Процессоры sandy bridge. Новая линейка мобильных процессоров Sandy Bridge. Чипсеты для мобильных ПК

Очередной обзор на тему нового продукта Intel, как правило, начинается с объяснения стратегии процессорного гиганта под названием Тик-Так. Смысл ее заключается в том, что каждые два года миру представляется новая архитектура с промежуточным переходом на более тонкий техпроцесс.


Благодаря ей, прогресс на рынке не останавливается и мы постоянно сталкиваемся с более функциональными и производительными решениями. Правда, некоторые нововведения не так сильно влияют на производительность, как того хотелось бы. Например, переход от архитектуры Core к Nehalem серьезной прибавки в скорости не принес, но позволил отказаться от привычной шины FSB и сделать ЦП более интегрированным, содержащим в себе не только контроллер памяти, но и графическое ядро. Последним оснащались очень медленные представители семейства Westmere. Следующий шаг Intel призван как раз исправить сложившуюся ситуацию и вывести будущие продукты на новый уровень производительности.

Семейство процессоров Intel, выполненных по 32-нм технологическим нормам (ядро Clarkdale) оказалось медленнее первых решений на базе архитектуры Nehalem (Bloomfield и Lynnfield). Исключением были шестиядерные Core i7-9xx (Gulftown), лишенные встроенного видеоядра. Такое поведение было обусловлено строением младших представителей Westmere, которые состояли из двух кристаллов. На одном из них располагались вычислительные блоки и кэш, а на другом — контроллеры памяти, шины PCI Express и графическое ядро. Связь между этими половинками осуществлялась за счет интерфейса QPI. Естественно, этот гибрид не смог демонстрировать чудес производительности, даже несмотря на поддержку технологии Hyper-Threading, благодаря которой он лишь конкурировал с младшими четырехъядерными моделями Core 2.

При такой высокой интеграции использование монолитного кристалла с внутренними широкими шинами для обмена информацией между блоками напрашивается само собой. Пройдя обкатку 32-нм техпроцесса, инженеры компании наконец-то смогли объединить все блоки в одном чипе и даже пересмотрели архитектуру, которая получила название Sandy Bridge.


Итак, что же в ней такого особенного? Во-первых, как уже отмечалось, все функциональные блоки теперь располагаются на одном кристалле, а количество ядер в производительных моделях процессоров увеличено до четырех. Во-вторых, разделяемая кэш-память третьего уровня стала общей для всех, включая видеоядро, и работает она на частоте процессора, что наилучшим образом скажется на производительности последнего. Кроме того, было увеличено быстродействие графического ядра, а часть северного моста, известная по старым процессорам как Uncore, теперь называется System Agent. И в-третьих, тактовый генератор встроен в чипсет и разгон по базовой частоте теперь потерял свою актуальность. Но обо всем по порядку.


Основные представители архитектуры Sandy Bridge содержат четыре ядра и поддерживают технологию Hyper-Threading, благодаря которой процессоры могут выполнять восемь потоков одновременно. Кэш-память третьего уровня (или LLC — last level cache, кэш последнего уровня) теперь работает на частоте процессора, имеет объем в восемь мегабайт и может использоваться всеми блоками ЦП, которые в нем нуждаются. Учитывая большое количество потребителей и возможный рост числа ядер в будущих процессорах, инженерам Intel пришлось отказаться от привычной топологии связи между узлами и отдать предпочтение 256-битной кольцевой шине, соединяющей вычислительные ядра, кэш, графический процессор и «системный агент». Пропускная способность такой шины за такт равна произведению количества процессорных ядер на ее ширину. Для четырехъядерного Sandy Bridge с 8 мегабайтами кэша и частотой 3,0 ГГц она составит 384 Гбайт в секунду (96 Гбайт/с на одно соединение), а для двухъядерного — лишь 192 Гбайт/с.


Объемы кэш-памяти остальных уровней остались без изменений (по 32 Кбайт для инструкций и данных, и 256 Кбайт второго уровня для каждого ядра), но скорость работы с ними теперь выше. Был еще добавлен так называемый L0-кэш на 1,5 тыс. декодированных микроопераций, позволяющий повысить быстродействие процессора и его энергоэффективность.

System Agent, пришедший на смену Uncore, является аналогом северного моста и содержит контроллеры памяти DDR3 и шин PCI Express, DMI, блок видеовыхода и модуль управления питанием (Power Control Unit, PCU). В отличие от того же Uncore, «системный агент» функционирует отдельно от L3-кэша и не зависит от его частоты и напряжения питания. Ранее связь с кэш-памятью третьего уровня накладывала сильные ограничения при разгоне процессоров, особенно на ядре Bloomfield. Двухканальный контроллер памяти был переработан и его производительность с латентностью теперь не хуже, чем у лучших представителей архитектуры Nehalem. Из поддерживаемой памяти заявлена DDR3-1066 и DDR3-1333, но при использовании материнских плат на чипсете Intel P67 Express можно будет устанавливать модули частотой до 2133 МГц. Количество линий PCI Express 2.0 по сравнению с предшественниками не изменилось и составляет 16 штук. При работе CrossFireX или SLI они могут комбинироваться по восемь линий для каждой видеокарты. «Системный агент», вычислительные ядра с кэшем и графический процессор трактуются отдельно друг от друга и имеют свои напряжения питания. Модуль PCU собирает данные по уровню энергопотребления и тепловыделения этих блоков и управляет их состоянием, переводя либо в экономичный режим работы, либо в производительный. Благодаря раздельной схеме тактования частот, ЦП и видеоядро за счет технологии Turbo Boost 2.0 могут разгоняться независимо друг от друга, и даже сверх нормы уровня TDP, но лишь на непродолжительное время и при условии, что процессор до этого простаивал некоторое время.


