части определяет общую ошибку относительно среднего. Первый член в правой части () определяет ошибку, связанную с регрессионной моделью, а второй () ошибку, связанную со случайными отклонениями и необъясненной построенной моделью.

Поделив обе части на полную вариацию игреков , получим коэффициент детерминации:

(6)

Коэффициент показывает качество подгонки регрессионной модели к наблюдаемым значениям . Если , то регрессия на не улучшает качества предсказания по сравнению с тривиальным предсказанием .

Другой крайний случай означает точную подгонку: все , т.е. все точки наблюдений лежат на регрессионной плоскости.

Однако, значение возрастает с ростом числа переменных (регрессоров) в регрессии, что не означает улучшения качества предсказания, и потому вводится скорректированный коэффициент детерминации

(7)

Его использование более корректно для сравнения регрессий при изменении числа переменных (регрессоров).

Доверительные интервалы для коэффициентов регрессии. Стандартной ошибкой оценки является величина , оценка для которой

(8)

где - диагональный элемент матрицы Z . Если ошибки распределены нормально, то, в силу свойств 1) и 2), приведенных выше, статистика

(9)

распределена по закону Стьюдента с степенями свободы, и поэтому неравенство

, (10)

где - квантиль уровня этого распределения, задает доверительный интервал для с уровнем доверия .

Проверка гипотезы о нулевых значениях коэффициентов регрессии. Для проверки гипотезы об отсутствии какой бы то ни было линейной связи между и совокупностью факторов, , т.е. об одновременном равенстве нулю всех коэффициентов, кроме коэффициентов, при константе используется статистика

, (11)

распределенная, если верна, по закону Фишера с k и степенями свободы. отклоняется, если

(12)

где - квантиль уровня .

в начало

Описание данных и постановка задачи

Исходный файл с данными tube_dataset.sta содержит 10 переменных и 33 наблюдения. См. рис. 1.


Рис. 1. Исходная таблица данных из файла tube_dataset.sta

В названии наблюдений указан временной интервал: квартал и год (до и после точки соответственно). Каждое наблюдение содержит данные за соответствующий временной интервал. 10 переменная «Квартал» дублирует номер квартала в имени наблюдения. Список переменных приведен ниже.


Цель: Построить регрессионную модель для переменной №9 «Потребление труб».

Этапы решения:

1) Сначала проведем разведочный анализ имеющихся данных на предмет выбросов и незначимых данных (построение линейных графиков и диаграмм рассеяния).

2) Проверим наличие возможных зависимостей между наблюдениями и между переменными (построение корреляционных матриц).

3) Если наблюдения будут образовывать группы, то для каждой группы построим регрессионную модель для переменной «Потребление труб» (множественная регрессия).

Перенумеруем переменные по порядку в таблице. Зависимой переменной (отклик) будем называть переменную «Потребление труб». Независимыми (предикторами) назовем все остальные переменные.

в начало

Решение задачи по шагам

Шаг 1. Диаграммы рассеяния (см. рис. 2.) явных выбросов не выявили. В то же время, на многих графиках явно просматривается линейная зависимость. Также есть пропущенные данные по «Потреблению труб» в 4 кварталах 2000 года.


Рис. 2. Диаграмма рассеяния зависимой переменной (№9) и кол-ва скважин (№8)

Цифра после символа Е в отметках по оси Х обозначает степень числа 10, которое определяет порядок значений переменной №8 (Количество скважин действующих). В данном случае речь идет о значении порядка 100.000 скважин (10 в 5 степени).

На диаграмме рассеяния на рис. 3 (см. ниже) отчетливо видно 2 облака точек, причем каждое из них имеет явную линейную зависимость.

Понятно, что переменная №1, скорее всего, войдет в регрессионную модель, т.к. нашей задачей является выявление именно линейной зависимости между предикторами и откликом.


Рис. 3. Диаграмма рассеяния зависимой переменной (№9) и Инвестиций в нефтяную промышленность (№1)

Шаг 2. Построим линейные графики всех переменных в зависимости от времени. Из графиков видно, что данные по многим переменным сильно разнятся в зависимости от номера квартала, но рост из года в год сохраняется.

Полученный результат подтверждает предположения, полученные на основе рис. 3.


Рис. 4. Линейный график 1-й переменной в зависимости от времени

В частности, на рис. 4 построен линейный график для первой переменной.

Шаг 3. Согласно результатам рис. 3 и рис. 4, разобьем наблюдения на 2 группы, по переменной №10 «Квартал». В первую группу войдут данные по 1 и 4 кварталу, а во вторую – данные по 2 и 3.

Чтобы разбить наблюдения согласно кварталам на 2 таблицы, воспользуемся пунктом Данные/Подмножество/Случайный выбор . Здесь в качестве наблюдений нам надо указать условия на значения переменной КВАРТАЛ. Cм. рис. 5.

