Разложение периодических сигналов в ряд фурье. Примеры разложения в ряд фурье

1.3 Сделать общие выводы.

Часть 2

Цель работы: углубление теоретических знаний, полученных в ходе изучения преобразования Фурье (Fourier Transform)

Необходимые теоретические сведения.

Изменяя период Т и длительность импульса как показано на рис. 7, можно изменять спектр сигнала. С увеличением периода гармоники сближаются, не изменяя форму огибающей.


Рис.7 – Изменение спектра

Смоделируем одиночный прямоугольный импульс, периодическую последовательность импульсов с периодом Т и 10Т .

t = 0:.0314:25;

y= square(2*pi*t/10, pi*pi);

z = rectpuls(2*pi*t1/10);

subplot(4,2,1); plot(t,x)

subplot(4,2,2); plot(t,y)

subplot(4,2,3); plot(t1,z)

Проведем спектральный анализ полученных сигналов. Непериодические процессы - таковыми являются информационные сигналы , одиночные импульсы , хаотические колебания (шумы ) - обладают сплошным или непрерывным спектром. Интуитивно к такому выводу можно прийти, представляя одиночный импульс частью периодической последовательности, период которой неограниченно увеличивается. Действительно, при увеличении интервала между импульсами гармоники на спектральных диаграммах периодических последовательностей импульсов сближаются: чем реже следуют импульсы, тем меньше расстояние между соседними гармониками (оно равно 1/T ). Спектр одиночного импульса (предельный случай увеличения периода) становится непрерывным, и вводится он не рядами, а интегралами Фурье .

Преобразование Фурье (Fourier transform) является инструментом спектрально­го анализа непериодических сигналов.

В описанных ниже функциях реализован особый метод быстрого преобразования Фурье (БПФ) - Fast Fourier Transform (FFT ), позволяющий резко уменьшить число арифметических операций в ходе приведенных выше преобразований. Метод особенно эффективен, если число обрабатываемых элементов (отсчетов) составляет 2 n , где n - целое положительное число. В MatLab используются следующие функции:

fft(X ) - возвращает для вектора X дискретное преобразование Фурье, по возможности используя алгоритм быстрого преобразования Фурье. Если X - матрица, функция fft возвращает преобразование Фурье для каждого столбца матрицы;

fft(X.n) - возвращает n-точечное преобразование Фурье. Если длина вектора X меньше n, то недостающие элементы заполняются нулями. Если длина X больше п, то лишние элементы удаляются. Когда X - матрица, длина столбцов корректируется аналогично;

ft(X,[ Ldirn) и fft(X,n,dim) - применяют преобразование Фурье к одной из размерностей массива в зависимости от значения параметра dim .

Возможно одномерное обратное преобразование Фурье, реализуемое следующими функциями:

ifft(F) - возвращает результат дискретного обратного преобразования Фурье вектора F . Если F - матрица, то ifft возвращает обратное преобразование Фурье для каждого столбца этой матрицы;

ifft(F.n) - возвращает результат n-точечного дискретного обратного преобразования Фурье вектора F ;

ifft(F.,dim) иу = ifft(X,n,dim) - возвращают результат обратного дискретного преобразования Фурье массива F по строкам или по столбцам в зависимости от значения скаляра dim .

Для любого X результат последовательного выполнения прямого и обратного преобразований Фурье ifft(fft(x)) равен X с точностью до погрешности округления. Если X - массив действительных чисел, ifft(fft(x)) может иметь малые мнимые части.

Получим спектры смоделированных сигналов.

Вызовем программу SPTool (Signal Processing Tool) . Импортируем смоделированные сигналы и рассчитаем спектр сигнала. С этой целью выделяем сигнал в списке сигналов и нажмите кнопку Create , расположенную под списком спектров. В окне Spectrum Viewer в поле Parameters нужно указать метод спектрального анализа. Указываем метод ДПФ (используется быстрое преобразование Фурье БПФ (FFT)). Указав метод, следует щёлкнуть мышью по кнопке Apply . Будет выведен график спектральной плотности мощности. Имеется возможность выводить спектры в линейном или в логарифмическом масштабе (меню Options ).