Помимо архитектурных изменений, в новых процессорах появилась поддержка 256-битных инструкций AVX (Advanced Vector Extensions), являющихся дальнейшим развитием SSE и позволяющих увеличить скорость вычислений с плавающей точкой в мультимедиа-приложениях, научных и финансовых задачах. Поддержка инструкций AES-NI, которые появились в Westmere и давали возможность повысить быстродействие шифрования и дешифрования по алгоритму AES, продолжила свое существование и в Sandy Bridge.

Новое графическое ядро Intel HD Graphics хоть и относится к новому поколению, но существенных архитектурных различий между ним и графическим процессором, встроенным в Clarkdale, нет. Это все те же 12 шейдерных блока (для HD Graphics 3000 и шесть для HD Graphics 2000), но уже с поддержкой DirectX 10.1 и OpenGL 3.0.


За счет переноса видеоядра на общий с процессором кристалл, выполненный по 32-нм технологическим нормам, стало возможным увеличивать тактовую частоту GPU до 1,35 ГГц. Это может положительно сказаться на быстродействии видеоподсистемы, вплоть до конкуренции с дискретными графическими адаптерами начального уровня AMD и NVIDIA. Но даже на такой частоте скорость в игровых приложениях все равно будет оставлять желать лучшего. В новой версии Intel HD Graphics скорее будет интересна возможность аппаратного кодирования видео формата MPEG2 и H.264, новые фильтры пост-обработки и поддержка HDMI 1.4 с Blu-Ray 3D.


Конечно, вышеперечисленные изменения призваны увеличить производительность новых решений, но самое серьезное нововведение в Sandy Bridge, пожалуй, будет перенесение генератора базовой частоты в набор системной логики. Он единственный и от него зависят все частоты различных узлов и блоков, как самого процессора, так и чипсета. По этой причине базовая частота составляет 100 МГц и при ее повышении будут расти частота не только процессора, но и всевозможных шин и контроллеров, а это серьезно скажется на стабильности системы во время разгона.


В связи с этим для новых процессоров потребовался и новый разъем — LGA 1155. И хотя он внешне похож на LGA 1156, в нем отсутствует один контакт, а ключ смещен ближе к краю разъема, что не позволяет вставить в него ЦП старого поколения.


Что качается разгона, то максимум чего можно добиться, так это поднятия базовой с номинальных 100 МГц до 105 МГц (+/- один-два мегагерца), чего явно будет недостаточно. Пожалуй, с таким подходом Intel энтузиасты могли бы поставить крест на платформе LGA1155, если бы не одно но — компания все же решила оставить возможность разгона своих процессоров, но только в K-серии и путем поднятия множителя, так как в них он не заблокирован (максимальный x57). Пользователи уже успели познакомиться с подобными моделями на ядрах Lynnfield и Clarkdale. Их аналогов на Sandy Bridge пока два и все они относятся к ценовому диапазону $200-300, что еще больше разочарует оверклокеров, большинство которых вряд ли смогут позволить себе такие процессоры.

Но для самых экономных все-таки была сделана поблажка — в любом обычном процессоре на базе новой архитектуры можно поднять множитель на четыре пункта, не считая турбо-режим. Например, если частота ЦП 3,1 ГГц, то он легко заработает на 3,5 ГГц, при этом технология Turbo Boost будет исправно функционировать. Это, конечно, не разгон в 1,5 раза по частоте, к которому уже привыкли, но все же лучше, чем ничего.


Помимо всего прочего, официальному разгону теперь поддается и графическое ядро, естественно, при использовании материнской платы на соответствующем чипсете. Для производительного ПК потребуется плата на Intel P67 Express, позволяющему разгонять сам процессор, а чтобы воспользоваться встроенным видеядром — на Intel H67 Express. К сожалению, последний лишен возможности управлять множителем ЦП.


Более подробно о них будет рассказано в ближайших материалах на нашем сайте, а в заключении об архитектуре Sandy Bridge стоит упомянуть о реализации поддержки памяти DDR3, максимальный объем которой доведен до 32 Гбайт. Дело в том, что с переходом на раздельное формирование частот основных блоков и разгон процессора путем повышения его множителя, частота памяти всегда постоянна и равна умножению определенного коэффициента на частоту 133 МГц, имеющую соотношение с базовой как 4:3. Количество множителей памяти позволяет использовать ее в режимах от DDR3-800 до DDR3-2400 с шагом 266 МГц. Если рабочая частота модулей не будет кратна 266, они автоматически (при использовании профилей XMP) переведутся в режим с ближайшей меньшей частотой.

После краткого описания архитектурных особенностей Sandy Bridge перейдем к продуктам на ее основе.
Модельный ряд

Процессоры на базе новой микроархитектуры в скором времени должны будут занять все ниши, включая решения начального уровня, где сейчас господствуют продукты с разъемом LGA775. Исключением станет высокопроизводительный сегмент рынка, который отдан на откуп моделям Bloomfield и Lynnfield, хотя в конце этого года все должно будет измениться в пользу Sandy Bridge и ее производных.


На данный момент компания Intel анонсировала 29 моделей новых процессоров, из которых 14 предназначены для настольного рынка. Среди них как обычные (95 Вт), так и с пониженным энергопотреблением (модели с суффиксом S — 65 Вт, и T — 45-35 Вт). Естественно, больший интерес для значительной части пользователей представляют процессоры со стандартным уровнем TDP. Тем более, что на отечественном рынке какие-либо другие вариации встречаются крайне редко.