Согласно заданным условиям наблюдения будут скопированы в новую таблицу. В строчке снизу можно указать конкретные номера наблюдений, однако в нашем случае это займет много времени.

Рис. 5. Выбор подмножества наблюдений из таблицы

В качестве заданного условия зададим:

V10 = 1 OR V10 = 4

V10 – это 10 переменная в таблице (V0 – это столбец с наблюдениями). По сути, мы проверяем каждое наблюдение в таблице, относится оно к 1-ому или 4-ому кварталу или нет. Если мы хотим, выбрать другое подмножество наблюдений, то можно либо сменить условие на:

V10 = 2 OR V10 = 3

либо перенести первое условие в исключающие правила.

Нажав ОК , мы сначала получим таблицу с данными только по 1 и 4 кварталу, а затем и таблицу с данными по 2 и 3 кварталу. Сохраним их под именами 1_4.sta и 2_3.sta через вкладку Файл/Сохранить как.

Далее будем работать уже с двумя таблицами и полученные результаты регрессионного анализа для обеих таблиц можно будет сравнить.

Шаг 4. Построим матрицу корреляций для каждой из групп, чтобы проверить предположение относительно линейной зависимости и учесть возможные сильные корреляции между переменными при построении регрессионной модели. Так как есть пропущенные данные, корреляционная матрица была построена с опцией попарного удаления пропущенных данных. См. рис. 6.


Рис. 6. Матрица корреляций для первых 9-ти переменных по данным 1 и 4 кварталов

Из корреляционной матрицы в частности понятно, некоторые переменные очень сильно коррелируют друг с другом.

Стоит отметить, что достоверность больших значений корреляции возможна только при отсутствии выбросов в исходной таблице. Поэтому диаграммы рассеяния для зависимой переменной и всех остальных переменных обязательно должны учитываться при корреляционном анализе.

Например, переменная №1 и №2 (Инвестиции в нефтяную и газовую промышленность соответственно). См. рис.7 (или, например, рис. 8).


Рис. 7. Диаграмма рассеяния для переменной №1 и №2

Рис. 8. Диаграмма рассеяния для переменной №1 и №7

Данная зависимость легко объяснима. Также ясен и высокий коэффициент корреляции между объемами добычи нефти и газа.

Высокий коэффициент корреляции между переменными (мультиколлиниарность) нужно учитывать при построении регрессионной модели. Здесь могут возникнуть большие ошибки при вычислении коэффициентов регрессии (плохообусловленная матрица при вычислении оценки через МНК).

Приведем наиболее распространенные способы устранения мультиколлиниарности :

1) Гребневая регрессия.

Данная опция задается при построении множественной регрессии. Число - малое положительное число. Оценка МНК в таком случае равна:

,

где Y – вектор со значениями зависимой переменной, X – матрица, содержащая по столбцам значения предикторов, а – единичная матрица порядка n+1. (n – количество предикторов в модели).

Плохообусловленность матрицы при гребневой регрессии значительно уменьшается.

2) Исключение одной из объясняющих переменных.

В этом случае из анализа исключается одна объясняющая переменная имеющая высокий парный коэффициент корреляции (r>0.8) с другим предиктором.

3) Использование пошаговых процедур с включением/исключением предикторов .

Обычно, в таких случаях, используют либо гребневую регрессию (она задается в качестве опции при построении множественной), либо, на основе значений корреляции, исключают объясняющие переменные, имеющие высокий парный коэффициент корреляции (r > 0.8), либо пошаговую регрессию с включением/исключением переменных.

Шаг 5. Теперь построим регрессионную модель при помощи выпадающей вкладки меню (Анализ/Множественная регрессия ). В качестве зависимой переменной укажем «Потребление труб», в качестве независимых – все остальные. См. рис. 9.


Рис. 9. Построение множественной регрессии для таблицы 1_4.sta

Множественную регрессию можно проводить пошагово. В этом случае в модель будут пошагово включаться (или исключаться) переменные, которые вносят наибольший (наименьший) вклад в регрессию на данном шаге.

Также данная опция позволяет остановиться на шаге, когда коэффициент детерминации еще не наибольший, однако уже все переменные модели являются значимыми. См. рис. 10.


Рис. 10. Построение множественной регрессии для таблицы 1_4.sta

Особо стоит отметить, что пошаговая регрессия с включением, в случае, когда количество переменных больше количества наблюдений, является единственным способом построения регрессионной модели.

Установка нулевого значения свободного члена регрессионной модели используется в случае, если сама идея модели подразумевает нулевое значение отклика, когда все предикторы окажутся равными 0. Чаще всего подобные ситуации встречаются в экономических задачах.

В нашем случае свободный член мы включим в модель.