Непрерывным (сплошным) является спектр хаотических (шумовых ) колебаний . В этом случае спектральная характеристика, как функция частоты, также представляет собой хаотический (случайный ) процесс , статистические параметры которого определяются спецификой конкретного случайного временного процесса. Сформируем сигнал, содержащий регулярные составляющие с частотами 50 Гц и 120 Гц и случайную аддитивную компоненту с нулевым средним.

ЗАДАНИЕ 2

Разложению в ряды Фурье подвергаются периодические сигналы. Как уже было сказано выше, периодическую функцию любой формы, заданную на интервале одного периода Т = b-a и удовлетворяющую на этом интервале условиям Дирихле (ограниченная, кусочно-непрерывная, с конечным числом разрывов 1-го рода), можно представить в виде ряда Фурье:

s(t) = S n exp(jnDwt), S n = S(nDw), Dw = 2p/T, (1)

где весовые коэффициенты S n ряда определяются по формуле:

S n = (1/T) s(t) exp(-jnDwt) dt. (2)

Ряд Фурье представляет собой ансамбль комплексных экспонент exp(jnDwt) с частотами, образующими арифметическую прогрессию. Функцию весовых коэффициентов S(nDw ) принято называть комплексным спектром периодического сигнала или фурье-образом функции s(t). Спектр периодического сигнала является дискретной функцией, т.к. он определен только для целых значений n с шагом по частоте, обратным периоду: Dw = 2p/Т (или Df = 1/T ). Первую частотную составляющую спектра при n = 1, равную w 1 = 1×Dw = 2p/T (или f 1 = 1/T ), называют основной частотой сигнала (первой гармоникой), остальные частоты дискретного спектра nw 1 при n>1 называют гармониками сигнала. Значения S(nDw) по положительным и отрицательным значениям n являются комплексно сопряженными.

С чисто математических позиций множество функций exp(jnDwt) , -¥ < n < ¥ образует бесконечномерный базис линейного пространства L 2 ортогональных синус-косинусных функций, а коэффициенты S n по (2) представляют собой проекции сигнала s(t) на эти базисные функции. Соответственно, сигнал s(t) в форме ряда Фурье (1) – это бесконечномерный вектор в пространстве L 2 , точка с координатами S n по базисным осям пространства exp(jnDwt). Подынтегральную функцию экспоненты в выражении (2) с использованием тождества Эйлера

exp(±jwt) = cos(wt) ± j×sin(wt)

можно разложить на косинусную и синусную составляющие и выразить комплексный спектр в виде действительной и мнимой части:

S n = (1/T) s(t) dt = А n - jB n . (3)

A n ≡ A(nDw) = (1/T) s(t) cos(nDwt) dt, (4)

B n ≡ B(nDw) = (1/T) s(t) sin(nDwt) dt. (5)

На рис. 4 приведен пример периодического сигнала (прямоугольный импульс на интервале (1-3.3), повторяющийся с периодом Т=40) и форма действительной и мнимой части его спектра. Обратим внимание, что действительная часть спектра является четной относительно нуля функцией A(nDw) = A(-nDw), так как при вычислении значений A(nDw) по формуле (4) используется четная косинусная функция cos(nDwt) = cos(-nDwt). Мнимая часть спектра является нечетной функцией B(nDw) = -B(-nDw), так как для ее вычисления по (5) используется нечетная синусная функция sin(nDwt) = - sin(-nDwt).

Рис. 4. Сигнал и его комплексный спектр.