В представленной ниже таблице приводится список всех стандартных моделей ЦП на базе Sandy Bridge, старшие из которых уже доступны на рынке.

Intel Core i7-2600/2600K* Intel Core i5-2500/2500K* Intel Core i5-2400 Intel Core i5-2300 Intel Core i3-2120 Intel Core i3-2100
Семейство
Разъем LGA1155 LGA1155 LGA1155 LGA1155 LGA1155 LGA1155
Техпроцесс CPU, нм 32 32 32 32 32 32
Число ядер 4
(8 потоков)
4
(4 потока)
4
(4 потока)
4
(4 потока)
2
(4 потока)
2
(4 потока)
Номинальная частота, ГГц 3,4 3,3 3,1 2,8 3,3 3,1
Turbo Boost (шаг поднятия частоты в зависимости от загрузки 1/2/3/4 ядер) 4/3/2/1 4/3/2/1 4/3/2/1 4/3/2/1 - -
Объем L3 кэша, Мбайт 8 6 6 6 3 3
Графическое ядро GMA HD 2000/3000 GMA HD 2000/3000 GMA HD 2000 GMA HD 2000 GMA HD 2000 GMA HD 2000
Частота графического ядра, МГц (номинанальная/турбо-режим) 850/1350 850/1100 850/1100 850/1100 850/1100 850/1100
Каналов памяти 2 2 2 2 2 2
Поддерживаемый тип памяти DDR3-1333/
1066
DDR3-1333/
1066
DDR3-1333/
1066
DDR3-1333/
1066
DDR3-1333/
1066
DDR3-1333/
1066
Hyper-Threading + - - - + +
AES-NI + + + + - -
Intel vPro +/- +/- + - - -
TDP, Вт 95 95 95 95 65 65
Рекомендованная стоимость, $ 294/317 205/216 184 177 138 117
* — множитель разблокирован на повышение.

Как видим, название серий остались прежние — Core i7, Core i5 и Core i3, но изменились номера процессоров, которые стали четырехзначными. Первая цифра обозначает второе поколение Intel Core, следующие три цифры относятся к рейтингу производительности, а суффикс, в данном случае K, означает разблокированный множитель.

В серии Core i7 пока представлены две модели с частотой 3,4 ГГц и кэш-памятью объемом восемь мегабайт. Технология Turbo Boost позволяет поднимать рабочую частоту на 1-4 шага в зависимости от количества загруженных ядер. В процессоре с разблокированным множителем используется более продвинутое видеоядро GMA HD 3000, частота которого может увеличиваться с номинальных 850 МГц до 1350 МГц. Такой ЦП оценен в 317 долларов в партиях по одной тыс. штук. Более доступное решения для энтузиастов относится к серии Core i5 и имеет номер 2500K со стоимостью порядка $216. Процессоры этого модельного ряда оснащены лишь шестью мегабайтами кэша и лишены поддержки технологии Hyper-Threading. Но как покажет наше тестирование, Sandy Bridge неплохо справляется и без нее. Как и в случае со старшими продуктами, режим Turbo Boost и графическое ядро используются аналогичные, только частота GPU может подниматься до 1100 МГц. Для менее производительных Core i5 авторазгон процессора не такой прыткий и имеет шаг 1-2-2-3 (для четырех, трех, двух и одного ядра соответственно). Самые недорогие представители нового поколения относятся к серии Core i3, обладают лишь двумя ядрами и кэш-памятью в три мегабайта, но зато поддерживают Hyper-Threading и могут обрабатывать четыре потока одновременно. Технология Turbo Boost недоступна и для компенсации низкой производительности их частота изначально высокая и стартует с отметки 3,1 ГГц. Поддержка новых инструкций AES-NI ими не предусмотрена. За такие лишения производитель назначил цену около 120-140 долларов за процессор. Осталось лишь дождаться замены нынешнему Celeron, который базируется на уже древней архитектуре пятилетней давности.

Оба они относятся к решениям для энтузиастов и рассчитаны на без проблемный разгон, благодаря разблокированному на повышение множителю. Внешне процессоры Sandy Bridge отличаются от Lynnfield и Clarkdale смещенными к краю ключами и меньшим количеством контактов на лицевой стороне подложки:

Core i7-2600K, Core i5-2500K (слева), Core i5-870 и Core i5-660 (справа)


Частота модели Core i7-2600K составляет 3,4 ГГц, но за счет технологии Turbo Boost она выше на 100 МГц. И чем меньше исполняется потоков, тем она больше растет.


При загрузке трех ядер их частота будет равна 3,6 ГГц, двух — уже 3,7 ГГц, а одного — достигнет своего максимума в 3,8 ГГц. На данный момент, это один из самых высокочастотных процессоров в активе Intel. И в будущих моделях этот предел безболезненно может быть доведен до 4,2-4,5 ГГц.


Следующий участник лишен поддержки Hyper-Threading, обладает объемом кэш-памяти шесть мегабайт и по спецификациям функционирует на 3,3 ГГц. За счет авторазгона фактическая частота, естественно, равна 3,4 ГГц.


В плане работы Turbo Boost ничего не изменилось и частота Core i5-2500K меняется с шагом 100 МГц, пока не достигнет максимальных 3,7 ГГц.


В простое процессоры функционируют на 1600 МГц, при этом напряжение питания снижается с 1,2 до 0,9 В. Во время работы авторазгона оно наоборот, немного повышается (до 1,24 В). В целом, ничего особенного и все характеристики рассматриваемых моделей полностью соответствуют спецификациям на них.