Рис. 11. Построение множественной регрессии для таблицы 1_4.sta

В качестве параметров модели выберем Пошаговую с исключением (Fвкл = 11, Fвыкл = 10), с гребневой регрессией (лямбда = 0.1). И для каждой группы построим регрессионную модель. См. рис.11.

Результаты в виде Итоговой таблицы регрессии (см. также рис. 14) представлены на рис.12 и рис.13. Они получены на последнем шаге регрессии.

Шаг 6. Проверка адекватности модели

Обратим внимание, что, несмотря на значимость всех переменных в регрессионной модели (p-уровень < 0.05 – подсвечены красным цветом), коэффициент детерминации R2 существенно меньше у первой группы наблюдений.

Коэффициент детерминации показывает, по сути, какая доля дисперсии отклика объясняется влиянием предикторов в построенной модели. Чем ближе R2 к 1, тем лучше модель.

F-статистика Фишера используется для проверки гипотезы о нулевых значениях коэффициентов регрессии (т.е. об отсутствии какой бы то ни было линейной связи между и совокупностью факторов, , кроме коэффициента ). Гипотеза отклоняется при малом уровне значимости.

В нашем случае (см. рис. 12) значение F-статистики = 13,249 при уровне значимости p < 0,00092, т.е. гипотеза об отсутствии линейной связи отклоняется.


Рис. 12. Результаты регрессионного анализа данных по 1 и 4 кварталу


Рис. 13. Результаты регрессионного анализа данных по 2 и 3 кварталу

Шаг 7. Теперь проведем анализ остатков полученной модели. Результаты, полученные при анализе остатков, являются важным дополнением к значению коэффициента детерминации при проверке адекватности построенной модели.

Для простоты будем рассматривать лишь группу, разбитую на кварталы с номерами 2 и 3, т.к. вторая группа исследуется аналогично.

В окне, представленном на рис. 14, на вкладке Остатки/предсказанные/наблюдаемые значения нажмем на кнопку Анализ остатков , и далее нажмем на кнопку Остатки и предсказанные . (См. рис. 15)

Кнопка Анализ остатков будет активна, только если регрессия получена на последнем шаге. Чаще оказывается важным получить регрессионную модель, в которой значимы все предикторы, чем продолжить построение модели (увеличивая коэффициент детерминации) и получить незначимые предикторы.

В этом случае, когда регрессия не останавливается на последнем шаге, можно искусственно задать количество шагов в регрессии.


Рис. 14. Окно с результатами множественной регрессии для данных по 2 и 3-му кварталам


Рис. 15. Остатки и предсказанные значения регрессионной модели по данным 2 и 3 квартала

Прокомментируем результаты, представленные на рис. 15. Важным является столбец с Остатками (разница первых 2-х столбцов). Большие остатки по многим наблюдениям и наличие наблюдения с маленьким остатком может указывать на последнее как на выброс.

Другими словами анализ остатков нужен для того, чтобы отклонения от предположений, угрожающие обоснованности результатов анализа, могли быть легко обнаружены.


Рис. 16. Остатки и предсказанные значения регрессионной модели по данным 2 и 3 кварталов + 2 границы 0.95 доверительного интервала

В конце приведем график, иллюстрирующий данные, полученные из таблицы на рис. 16. Здесь добавлены 2 переменные: UCB и LCB – 0.95 верх. и нижн. дов. интервал.

UBC = V2+1.96*V6

LBC = V2-1.96*V6

И удалены четыре последних наблюдения.

Построим линейный график с переменными (Графики/2М Графики/Линейные графики для переменных )

1) Наблюдаемое значение (V1)

2) Предсказанное значение (V2)

3) UCB (V9)

4) LCB (V10)

Результат представлен на рис. 17. Теперь видно, что построенная регрессионная модель довольно неплохо отражает реальное потребление труб, особенно на результатах недавнего прошлого.

Это означает, что в ближайшем будущем реальные значения могут быть приближены модельными.

Отметим один важный момент. В прогнозировании при помощи регрессионных моделей всегда важен базовый временной интервал. В рассматриваемой задаче были выбраны кварталы.

Соответственно, при построении прогноза предсказываемые значения будут также получаться по кварталам. Если нужно получить прогноз на год, то придется прогнозировать на 4 квартала и в конце накопится большая ошибка.

Подобную проблему можно решить аналогично, вначале лишь агрегируя данные от кварталов к годам (например, усреднением). Для данной задачи подход не очень корректен, так как останется всего лишь 8 наблюдений, по которым будет строиться регрессионная модель. См. рис.18.


Рис. 17. Наблюдаемые и предсказанные значения вместе с 0.95 верх. и ниж. довер. интервалами (данные по 2 и 3 кварталам)


Рис. 18. Наблюдаемые и предсказанные значения вместе с 0.95 верх. и ниж. довер. интервалами (данные по годам)

Чаще всего такой подход применяется при агрегировании данных по месяцам, при исходных данных по дням.