Комплексные числа дискретной функции (3) могут быть представлены в виде модулей и аргументов комплекс. экспоненты, что дает следующую форму записи комплексного спектра:

S n = R n exp(jj n), (3")

R n 2 ≡ R 2 (nDw) = A 2 (nDw)+B 2 (nDw),j n ≡ j(nDw) = arctg(-B(nDw)/A(nDw)).

Рис. 5. Модуль и аргумент спектра.

Модуль спектра R(nDw) называют двусторонним спектром амплитуд или АЧХ - сигнала, а аргумент спектра (последовательность фазовых углов j(nDw)) - двусторонним спектром фаз или ФЧХ. Спектр амплитуд всегда представляет собой четную функцию: R(nDw) = R(-nDw), а спектр фаз нечетную: j(nDw) = -j(-nDw). Пример спектра в амплитудном и фазовом представлении для сигнала, показанного на рис. 4, приведен на рис. 5. При рассмотрении спектра фаз следует учитывать периодичность 2p угловой частоты (при уменьшении фазового значения до величины менее -p происходит сброс значения -2p).

Если функция s(t) является четной, то все значения B(nDw) по (5) равны нулю, т.к. четные функции ортогональны синусным гармоникам и подынтегральное произведение s(t)·sin(nDwt) дает нулевой интеграл. Следовательно, спектр функции будет представлен только вещественными коэффициентами. Напротив, при нечетности функции s(t) обнуляются все значения коэффициентов А(nDw) (нечетные функции ортогональным косинусным гармоникам) и спектр является чисто мнимым. Этот фактор не зависит от выбора границ задания периода функции на числовой оси. На рис. 6(А) можно наглядно видеть ортогональность первой гармоники синуса и четной функции, а на рис. 6(В) соответственно косинуса и нечетной функции в пределах одного периода. Учитывая кратность частот последующих гармоник первой гармонике спектра, ортогональность сохраняется для всех гармоник ряда Фурье.

Рис. 6. Ортогональность функций.

При n = 0 имеем В о = 0, и получаем постоянную составляющую сигнала:

S 0 ≡ A o ≡ R o ≡ (1/T) s(t) dt.

2.5. Тригонометрическая форма рядов Фурье.

Объединяя комплексно сопряженные составляющие (члены ряда, симметричные относительно центрального члена ряда S 0), можно перейти к ряду Фурье в тригонометрической форме:

s(t) = А о +2 (A n cos(nDwt) + B n sin(nDwt)), (6)
s(t) = А о +2 R n cos(nDwt + j n). (6")

Значения A n , B n вычисляются по формулам (4-5), значения R n и j n - по формулам (3").

Ряд (6) представляют собой разложение периодического сигнала s(t) на сумму вещественных элементарных гармонических функций (косинусных и синусных) с весовыми коэффициентами, удвоенные значения которых (т.е. значения 2×A n , 2×B n) не что иное, как амплитуды соответствующих гармонических колебаний с частотами nDw. Совокупность амплитудных значений этих гармоник образует односторонний физически реальный (только для положительных частот nDw) спектр сигнала. Для сигнала на рис. 4, например, он полностью повторяет правую половину приведенных на рисунке спектров с удвоенными значениями амплитуд (за исключением значения А о на нулевой частоте, которое, как это следует из (6), не удваивается). Но такое графическое отображение спектров используется довольно редко (за исключением чисто технических приложений). Более широкое применение для отображения физически реальных спектров находит формула (6"). Спектр амплитуд косинусных гармоник при таком отображении называется амплитудно-частотным составом сигнала, а спектр фазовых углов гармоник – фазовой характеристикой сигнала. Форма спектров повторяет правую половину соответствующих двусторонних спектров (см. рис. 5) также с удвоенными значениями амплитуд. Для четных сигналов отсчеты фазового спектра могут принимать только значения 0 или p, для нечетных соответственно ±p/2.