Система охлаждения

Прежде чем перейдем к разгону, стоит пару слов сказать о системах охлаждения для новых процессоров.

К нам на тестирование попали два кулера. Один из них простой, с алюминиевым радиатором и медным пяточком. Частота вращения вентилятора с ШИМ-управлением составляла около 1100-2000 об/мин. Им, вероятнее всего, будут оснащаться все представители архитектуры Sandy Bridge.



Второй охладитель — башенного типа, знакомый нам еще по шестиядерному Core i7-980X Extreme Edition, где он впервые был использован. С небольшими изменениями в его конструкции компания стала им оснащать продукты для энтузиастов прошлого поколения, и даже поставляла кулер на розничный рынок отдельной единицей по названием XTS100H.



В его конструкции применены три тепловые трубки (а не четыре, как у СО Core i7-980X), пронизывающие ряд тонких часто расположенных алюминиевых пластин. Вентилятор с ШИМ-управлением защищен проволочной решеткой и обладает скоростью 800-2600 об/мин (17-45 дБА). Для снижения уровня шума предусмотрен переключатель на крышке кулера, переводящий вентилятор в менее интенсивный режим работы — 800-1400 об/мин.


Основание кулера медное, небольших размеров, но отполировано до зеркального блеска. Крепление XTS100H к плате осуществляется за счет пластиковой усилительной пластины и четырех винтов, и оно вполне надежно.


По эффективности в номинальном режиме работы процессора Core i7-2600K данные системы охлаждения проявляют себя вполне неплохо на фоне недорогого Arctic Cooling Freezer 11 LP и даже Noctua NH-D14.


Но это касается функционирования процессора на стандартной частоте — с разгоном до 4,5-5 ГГц использовать такие кулеры, к сожалению, нельзя.

Разгон

Теперь самое интересное. Наверняка многие сталкивались с проблемой разгона процессоров архитектуры Nehalem на базе 45-нм техпроцесса, которым частоты свыше 4,2 ГГц при воздушном охлаждении давались с трудом. Но никого не удивляли 4,5 ГГц на 32-нм Clarkdale и Gulftown. Помимо самого потенциала ядра свою лепту в проблему разгона вносила высокая частота BCLK, которая получалась с младшими моделями ЦП. С Sandy Bridge повышать частоту можно лишь путем увеличения множителя, предел которого будет определяться уже возможностями процессора K-серии (максимум x57). Для достижения 4,5 ГГц достаточно будет поднять немного напряжение на ядрах, не затрагивая остальные параметры (Turbo Boost обязательно должен быть включен). Тестовые экземпляры Core i7-2600K и Core i5-2500K на такой частоте заработали при повышении напряжения до 1,28 и 1,35 В соответственно, чего вполне достаточно для режима работы системы 24/7. Прибавка еще 200 МГц потребовала увеличение напряжения до 1,3 В для старшей модели и 1,375 В для младшей. Пять гигагерц покорились лишь Core i7-2600K при 1,45 В:


Температура процессора в таком режиме с Noctua NH-D14 не превышала 78°C.

Core i5-2500K смог стабильно функционировать на 4,8 ГГц при напряжении 1,425 В (температура не выходила за рамки 71 градуса по Цельсию) — если младшие все такие, то для серьезных экспериментов с разгоном он явно не подходит.


Для достижения еще большего уровня разгона Sandy Bridge в обязательном порядке необходимо активировать в BIOS/UEFI материнских плат опцию Internal PLL Overvoltage. Можно также попытаться поднять различные напряжения питания. Максимально безопасное для процессора составляет 1,52 В (но есть мнение, что выше 1,38-1,4 В для режима 24/7 использовать не рекомендуется), для «системного агента» — 0,971 В, модулей памяти — 1,57 В. Параметр VCCIO (или Vtt — напряжение на контроллере памяти) позволяет добиться стабильности при работе с высокочастотной памятью, но выше 1,1 В поднимать не рекомендуется. CPU PLL ограничен 1,89 В, а графическое ядро, как и процессорное, может довольствоваться 1,52 В.

Помимо разгона процессора можно увеличить частоту памяти, причем, без каких-либо танцев с бубном, как того требовалось ранее. Достаточно выбрать необходимый режим и, возможно, немного поднять напряжение на контроллере.


Но у этой медали есть и обратная сторона. Так как предел разгона по базовой составляет около 105 МГц, определить максимальную конкретно возможную частоту теперь будет сложно. Придется либо ограничиваться фиксированными режимами, либо подбирать BCLK в пределах 100-105 МГц, что даст прибавку по 20 МГц на каждый мегагерц сверх номинала, что не так уж и много.
Тестовые конфигурации

Для сравнения производительности новых процессоров с решениями прошлого поколения и конкурентами была собрана следующая система:

  • материнская плата: ASUS P8P67 Deluxe (Intel P67 Express, EFI 1053);
  • память: Kingston KHX2000C8D3T1K3/6GX (3x2 ГБ, DDR3-2000@1333, 8-8-8-24-1T);
  • кулер: Noctua NH-D14;
  • видеокарта: ASUS ENGTX580/2DI/1536MD5 (GeForce GTX 580);
  • жесткий диск: Seagate ST3500418AS (500 ГБ, 7200 об/мин, SATAII);
  • блок питания: Seasonic SS-600HM (600 Вт);
  • операционная система: Windows 7 Home Premium x64;
  • драйвер чипсета: Intel Chipset Software Installation Utility 9.2.0.1019;
  • драйвер видеокарты: GeForce 263.09.
В операционной системе брандмауэр, UAC и Windows Defender отключались, файл подкачки устанавливался в размере 4096 МБ. Настройки видеодрайвера не изменялись. Память работала на частоте 1333 МГц с задержками 8-8-8-24-1T. Остальные настройки в UEFI материнской платы оставлялись по умолчанию.