Следует помнить, что все методы регрессионного анализа позволяют обнаружить только числовые зависимости, а не лежащие в их основе причинные связи. Поэтому ответ на вопрос о значимости переменных в полученной модели остается за экспертом в данной области, который, в частности, способен учесть влияние факторов, возможно, не вошедших в данную таблицу.

y =f (x ), когда каждому значению независимой переменной x соответствует одно определённое значение величины y , при регрессионной связи одному и тому же значению x могут соответствовать в зависимости от случая различные значения величины y . Если при каждом значении наблюдается n i {\displaystyle n_{i}} значений y i 1 …y in 1 величины y , то зависимость средних арифметических y ¯ i = (y i 1 + . . . + y i n 1) / n i {\displaystyle {\bar {y}}_{i}=(y_{i1}+...+y_{in_{1}})/n_{i}} от x = x i {\displaystyle x=x_{i}} и является регрессией в статистическом понимании этого термина .

Энциклопедичный YouTube

  • 1 / 5

    Этот термин в статистике впервые был использован Френсисом Гальтоном (1886) в связи с исследованием вопросов наследования физических характеристик человека. В качестве одной из характеристик был взят рост человека; при этом было обнаружено, что в целом сыновья высоких отцов, что не удивительно, оказались более высокими, чем сыновья отцов с низким ростом. Более интересным было то, что разброс в росте сыновей был меньшим, чем разброс в росте отцов. Так проявлялась тенденция возвращения роста сыновей к среднему (regression to mediocrity ), то есть «регресс». Этот факт был продемонстрирован вычислением среднего роста сыновей отцов, рост которых равен 56 дюймам, вычислением среднего роста сыновей отцов, рост которых равен 58 дюймам, и т. д. После этого результаты были изображены на плоскости, по оси ординат которой откладывались значения среднего роста сыновей, а по оси абсцисс - значения среднего роста отцов. Точки (приближённо) легли на прямую с положительным углом наклона меньше 45°; важно, что регрессия была линейной.

    Описание

    Допустим, имеется выборка из двумерного распределения пары случайных переменных (X, Y ). Прямая линия в плоскости (x, y ) была выборочным аналогом функции

    g (x) = E (Y ∣ X = x) . {\displaystyle g(x)=E(Y\mid X=x).} E (Y ∣ X = x) = μ 2 + ϱ σ 2 σ 1 (x − μ 1) , {\displaystyle E(Y\mid X=x)=\mu _{2}+\varrho {\frac {\sigma _{2}}{\sigma _{1}}}(x-\mu _{1}),} v a r (Y ∣ X = x) = σ 2 2 (1 − ϱ 2) . {\displaystyle \mathrm {var} (Y\mid X=x)=\sigma _{2}^{2}(1-\varrho ^{2}).}

    В этом примере регрессия Y на X является линейной функцией . Если регрессия Y на X отлична от линейной, то приведённые уравнения – это линейная аппроксимация истинного уравнения регрессии.

    В общем случае регрессия одной случайной переменной на другую не обязательно будет линейной. Также не обязательно ограничиваться парой случайных переменных. Статистические проблемы регрессии связаны с определением общего вида уравнения регрессии, построением оценок неизвестных параметров, входящих в уравнение регрессии, и проверкой статистических гипотез о регрессии . Эти проблемы рассматриваются в рамках регрессионного анализа .

    Простым примером регрессии Y по X является зависимость между Y и X , которая выражается соотношением: Y =u (X )+ε, где u (x )=E (Y | X =x ), а случайные величины X и ε независимы. Это представление полезно, когда планируется эксперимент для изучения функциональной связи y =u (x ) между неслучайными величинами y и x . На практике обычно коэффициенты регрессии в уравнении y =u (x ) неизвестны и их оценивают по экспериментальным данным.

    Линейная регрессия

    Представим зависимость y от x в виде линейной модели первого порядка:

    y = β 0 + β 1 x + ε . {\displaystyle y=\beta _{0}+\beta _{1}x+\varepsilon .}

    Будем считать, что значения x определяются без ошибки, β 0 и β 1 - параметры модели, а ε - ошибка, распределение которой подчиняется нормальному закону с нулевым средним значением и постоянным отклонением σ 2 . Значения параметров β заранее не известны и их нужно определить из набора экспериментальных значений (x i , y i ), i =1, …, n . Таким образом мы можем записать:

    y i ^ = b 0 + b 1 x i , i = 1 , … , n {\displaystyle {\widehat {y_{i}}}=b_{0}+b_{1}x_{i},i=1,\dots ,n}

    где означает предсказанное моделью значение y при данном x , b 0 и b 1 - выборочные оценки параметров модели. Определим также e i = y i − y i ^ {\displaystyle e_{i}=y_{i}-{\widehat {y_{i}}}} - значение ошибки аппроксимации для i {\displaystyle i} -го наблюдения.