Ряды Фурье произвольных аналоговых периодических сигналов могут содержать бесконечно большое количество членов. Однако одним из важных достоинств преобразования Фурье является то, что при ограничении (усечении) ряда Фурье до любого конечного числа его членов обеспечивается наилучшее по средней квадратической погрешности приближение к исходной функции (для данного количества членов).

На верхнем графике рисунка 7 приведен реконструированный сигнал при N = 8 (гармоники первого пика спектра, центр которого соответствует главной гармонике сигнала и члену ряда n = w s /Dw), N = 16 (гармоники двух первых пиков) и N=40 (пять первых пиков спектра). Естественно, что чем больше членов ряда включено в реконструкцию, тем ближе реконструированный сигнал к форме исходного сигнала. Принцип последовательного приближения к исходной форме наглядно виден на нижнем графике рисунка. На нем же можно видеть и причины появления пульсаций на реконструкции скачков функций, которые носят название эффекта Гиббса . При изменении количества суммируемых членов ряда эффект Гиббса не исчезает. Не изменяется также относительная амплитуда пульсаций (по отношению к амплитуде скачка) и относительное затухание (по коэффициенту последовательного уменьшения амплитуды пульсаций по отношению к максимальному выбросу), изменяется только частота пульсаций, которая определяется частотой последних суммируемых гармоник.

Эффект Гиббса имеет место всегда при резких нарушениях монотонности функций. На скачках эффект максимален, во всех других случаях амплитуда пульсаций зависит от характера нарушения монотонности функции.

В ряд Фурье может разлагаться и произвольная непериодическая функция, заданная (ограниченная, вырезанная из другого сигнала, и т.п.) на интервале (a,b), если нас не интересует ее поведение за пределами данного интервала. Однако следует помнить, что применение формул (1-6) автоматически означает периодическое продолжение данной функции за пределами заданного интервала (в обе стороны от него) с периодом Т = b-a. Однако при этом на краях интервала может возникнуть явление Гиббса, если уровень сигнала на краях не совпадает и образуются скачки сигнала при его периодическом повторении, как это видно на рис. 8. При разложении исходной функции в ограниченный ряд Фурье и его обработке в частотной области на самом деле при этом обрабатывается не исходная функция, а реконструированная из ограниченного ряда Фурье. При усечении рядов Фурье определенное искажение функций существует всегда. Но при малой доле энергии отсекаемой части сигнала (при быстром затухании спектров функций) этот эффект может быть и мало заметен. На скачках и разрывах функций он проявляется наиболее ярко.

Рис. 7. Реконструкция (восстановление) сигнала

Рис. 8. Проявление эффекта Гиббса


Похожая информация.


Цель работы: ознакомление со спектральным описанием периодических функций с помощью рядов Фурье.

Необходимые теоретические сведения. Разложение в ряд Фурье

Первым рассматриваемым сигналом будет последовательность прямоугольных импульсов с амплитудой А , длительностью и периодом повторенияТ . Начало отсчета времени примем расположенным в середине импульса (рис.1).

Рис 1. - Периодическая последовательность прямоугольных импульсов

Данный сигнал является четной функцией, поэтому для его представления удобнее использовать синусно-косинусную форму ряда Фурье- в ней будут присутствовать только косинусные слагаемые , равные

Введем скважность
в полученную формулу для коэффициентов ряда Фурье, а затем приведем формулу к виду
.

Представление последовательности прямоугольных импульсов в виде ряда Фурье имеет вид:

Амплитуды гармонических слагаемых ряда зависят от номера гармоники по закону
(см. рис. 2).График функции
имеет лепестковый характер. Итак, ширина лепестков, измеренная в количестве гармоник, равна скважности последовательности (при
имеем
, если
). Отсюда следует важное свойство спектра последовательности прямоугольных импульсов - в нем отсутствуют (имеют нулевые амплитуды) гармоники с номерами, кратными скважности.

Рис. 2 - Коэффициенты ряда Фурье для последовательности прямоугольных импульсов.