Конфигурации остальных участников отличались процессорами, материнскими платами и, по необходимости, памятью. Для платформы LGA1366 она была следующая:

  • процессор: Intel Core i7-975 EE (3,33 ГГц, 8 Мбайт кэш);
  • материнская плата: ASUS Sabertooth X58 (Intel X58 Express, BIOS 0603).
Платформа LGA1156 комплектовалась таким оборудованием:
  • процессор: Intel Xeon X3470 (взамен Core i7-870; 2,93 ГГц, 8 МБайт кэш);
  • процессор: Intel Core i5-660 (3,33 ГГц, 4 Мбайт кэш);
  • материнская плата: ASUS Maximus III Extreme (Intel P55 Express, BIOS 1204).
Конкурирующий лагерь отстаивал честь следующим:
  • процессор: AMD Phenom II X6 1100T (3,3 ГГц, 6 МБайт кэш);
  • процессор: AMD Phenom II X6 1075T (3,0 ГГц, 6 МБайт кэш);
  • материнская плата: ASUS Crosshair IV Extreme (AMD 890FX, BIOS 0502);
  • память: Goodram Play GY1600D364L8/4GDC (2x2 ГБ, DDR3-1600@1333, 8-8-8-24-1T).
Такой выбор процессоров обусловлен как наличием их на момент тестирования, так и ценовым позиционированием каждой из моделей. Так, стоимость Core i7-2600K (а значит и обычной версии) почти соответствует Core i7-870, а с Core i5-2500K конкурируют Core i5-660 и AMD Phenom II X6 1075T. Модель Phenom II X6 1100T является флагманом компании AMD и занимает среднее положение между линейками Core i7 и Core i5.

Все процессоры тестировались как в номинальном режиме (частота Uncore у Core i7-975 EE составляла 2940 МГц) со всеми включенными технологиями, такими как Hyper-Threading, Turbo Boost и Turbo Core, так и при разгоне до 3,8 ГГц с отключенными функциями авторазгона. Частота памяти всегда держалась на уровне 1333 МГц, представитель AMD разгонялся лишь один, так как разницы при этом между ними фактически не было бы:

  • Core i7-2600K — частота процессора 3800 МГц (38x100), память 1333 МГц (10x133);
  • Core i5-2500K — частота процессора 3800 МГц (38x100), память 1333 МГц (10x133);
  • Core i7-975 EE — частота процессора 3806 МГц (22x173), Uncore 3114 МГц (18x173), QPI 3114 МГц (18x173), память 1384 МГц (8x173);
  • Core i7-870 — частота процессора 3806 МГц (22x173), Uncore 3114 МГц (18x173), QPI 3114 МГц (18x173), память 1384 МГц (8x173);
  • Core i5-660 — частота процессора 3806 МГц (22x173), Uncore 3114 МГц (18x173), QPI 3806 МГц (22x173), память 1384 МГц (8x173);
  • Phenom II X6 1100T — частота процессора 3813 МГц (15,5x246), NB и HT 2214 МГц (9x246), память 1311 МГц (5,33x246).
Результаты тестирования в прикладном ПО

Подсистема памяти




Судя по результатам в программе Aida64 контроллер памяти Sandy Bridge действительно был переработан и демонстрирует высокую производительность, особенно в тесте на запись. Копирование данных происходит быстрее у старшей модели, а Core i5-2500K в этом случае близок по показателям к процессорам предыдущего поколения.


Обойти по латентности контроллер Lynnfield пока не удалось, но разница при стандартном режиме работы минимальна и больше проявляется уже с разгоном. И скорее всего, она будет расти с дальнейшим повышением частоты. Но учитывая потенциал новинок, на это обращать особо не стоит.

Синтетика


В PCMark Vantage рассматриваемые процессоры превосходят своих предшественников. Даже урезанный Sandy Bridge оказался производительнее бывшего флагмана компании Intel. Также достойно себя ведет Core i5-660, хотя в большинстве тестов этого пакета результатами он не блистал. Например, в игровом он хуже остальных решений компании на 20-40%.


Но за счет поддержки инструкций AES-NI в тесте Communications он почти на равных соперничает с двухтысячными моделями.


Отсюда такой высокий итоговый балл. Отметим небольшой проигрыш Core i5-2500K в игровом тесте.

Архивирование



Тестирование в архиваторах осуществлялось путем сжатия папки с различными файлами общим объемом 600 Мбайт. Оба новых процессора демонстрируют чудеса производительности. Двухъядерник Clarkdale не очень приспособлен к такой работе и результат приходится ждать в 1,5 раза дольше, чем с остальными участниками.

Рендеринг



В однопроцессороном тесте Cinebench 11 видна вся мощь архитектуры Sandy Bridge, но с переходом к многопоточному вычислению младший представитель начинает сдавать позиции, хотя и не значительно — он совсем немного отстает от более дорогого Core i7-870. Решения AMD, до этого находившиеся в тени, неожиданно вырвались вперед за счет своих шести ядер.



С POV-Ray такая же ситуация, и чем больше ядер у процессора, тем он производительнее в программе рендеринга.

Математические расчеты


Расчет количества ходов в Fritz Chess Benchmark также зависит от количества ядер или исполняемых потоков и Core i5-2500K опять отстает от Lynnfield. Его даже умудряется обойти Phenom II X6 1075T, и с разгоном разница между ними только увеличивается, вплоть до 16%.