    Метод наименьших квадратов даёт следующие формулы для вычисления параметров данной модели и их отклонений:

    b 1 = ∑ i = 1 n (x i − x ¯) (y i − y ¯) ∑ i = 1 n (x i − x ¯) 2 = c o v (x , y) σ x 2 ; {\displaystyle b_{1}={\frac {\sum _{i=1}^{n}(x_{i}-{\bar {x}})(y_{i}-{\bar {y}})}{\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}}}={\frac {\mathrm {cov} (x,y)}{\sigma _{x}^{2}}};} b 0 = y ¯ − b 1 x ¯ ; {\displaystyle b_{0}={\bar {y}}-b_{1}{\bar {x}};} s e 2 = ∑ i = 1 n (y i − y ^) 2 n − 2 ; {\displaystyle s_{e}^{2}={\frac {\sum _{i=1}^{n}(y_{i}-{\widehat {y}})^{2}}{n-2}};} s b 0 = s e 1 n + x ¯ 2 ∑ i = 1 n (x i − x ¯) 2 ; {\displaystyle s_{b_{0}}=s_{e}{\sqrt {{\frac {1}{n}}+{\frac {{\bar {x}}^{2}}{\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}}}}};} s b 1 = s e 1 ∑ i = 1 n (x i − x ¯) 2 , {\displaystyle s_{b_{1}}=s_{e}{\sqrt {\frac {1}{\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}}}},}

    здесь средние значения определяются как обычно: x ¯ = ∑ i = 1 n x i n {\displaystyle {\bar {x}}={\frac {\sum _{i=1}^{n}x_{i}}{n}}} , y ¯ = ∑ i = 1 n y i n {\displaystyle {\bar {y}}={\frac {\sum _{i=1}^{n}y_{i}}{n}}} и s e 2 обозначает остаточное отклонение регрессии, которое является оценкой дисперсии σ 2 в том случае, если модель верна.

    Стандартные ошибки коэффициентов регрессии используются аналогично стандартной ошибке среднего - для нахождения доверительных интервалов и проверки гипотез. Используем, например, критерий Стьюдента для проверки гипотезы о равенстве коэффициента регрессии нулю, то есть о его незначимости для модели. Статистика Стьюдента: t = b / s b {\displaystyle t=b/s_{b}} . Если вероятность для полученного значения и n −2 степеней свободы достаточно мала, например, <0,05 - гипотеза отвергается. Напротив, если нет оснований отвергнуть гипотезу о равенстве нулю, скажем, b 1 {\displaystyle b_{1}} - есть основание задуматься о существовании искомой регрессии, хотя бы в данной форме, или о сборе дополнительных наблюдений. Если же нулю равен свободный член b 0 {\displaystyle b_{0}} , то прямая проходит через начало координат и оценка углового коэффициента равна

    b = ∑ i = 1 n x i y i ∑ i = 1 n x i 2 {\displaystyle b={\frac {\sum _{i=1}^{n}x_{i}y_{i}}{\sum _{i=1}^{n}x_{i}^{2}}}} ,

    а её стандартной ошибки

    s b = s e 1 ∑ i = 1 n x i 2 . {\displaystyle s_{b}=s_{e}{\sqrt {\frac {1}{\sum _{i=1}^{n}x_{i}^{2}}}}.}

    Обычно истинные величины коэффициентов регрессии β 0 и β 1 не известны. Известны только их оценки b 0 и b 1 . Иначе говоря, истинная прямая регрессии может пройти иначе, чем построенная по выборочным данным. Можно вычислить доверительную область для линии регрессии. При любом значении x соответствующие значения y распределены нормально. Средним является значение уравнения регрессии y ^ {\displaystyle {\widehat {y}}} . Неопределённость его оценки характеризуется стандартной ошибкой регрессии:

    s y ^ = s e 1 n + (x − x ¯) 2 ∑ i = 1 n (x i − x ¯) 2 ; {\displaystyle s_{\widehat {y}}=s_{e}{\sqrt {{\frac {1}{n}}+{\frac {(x-{\bar {x}})^{2}}{\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}}}}};}

    Теперь можно вычислить -процентный доверительный интервал для значения уравнения регрессии в точке x :

    y ^ − t (1 − α / 2 , n − 2) s y ^ < y < y ^ + t (1 − α / 2 , n − 2) s y ^ {\displaystyle {\widehat {y}}-t_{(1-\alpha /2,n-2)}s_{\widehat {y}},