Расстояние по частоте между соседними гармониками равно частоте следования импульсов -
. Ширина лепестков спектра, измеренная в единицах частоты, равна
, то есть обратно пропорциональна длительности импульсов, т.е. чем короче сигнал, тем шире его спектр.

Важным частным случаем предыдущего сигнала является меандр (рис. 3) - последова­тельность прямоугольных импульсов со скважностью, равной
, когда дли­тельности импульсов и промежутков между ними становятся равными.

Рис. 3 - Меандр

,

где m – произвольное целое число.

Таким образом, в спектре меандра присутствуют только нечетные гармоники. Представление меандра в виде ряда Фурье с учетом этого может быть записано следующим образом:

Гармонические составляющие, из которых складывается меандр, имеют ампли­туды, обратно пропорциональные номерам гармоник, и чередующиеся знаки. На примыкающих к разрыву участках сумма ряда Фурье дает заметные пульса­ции. Это явление, присущее ря­дам Фурье для любых сигналов с разрывами первого рода (скачками), называет­ся эффектом Гиббса. Можно показать, что амплитуда первого (самого большого) выброса составляет примерно 9 % от величины скачка.

Рисунок 4. Эффект Гиббса.

Пилообразный сигнал (рис. 5). в пре­делах периода описывается линейной функцией:

,
.

Данный сигнал является нечетной функцией, поэтому его ряд Фурье в синусно-косинусной форме будет содержать только синусные слагаемые:

Сам ряд Фурье для пилообразного сигнала выглядит следующим образом:

Рис. 5 - Пилообразный сигнал.

Периодическая последовательность треугольных импульсов имеет симметричную форму (рис. 6):

,
.

Рис. 6 - Последовательность треугольных импульсов.

Ряд Фурье имеет следующий вид:

Рассмотрим программу, реализующую разложение в ряд Фурье прямоугольной последовательности импульсов.

ЗАДАНИЕ1.

Общие описания

Французский математик Фурье (Ж. Б. Ж. Фурье 1768-1830) провоз гласил достаточно смелую для своего времени гипотезу. Согласно этой гипотезе не существует функции, которую нельзя было бы разложить в тригонометрический ряд. Однако, к сожалению, в то время такая идея не была воспринята всерьез. И это естественно. Сам Фурье не смог привести убедительных доказательств, а интуитивно поверить в гипотезу Фурье очень трудно. Особенно нелегко представить тот факт, что при сложении простых функций, подобных тригонометрическим, воспроизводятся функции, совершенно на них не похожие. Но если предположить, что гипотеза Фурье верна, то периодический сигнал любой формы можно разложить на синусоиды различных частот, или наоборот, посредством соответствующего сложения синусоид с разными частотами возможно синтезировать сигнал какой угодно формы. Следовательно, если эта теория верна, то ее роль в обработке сигналов может быть очень велика. В этой главе первым делом попы­таемся проиллюстрировать правильность гипотезы Фурье.

Рассмотрим функцию

f(t)= 2sin t – sin 2t

Простой тригонометрический ряд

Функция является суммой тригонометрических функций, иными словами, представлена в виде тригонометрического ряда из двух членов. Добавим одно слагаемое и создадим новый ряд из трех членов

Снова добавив несколько слагаемых, получим новый тригонометрический ряд из десяти членов:

Коэффициенты этого тригонометрического ряда обозначим как b k , где k - целые числа. Если внимательно посмотреть на последнее соотношение, то видно, что коэффициенты можно описать следующим выражением:

Тогда функцию f(t) можно представить следующим образом:

Коэффициенты b k - это амплитуды синусоид с угловой частотой к. Иначе говоря, они задают величину частотных составляющих.

Рассмотрев случай, когда верхний индекс к равен 10, т.е. М= 10. Увеличив значение М до 100, получим функцию f(t).