Еще один хорошо оптимизированный под многопоточность бенчмарк. Лидеров в wPrime как таковых нет — все высокоуровневые процессоры обоих производителей показывают одинаковые результаты, которые зависят от частоты той или иной модели. Лишенный Hyper-Threading Sandy Bridge опять отстает, но не так сильно, как Core i5-660.

Работа с видео


Интересная картина наблюдается в x264 HD Benchmark, который производит двухпроходное сжатие видеофайла кодеком H.264. Первый проход на дух не переваривает Hyper-Threading и без этой технологии результат обычно выше, что мы и наблюдаем с Core i5-2500K.


Второй проход наоборот, требует как можно больше вычислительных ядер и полноценный новичок забирает заслуженную пальму первенства назад. Продукты AMD в этом тесте ни чуть не хуже конкурентов. Перспективы Clarkdale на фоне решений новой архитектуры кажутся туманными — им явно осталось на рынке совсем недолго.
Результаты тестирования в игровых приложениях

Синтетика



Теперь перейдем к игровым тестам, начав с синтетики. В 3DMark Vantage расстановка сил была предсказуема, учитывая его оптимизацию под многоядерность. Core i7-2600K безоговорочный лидер, вслед за ним расположились продукты на базе архитектуры Nehalem. Нынешний флагман AMD соперничает лишь с новым четырехъядерником Core i5, немного отставая от него. Но с разгоном они выступают почти вровень.


Новый тест на наших страницах показывает неоднозначные результаты — новинки проигрывают своим предшественникам до 3%. В чем же дело? Почему же 3DMark 11 так не благосклонен к ним? Смотрим на результаты процессорного теста Physics. В нем все закономерно и ничего нового мы не видим.


А вот в графическом подтесте наблюдается падение производительности системы на базе Sandy Bridge, и она пасует даже перед Core i5-660, во что очень трудно поверить.


Возможно, проблема заключается в реализации интерфейса PCI Express или еще чего-нибудь и в будущих версиях тестового пакета или драйверов она будет решена. Пока же можем отметить первое поражение представителей платформы LGA1155.

Игры



В реальных игровых приложениях, например, Crysis, двухтысячные модели смотрятся более привлекательно, особенно, когда 200-долларовый Core i5-2500K не хуже дорогих Lynnfield и Bloomfield.



Стратегия реального времени World in Conflict оказалась не менее чувствительной к новинкам. На фоне таких результатов покупка устаревших решений себя не оправдает. Если, конечно, они прилично не подешевеют.



S.T.A.L.K.E.R.: Call of Pripyat сильно зависит от частоты процессора и емкости его кэша. Если в номинале Core i5-2500K обходит на десяток кадров Core i7-870, то с разгоном последний берет реванш. Но ведь Lynnfield не сможет без проблем работать на частотах 4,5 ГГц, а то и выше, не так ли?

Выводы

Проведя колоссальную работу над ошибками, компания Intel представила микроархитектуру Sandy Bridge с огромным потенциалом, решения на базе которой отличаются высокой производительностью и экономичностью. И хотя ничего революционного в ней нет, именно с нее начнется новый виток развития процессорного рынка. Высокая интеграция и низкий уровень энергопотребления станут неотъемлемой частью будущих продуктов, обрастающих все большим функционалом, что невольно мы уже замечаем сейчас.

Процессоры Sandy Bridge, несмотря на свою среднюю стоимость, предлагают нам новый уровень производительности, ранее доступный лишь с топовыми решениями. Благодаря переработанному контроллеру памяти и некоторым архитектурным изменениям удалось избавиться от многих ограничивающих факторов, сдерживающих дальнейшее развитие архитектуры Nehalem. Но платой за это стала необходимость в новой платформе с разъемом LGA1155, несовместимой с ранее выпущенными решениями. Несмотря на всю привлекательность Sandy Bridge переход на нее с LGA1156 или даже LGA1366 вряд ли оправдает затраты, но она даст возможность наконец-то избавиться от древней LGA775 или же перейти из конкурирующего лагеря. Тем более, что новинка действительно того стоит.

Помимо процессорного ядра было усовершенствовано графическое, расположенное теперь на одном кристалле с остальными блоками. Его функциональность и производительность позволяет конкурировать с дискретными картами начального уровня серии GeForce и Radeon. Пользователям теперь не придется задумываться о покупке недорого адаптера, когда возможности встроенного сильно ограничены.

Энтузиасты оценят разгонный потенциал процессоров на базе очередной микроархитектуры, который благодаря использованию 32-нм техпроцесса вырос до 4,5-5,0 ГГц и выше. Такие частоты доступны при воздушном охлаждении и небольшом повышении питающего напряжения. Для подобных подвигов ранее необходимо было прибегнуть к усиленному охлаждению и серьезному увеличению напряжения питания.

Но какой бы ни была идеальной новая платформа, определенный недостаток в ней обязательно найдется. И в данном случае он касается энтузиастов. Разгонять процессоры теперь можно определенной серии с разблокированным множителем, а не любой, как это было ранее. И все бы ничего, если бы не их стоимость, которая пока находится в пределах 250-350 долларов, что не каждому оверклокеру будет по карману. Здесь явно не хватает более доступной модели, позволяющей экономным энтузиастам, коих большинство, безболезненно перейти на новую платформу.
процессоры Intel Core i7-2600K, Core i5-2500K, Core i7-975 EE, Xeon X3470 и Core i5-660;

  • Kingston — память Kingston KHX2000C8D3T1K3/6GX;
  • Noctua — кулер Noctua NH-D14 и термопаста Noctua NT-H1;
  • Syntex — блок питания Seasonic SS-600HM;
  • Wilk Elektronik — память Goodram Play GY1600D364L8/4GDC.
  • Очередной обзор на тему нового продукта Intel, как правило, начинается с объяснения стратегии процессорного гиганта под названием Тик-Так. Смысл ее заключается в том, что каждые два года миру представляется новая архитектура с промежуточным переходом на более тонкий техпроцесс.