    где t (1−α/2, n −2) - t -значение распределения Стьюдента. На рисунке показана линия регрессии, построенная по 10 точкам (сплошные точки), а также 95%-я доверительная область линии регрессии, которая ограничена пунктирными линиями. С 95%-й вероятностью можно утверждать, что истинная линия находится где-то внутри этой области. Или иначе, если мы соберём аналогичные наборы данных (обозначены кружками) и построим по ним линии регрессии (обозначены голубым цветом), то в 95 случаях из 100 эти прямые не покинут пределов доверительной области. (Для визуализации кликните по картинке) Обратите внимание, что некоторые точки оказались вне доверительной области. Это совершенно естественно, поскольку речь идёт о доверительной области линии регрессии, а не самих значений. Разброс значений складывается из разброса значений вокруг линии регрессии и неопределённости положения самой этой линии, а именно:

    s Y = s e 1 m + 1 n + (x − x ¯) 2 ∑ i = 1 n (x i − x ¯) 2 ; {\displaystyle s_{Y}=s_{e}{\sqrt {{\frac {1}{m}}+{\frac {1}{n}}+{\frac {(x-{\bar {x}})^{2}}{\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}}}}};}

    Здесь m - кратность измерения y при данном x . И 100 ⋅ (1 − α 2) {\displaystyle 100\cdot \left(1-{\frac {\alpha }{2}}\right)} -процентный доверительный интервал (интервал прогноза) для среднего из m значений y будет:

    y ^ − t (1 − α / 2 , n − 2) s Y < y < y ^ + t (1 − α / 2 , n − 2) s Y {\displaystyle {\widehat {y}}-t_{(1-\alpha /2,n-2)}s_{Y}.

    На рисунке эта 95%-я доверительная область при m =1 ограничена сплошными линиями. В эту область попадает 95 % всех возможных значений величины y в исследованном диапазоне значений x .

    Еще немного статистики

    Можно строго доказать, что, если условное матожидание E (Y ∣ X = x) {\displaystyle E(Y\mid X=x)} некоторой двумерной случайной величины (X, Y ) является линейной функцией от x {\displaystyle x} , то это условное матожидание обязательно представимо в виде E (Y ∣ X = x) = μ 2 + ϱ σ 2 σ 1 (x − μ 1) {\displaystyle E(Y\mid X=x)=\mu _{2}+\varrho {\frac {\sigma _{2}}{\sigma _{1}}}(x-\mu _{1})} , где E (X )=μ 1 , E (Y )=μ 2 , var(X )=σ 1 2 , var(Y )=σ 2 2 , cor(X, Y )=ρ.

    Более того, для уже упомянутой ранее линейной модели Y = β 0 + β 1 X + ε {\displaystyle Y=\beta _{0}+\beta _{1}X+\varepsilon } , где X {\displaystyle X} и - независимые случайные величины, а ε {\displaystyle \varepsilon } имеет нулевое матожидание (и произвольное распределение), можно доказать, что E (Y ∣ X = x) = β 0 + β 1 x {\displaystyle E(Y\mid X=x)=\beta _{0}+\beta _{1}x} . Тогда с помощью указанного ранее равенства можно получить формулы для и : β 1 = ϱ σ 2 σ 1 {\displaystyle \beta _{1}=\varrho {\frac {\sigma _{2}}{\sigma _{1}}}} ,

    β 0 = μ 2 − β 1 μ 1 {\displaystyle \beta _{0}=\mu _{2}-\beta _{1}\mu _{1}} .

    Если откуда-то априори известно, что множество случайных точек на плоскости порождается линейной моделью, но с неизвестными коэффициентами β 0 {\displaystyle \beta _{0}} и β 1 {\displaystyle \beta _{1}} , можно получить точечные оценки этих коэффициентов по указанным формулам. Для этого в эти формулы вместо матожиданий, дисперсий и корреляции случайных величин X и Y нужно подставить их несмещенные оценки. Полученные формулы оценок в точности совпадут с формулами, выведенными на основе метода наименьших квадратов.

    • Tutorial

    Статистика в последнее время получила мощную PR поддержку со стороны более новых и шумных дисциплин - Машинного Обучения и Больших Данных . Тем, кто стремится оседлать эту волну необходимо подружится с уравнениями регрессии . Желательно при этом не только усвоить 2-3 приемчика и сдать экзамен, а уметь решать проблемы из повседневной жизни: найти зависимость между переменными, а в идеале - уметь отличить сигнал от шума.



    Для этой цели мы будем использовать язык программирования и среду разработки R , который как нельзя лучше приспособлен к таким задачам. Заодно, проверим от чего зависят рейтинг Хабрапоста на статистике собственных статей.

    Введение в регрессионный анализ

    Если имеется корреляционная зависимость между переменными y и x , возникает необходимость определить функциональную связь между двумя величинами. Зависимость среднего значения называется регрессией y по x .