Эта функция, будучи тригонометрическим рядом, по форме приближается к пилообразному сигналу. И, похоже, гипотеза Фурье совершенно верна по отноше­нию к физическим сигналам, с которыми мы имеем дело. К тому же в этом примере форма сигнала не гладкая, а включает точки разрыва. И то, что функция воспроизводится даже в точках разрыва, выглядит многообещающим.

В физическом мире действительно много явлений, которые можно представить как суммы колебаний различных частот. Типичным примером этих явлений является свет. Он представляет собой сумму электромагнитных волн с длиной волны от 8000 до 4000 ангстрем (от красного цвета свечения до фиолетового). Вы, конечно, знаете, что если белый свет пропустить через призму, то появится спектр из семи чистых цветов. Это происходит потому, что коэффициент преломления стекла, из которого сделана призма, изменяется в зависимости от длины электромагнитной волны. Это как раз и является доказательством того, что белый свет - это сумма световых волн различной дли­ны. Итак, пропустив свет через призму и получив его спектр, мы можем проанализировать свойства света, исследуя цветовые комбинации. Подобно этому, посредством разложения принятого сигнала на различные частотные составляющие, мы можем узнать, как возник первоначальный сигнал, по какому пути он следовал или, наконец, какому внешнему влиянию он подвергался. Одним словом, мы можем получить информацию для выяснения происхождения сигнала.

Подобный метод анализа называется спектральным анализом или анализом Фурье.

Рассмотрим следующую систему ортонормированных функций:

Функцию f(t) можно разложить по этой системе функций на отрезке [-π, π] следующим образом:

Коэффициенты α k , β k , как было показано ранее, можно выразить через скалярные произведения:

В общем виде функцию f(t) можно представить следующим образом:

Коэффициенты α 0 , α k , β k называют коэффициентами Фурье, а подобное представление функции называется разложением в ряд Фурье. Иногда такое представление называют действительным разложением в ряд Фурье, а коэффициенты - действительными коэффициентами Фурье. Термин «действительный» вводится для того, чтобы отличить представленное разложение от разложения в ряд Фурье в комплексной форме.

Как уже было сказано ранее, произвольную функцию можно разложить по системе ортогональных функций, даже если функции из этой системы не представляются в виде тригонометрического ряда. Обычно под разложением в ряд Фурье подразумевается разложение в тригонометрический ряд. Если коэффициенты Фурье выразить через α 0 , α k , β k получим:

Поскольку при k = 0 coskt = 1, то константа а 0 /2 выражает общий вид коэффициента а k при k = 0.

В соотношении (5.1) колебание самого большого периода, представленное суммой cos t и sin t, называют колебанием основной частоты или первой гармоникой. Колебание с периодом, равным половине основного периода, называют второй гармоникой. Колебание с периодом, равным 1/3 основного периода, называют третьей гармоникой и т.д. Как видно из соотношения (5.1) a 0 является постоянной величиной, выражающей среднее значение функции f{t) . Если функция f(t) представляет собой электрический сигнал, то а 0 представляет его постоянную составляющую. Следовательно, все остальные коэффициенты Фурье выражают его переменные составляющие.

На Рис. 5.2 представлен сигнал и его разложение в ряд Фурье: на постоянную составляющую и гармоники различных частот. Во временной области, где переменной величиной является время, сигнал выражается функцией f(t), а в частотной области, где переменной величиной является частота, сигнал представляется коэффициен­тами Фурье (a k , b к).

Первая гармоника является периодической функцией с периодом 2 π.Прочие гармоники также имеют период, кратный 2 π. Исходя из этого, при формировании сигнала из составляющих ряда Фу­рье мы, естественно, получим периодическую функцию с периодом 2 π. А если это так, то разложение в ряд Фурье - это, собственно говоря, способ представления периодических функций.

Разложим в ряд Фурье сигнал часто встречающегося вида. Например, рассмотрим упомянутую ранее пилообразную кривую (Рис. 5.3). Сигнал такой формы на отрезке - π < t < π я выражается функцией f(t) = t , поэтому коэффициенты Фурье могут быть выражены следующим образом:

Пример 1.