    Благодаря ей, прогресс на рынке не останавливается и мы постоянно сталкиваемся с более функциональными и производительными решениями. Правда, некоторые нововведения не так сильно влияют на производительность, как того хотелось бы. Например, переход от архитектуры Core к Nehalem серьезной прибавки в скорости не принес, но позволил отказаться от привычной шины FSB и сделать ЦП более интегрированным, содержащим в себе не только контроллер памяти, но и графическое ядро. Последним оснащались очень медленные представители семейства Westmere. Следующий шаг Intel призван как раз исправить сложившуюся ситуацию и вывести будущие продукты на новый уровень производительности.

    Семейство процессоров Intel, выполненных по 32-нм технологическим нормам (ядро Clarkdale) оказалось медленнее первых решений на базе архитектуры Nehalem (Bloomfield и Lynnfield). Исключением были шестиядерные Core i7-9xx (Gulftown), лишенные встроенного видеоядра. Такое поведение было обусловлено строением младших представителей Westmere, которые состояли из двух кристаллов. На одном из них располагались вычислительные блоки и кэш, а на другом — контроллеры памяти, шины PCI Express и графическое ядро. Связь между этими половинками осуществлялась за счет интерфейса QPI. Естественно, этот гибрид не смог демонстрировать чудес производительности, даже несмотря на поддержку технологии Hyper-Threading, благодаря которой он лишь конкурировал с младшими четырехъядерными моделями Core 2.

    При такой высокой интеграции использование монолитного кристалла с внутренними широкими шинами для обмена информацией между блоками напрашивается само собой. Пройдя обкатку 32-нм техпроцесса, инженеры компании наконец-то смогли объединить все блоки в одном чипе и даже пересмотрели архитектуру, которая получила название Sandy Bridge.


    Итак, что же в ней такого особенного? Во-первых, как уже отмечалось, все функциональные блоки теперь располагаются на одном кристалле, а количество ядер в производительных моделях процессоров увеличено до четырех. Во-вторых, разделяемая кэш-память третьего уровня стала общей для всех, включая видеоядро, и работает она на частоте процессора, что наилучшим образом скажется на производительности последнего. Кроме того, было увеличено быстродействие графического ядра, а часть северного моста, известная по старым процессорам как Uncore, теперь называется System Agent. И в-третьих, тактовый генератор встроен в чипсет и разгон по базовой частоте теперь потерял свою актуальность. Но обо всем по порядку.


    Основные представители архитектуры Sandy Bridge содержат четыре ядра и поддерживают технологию Hyper-Threading, благодаря которой процессоры могут выполнять восемь потоков одновременно. Кэш-память третьего уровня (или LLC — last level cache, кэш последнего уровня) теперь работает на частоте процессора, имеет объем в восемь мегабайт и может использоваться всеми блоками ЦП, которые в нем нуждаются. Учитывая большое количество потребителей и возможный рост числа ядер в будущих процессорах, инженерам Intel пришлось отказаться от привычной топологии связи между узлами и отдать предпочтение 256-битной кольцевой шине, соединяющей вычислительные ядра, кэш, графический процессор и «системный агент». Пропускная способность такой шины за такт равна произведению количества процессорных ядер на ее ширину. Для четырехъядерного Sandy Bridge с 8 мегабайтами кэша и частотой 3,0 ГГц она составит 384 Гбайт в секунду (96 Гбайт/с на одно соединение), а для двухъядерного — лишь 192 Гбайт/с.


    Объемы кэш-памяти остальных уровней остались без изменений (по 32 Кбайт для инструкций и данных, и 256 Кбайт второго уровня для каждого ядра), но скорость работы с ними теперь выше. Был еще добавлен так называемый L0-кэш на 1,5 тыс. декодированных микроопераций, позволяющий повысить быстродействие процессора и его энергоэффективность.

    System Agent, пришедший на смену Uncore, является аналогом северного моста и содержит контроллеры памяти DDR3 и шин PCI Express, DMI, блок видеовыхода и модуль управления питанием (Power Control Unit, PCU). В отличие от того же Uncore, «системный агент» функционирует отдельно от L3-кэша и не зависит от его частоты и напряжения питания. Ранее связь с кэш-памятью третьего уровня накладывала сильные ограничения при разгоне процессоров, особенно на ядре Bloomfield. Двухканальный контроллер памяти был переработан и его производительность с латентностью теперь не хуже, чем у лучших представителей архитектуры Nehalem. Из поддерживаемой памяти заявлена DDR3-1066 и DDR3-1333, но при использовании материнских плат на чипсете Intel P67 Express можно будет устанавливать модули частотой до 2133 МГц. Количество линий PCI Express 2.0 по сравнению с предшественниками не изменилось и составляет 16 штук. При работе CrossFireX или SLI они могут комбинироваться по восемь линий для каждой видеокарты. «Системный агент», вычислительные ядра с кэшем и графический процессор трактуются отдельно друг от друга и имеют свои напряжения питания. Модуль PCU собирает данные по уровню энергопотребления и тепловыделения этих блоков и управляет их состоянием, переводя либо в экономичный режим работы, либо в производительный. Благодаря раздельной схеме тактования частот, ЦП и видеоядро за счет технологии Turbo Boost 2.0 могут разгоняться независимо друг от друга, и даже сверх нормы уровня TDP, но лишь на непродолжительное время и при условии, что процессор до этого простаивал некоторое время.