    Основу регрессионного анализа составляет метод наименьших квадратов (МНК) , в соответствии с которым в качестве уравнения регресии берется функция такая, что сумма квадратов разностей минимальна.



    Карл Гаусс открыл, или точнее воссоздал, МНК в возрасте 18 лет, однако впервые результаты были опубликованы Лежандром в 1805 г. По непроверенным данным метод был известен еще в древнем Китае, откуда он перекочевал в Японию и только затем попал в Европу. Европейцы не стали делать из этого секрета и успешно запустили в производство, обнаружив с его помощью траекторию карликовой планеты Церес в 1801 г.


    Вид функции , как правило, определен заранее, а с помощью МНК подбираются оптимальные значения неизвестных параметров. Метрикой рассеяния значений вокруг регрессии является дисперсия.


    • k - число коэффициентов в системе уравнений регрессии.

    Чаще всего используется модель линейной регрессии, а все нелинейные зависимости приводят к линейному виду с помощью алгебраических ухищрений, различных преобразования переменных y и x .

    Линейная регрессия

    Уравнения линейной регрессии можно записать в виде



    В матричном виде это выгладит


    • y - зависимая переменная;
    • x - независимая переменная;
    • β - коэффициенты, которые необходимо найти с помощью МНК;
    • ε - погрешность, необъяснимая ошибка и отклонение от линейной зависимости;


    Случайная величина может быть интерпретирована как сумма из двух слагаемых:



    Еще одно ключевое понятие - коэффициент корреляции R 2 .


    Ограничения линейной регрессии

    Для того, чтобы использовать модель линейной регрессии необходимы некоторые допущения относительно распределения и свойств переменных.



    Как обнаружить, что перечисленные выше условия не соблюдены? Ну, во первых довольно часто это видно невооруженным глазом на графике.


    Неоднородность дисперсии


    При возрастании дисперсии с ростом независимой переменной имеем график в форме воронки.



    Нелинейную регрессии в некоторых случая также модно увидеть на графике довольно наглядно.


    Тем не менее есть и вполне строгие формальные способы определить соблюдены ли условия линейной регрессии, или нарушены.




    В этой формуле - коэффициент взаимной детерминации между и остальными факторами. Если хотя бы один из VIF-ов > 10, вполне резонно предположить наличие мультиколлинеарности.


    Почему нам так важно соблюдение всех выше перечисленных условий? Все дело в Теореме Гаусса-Маркова , согласно которой оценка МНК является точной и эффективной лишь при соблюдении этих ограничений.

    Как преодолеть эти ограничения

    Нарушения одной или нескольких ограничений еще не приговор.

    1. Нелинейность регрессии может быть преодолена преобразованием переменных, например через функцию натурального логарифма ln .
    2. Таким же способом возможно решить проблему неоднородной дисперсии, с помощью ln , или sqrt преобразований зависимой переменной, либо же используя взвешенный МНК.
    3. Для устранения проблемы мультиколлинеарности применяется метод исключения переменных. Суть его в том, что высоко коррелированные объясняющие переменные устраняются из регрессии , и она заново оценивается. Критерием отбора переменных, подлежащих исключению, является коэффициент корреляции. Есть еще один способ решения данной проблемы, который заключается в замене переменных, которым присуща мультиколлинеарность, их линейной комбинацией . Этим весь список не исчерпывается, есть еще пошаговая регрессия и другие методы.

    К сожалению, не все нарушения условий и дефекты линейной регрессии можно устранить с помощью натурального логарифма. Если имеет место автокорреляция возмущений к примеру, то лучше отступить на шаг назад и построить новую и лучшую модель.

    Линейная регрессия плюсов на Хабре

    Итак, довольно теоретического багажа и можно строить саму модель.
    Мне давно было любопытно от чего зависит та самая зелененькая цифра, что указывает на рейтинг поста на Хабре. Собрав всю доступную статистику собственных постов, я решил прогнать ее через модель линейно регрессии.


    Загружает данные из tsv файла.


    > hist <- read.table("~/habr_hist.txt", header=TRUE) > hist
    points reads comm faves fb bytes 31 11937 29 19 13 10265 93 34122 71 98 74 14995 32 12153 12 147 17 22476 30 16867 35 30 22 9571 27 13851 21 52 46 18824 12 16571 44 149 35 9972 18 9651 16 86 49 11370 59 29610 82 29 333 10131 26 8605 25 65 11 13050 20 11266 14 48 8 9884 ...
    • points - Рейтинг статьи
    • reads - Число просмотров.
    • comm - Число комментариев.
    • faves - Добавлено в закладки.
    • fb - Поделились в социальных сетях (fb + vk).
    • bytes - Длина в байтах.

    Проверка мультиколлинеарности.