Разложение в ряд Фурье сигнала пилообразной формы

f(t) = t,

где , - частота основной гармоники, ;

() – высшие гармоники; (включая ) и – коэффициенты Фурье.

,

Постоянную составляющую (среднее значение) функции удобно вычислять по отдельному выражению полученному из при :

, тогда ,

Очевидно, что если сигнал представляет собой четную функцию времени , то в тригонометрической записи ряда Фурье (1.14) остаются только косинусоидальные составляющие , так как коэффициенты обращаются в нуль. Для сигнала определяемого нечетной функцией времени, наоборот, в нуль обращаются коэффициенты , и ряд содержит синусоидальные составляющие

Часто выражение (1.15) удобно представлять в другой, эквивалентной форме ряда Фурье:

,

где , - амплитуда, - начальная фаза - ой гармоники.

На рис. 1.10 приведены графики, иллюстрирующие представление периодической последовательности прямоугольных импульсов конечным числом слагаемых () ряда Фурье.

Для функции (рис.1.10) разложение имеет вид

Периодическая последовательность прямоугольных импульсов представляется как результат сложения постоянной составляющей и синусоидальных сигналов с частотами , причем период синусоиды с частотой совпадает с периодом последовательности импульсов . Для удобства можно представить в виде .

Совокупность всех гармонических составляющих разложения функции в ряд Фурье называется спектром функции.

Наличие отдельных гармонических составляющих спектра и величины из амплитуд можно наглядно показать с помощью спектральной диаграммы (рис.1.11), у которой горизонтальная ось служит осью частот, а вертикальная – осью амплитуд.

В точках оси частот отображаются амплитуды соответствующих гармонических составляющих разложения функции.

Легко заметить, что график суммы двух первых слагаемых разложения (1.16) воспроизводит форму графика функции очень грубо, только в основных чертах. Учет третьего слагаемого существенно улучшает совпадение суммы с функцией . Таким образом, с увеличением числа учитываемых гармоник точность представления возрастает.

На практике спектральные диаграммы называют более кратко – амплитудный спектр, фазовый спектр. Чаще всего интересуются амплитудным спектром (рис. 1.11). По нему можно оценить процентное содержание гармоник, наличие и уровни отдельных гармонических составляющих спектра.

Пример 1.1. Разложим в ряд Фурье периодическую последовательность прямоугольных видеоимпульсов с известными параметрами (, , ) (рис. 1.12), четную относительно точки :

.

Воспользуемся для представления этого сигнала формой записи ряда Фурье в виде (1.12). Для спектрального представления последовательности прямоугольных импульсов начало отсчета целесообразно брать в середине импульса. Действительно, в этом случае и в разложении останутся только косинусоидальные составляющие, так как интегралы от нечетных функций за период равны нулю bk=0.

По формулам (1.14) находим коэффициенты:

, ,

позволяющие записать ряд Фурье:

,

где - скважность импульсной последовательности.

Для построения спектральных диаграмм при конкретных числовых данных полагаем и вычисляем коэффициенты гармоник. Результаты расчета первых восьми составляющих спектра при , , и 8 сведены в табл. 1.1 и построены спектральные диаграммы на рис.1.13.

Таблица 1.1. Амплитуды спектральных составляющих для периодической последовательности прямоугольных импульсов

Из приведенного примера следует, что с увеличением скважности увеличивается число спектральных составляющих и уменьшаются их амплитуды.

Выбор количества спектральных составляющих зависит от формы сигнала и точности его представления рядом Фурье. Плавное изменение формы сигнала потребует меньше числа гармоник при той же точности представления, чем для скачкообразного сигнала. Для приближенного представления прямоугольных импульсов на практике обычно считают, что достаточно трех - пяти гармоник.