    > cor(hist) points reads comm faves fb bytes points 1.0000000 0.5641858 0.61489369 0.24104452 0.61696653 0.19502379 reads 0.5641858 1.0000000 0.54785197 0.57451189 0.57092464 0.24359202 comm 0.6148937 0.5478520 1.00000000 -0.01511207 0.51551030 0.08829029 faves 0.2410445 0.5745119 -0.01511207 1.00000000 0.23659894 0.14583018 fb 0.6169665 0.5709246 0.51551030 0.23659894 1.00000000 0.06782256 bytes 0.1950238 0.2435920 0.08829029 0.14583018 0.06782256 1.00000000

    Вопреки моим ожиданиям наибольшая отдача не от количества просмотров статьи, а от комментариев и публикаций в социальных сетях . Я также полагал, что число просмотров и комментариев будет иметь более сильную корреляцию, однако зависимость вполне умеренная - нет надобности исключать ни одну из независимых переменных.


    Теперь собственно сама модель, используем функцию lm .


    regmodel <- lm(points ~., data = hist) summary(regmodel) Call: lm(formula = points ~ ., data = hist) Residuals: Min 1Q Median 3Q Max -26.920 -9.517 -0.559 7.276 52.851 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.029e+01 7.198e+00 1.430 0.1608 reads 8.832e-05 3.158e-04 0.280 0.7812 comm 1.356e-01 5.218e-02 2.598 0.0131 * faves 2.740e-02 3.492e-02 0.785 0.4374 fb 1.162e-01 4.691e-02 2.476 0.0177 * bytes 3.960e-04 4.219e-04 0.939 0.3537 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 16.65 on 39 degrees of freedom Multiple R-squared: 0.5384, Adjusted R-squared: 0.4792 F-statistic: 9.099 on 5 and 39 DF, p-value: 8.476e-06

    В первой строке мы задаем параметры линейной регрессии. Строка points ~. определяет зависимую переменную points и все остальные переменные в качестве регрессоров. Можно определить одну единственную независимую переменную через points ~ reads , набор переменных - points ~ reads + comm .


    Перейдем теперь к расшифровке полученных результатов.




    Можно попытаться несколько улучшить модель, сглаживая нелинейные факторы: комментарии и посты в социальных сетях. Заменим значения переменных fb и comm их степенями.


    > hist$fb = hist$fb^(4/7) > hist$comm = hist$comm^(2/3)

    Проверим значения параметров линейной регрессии.


    > regmodel <- lm(points ~., data = hist) > summary(regmodel) Call: lm(formula = points ~ ., data = hist) Residuals: Min 1Q Median 3Q Max -22.972 -11.362 -0.603 7.977 49.549 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 2.823e+00 7.305e+00 0.387 0.70123 reads -6.278e-05 3.227e-04 -0.195 0.84674 comm 1.010e+00 3.436e-01 2.938 0.00552 ** faves 2.753e-02 3.421e-02 0.805 0.42585 fb 1.601e+00 5.575e-01 2.872 0.00657 ** bytes 2.688e-04 4.108e-04 0.654 0.51677 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 16.21 on 39 degrees of freedom Multiple R-squared: 0.5624, Adjusted R-squared: 0.5062 F-statistic: 10.02 on 5 and 39 DF, p-value: 3.186e-06

    Как видим в целом отзывчивость модели возросла, параметры подтянулись и стали более шелковистыми, F-статистика выросла, так же как и скорректированный коэффициент детерминации.


    Проверим, соблюдены ли условия применимости модели линейной регрессии? Тест Дарбина-Уотсона проверяет наличие автокорреляции возмущений.


    > dwtest(hist$points ~., data = hist) Durbin-Watson test data: hist$points ~ . DW = 1.585, p-value = 0.07078 alternative hypothesis: true autocorrelation is greater than 0

    И напоследок проверка неоднородности дисперсии с помощью теста Бройша-Пагана.


    > bptest(hist$points ~., data = hist) studentized Breusch-Pagan test data: hist$points ~ . BP = 6.5315, df = 5, p-value = 0.2579

    В заключение

    Конечно наша модель линейной регрессии рейтинга Хабра-топиков получилось не самой удачной. Нам удалось объяснить не более, чем половину вариативности данных. Факторы надо чинить, чтобы избавляться от неоднородной дисперсии, с автокорреляцией тоже непонятно. Вообще данных маловато для сколь-нибудь серьезной оценки.


    Но с другой стороны, это и хорошо. Иначе любой наспех написанный тролль-пост на Хабре автоматически набирал бы высокий рейтинг, а это к счастью не так.

    Использованные материалы

    1. Кобзарь А. И. Прикладная математическая статистика. - М.: Физматлит, 2006.
    2. William H. Green Econometric Analysis

    Теги: Добавить метки