    Помимо архитектурных изменений, в новых процессорах появилась поддержка 256-битных инструкций AVX (Advanced Vector Extensions), являющихся дальнейшим развитием SSE и позволяющих увеличить скорость вычислений с плавающей точкой в мультимедиа-приложениях, научных и финансовых задачах. Поддержка инструкций AES-NI, которые появились в Westmere и давали возможность повысить быстродействие шифрования и дешифрования по алгоритму AES, продолжила свое существование и в Sandy Bridge.

    Новое графическое ядро Intel HD Graphics хоть и относится к новому поколению, но существенных архитектурных различий между ним и графическим процессором, встроенным в Clarkdale, нет. Это все те же 12 шейдерных блока (для HD Graphics 3000 и шесть для HD Graphics 2000), но уже с поддержкой DirectX 10.1 и OpenGL 3.0.


    За счет переноса видеоядра на общий с процессором кристалл, выполненный по 32-нм технологическим нормам, стало возможным увеличивать тактовую частоту GPU до 1,35 ГГц. Это может положительно сказаться на быстродействии видеоподсистемы, вплоть до конкуренции с дискретными графическими адаптерами начального уровня AMD и NVIDIA. Но даже на такой частоте скорость в игровых приложениях все равно будет оставлять желать лучшего. В новой версии Intel HD Graphics скорее будет интересна возможность аппаратного кодирования видео формата MPEG2 и H.264, новые фильтры пост-обработки и поддержка HDMI 1.4 с Blu-Ray 3D.


    Конечно, вышеперечисленные изменения призваны увеличить производительность новых решений, но самое серьезное нововведение в Sandy Bridge, пожалуй, будет перенесение генератора базовой частоты в набор системной логики. Он единственный и от него зависят все частоты различных узлов и блоков, как самого процессора, так и чипсета. По этой причине базовая частота составляет 100 МГц и при ее повышении будут расти частота не только процессора, но и всевозможных шин и контроллеров, а это серьезно скажется на стабильности системы во время разгона.


    В связи с этим для новых процессоров потребовался и новый разъем — LGA 1155. И хотя он внешне похож на LGA 1156, в нем отсутствует один контакт, а ключ смещен ближе к краю разъема, что не позволяет вставить в него ЦП старого поколения.


    Что качается разгона, то максимум чего можно добиться, так это поднятия базовой с номинальных 100 МГц до 105 МГц (+/- один-два мегагерца), чего явно будет недостаточно. Пожалуй, с таким подходом Intel энтузиасты могли бы поставить крест на платформе LGA1155, если бы не одно но — компания все же решила оставить возможность разгона своих процессоров, но только в K-серии и путем поднятия множителя, так как в них он не заблокирован (максимальный x57). Пользователи уже успели познакомиться с подобными моделями на ядрах Lynnfield и Clarkdale. Их аналогов на Sandy Bridge пока два и все они относятся к ценовому диапазону $200-300, что еще больше разочарует оверклокеров, большинство которых вряд ли смогут позволить себе такие процессоры.

    Но для самых экономных все-таки была сделана поблажка — в любом обычном процессоре на базе новой архитектуры можно поднять множитель на четыре пункта, не считая турбо-режим. Например, если частота ЦП 3,1 ГГц, то он легко заработает на 3,5 ГГц, при этом технология Turbo Boost будет исправно функционировать. Это, конечно, не разгон в 1,5 раза по частоте, к которому уже привыкли, но все же лучше, чем ничего.


    Помимо всего прочего, официальному разгону теперь поддается и графическое ядро, естественно, при использовании материнской платы на соответствующем чипсете. Для производительного ПК потребуется плата на Intel P67 Express, позволяющему разгонять сам процессор, а чтобы воспользоваться встроенным видеядром — на Intel H67 Express. К сожалению, последний лишен возможности управлять множителем ЦП.


    Более подробно о них будет рассказано в ближайших материалах на нашем сайте, а в заключении об архитектуре Sandy Bridge стоит упомянуть о реализации поддержки памяти DDR3, максимальный объем которой доведен до 32 Гбайт. Дело в том, что с переходом на раздельное формирование частот основных блоков и разгон процессора путем повышения его множителя, частота памяти всегда постоянна и равна умножению определенного коэффициента на частоту 133 МГц, имеющую соотношение с базовой как 4:3. Количество множителей памяти позволяет использовать ее в режимах от DDR3-800 до DDR3-2400 с шагом 266 МГц. Если рабочая частота модулей не будет кратна 266, они автоматически (при использовании профилей XMP) переведутся в режим с ближайшей меньшей частотой.

    После краткого описания архитектурных особенностей Sandy Bridge перейдем к продуктам на ее основе.

    Мы открываем цикл статей про новую процессорную микроархитектуру Intel Sandy Bridge. В первом материале мы коснемся теории ― расскажем про изменения и нововведения. В недалеком будущем на страницах блогов появятся результаты тестов новой платформы и много чего интересного.

    Придуманная в недрах Intel концепция Tick-Tock продолжает работать ― каждый год производитель представляет измененную процессорную микроархитектуру. Фаза «Tick» подразумевает совершенствование предыдущих наработок (уменьшение техпроцесса, внедрение не слишком революционных новых технологий и так далее). Примерно через год после «Tick» случается «Tock» ― релиз процессоров на основе полностью новой микроархитектуры.

    В начале 2010 года Intel представила линейку чипов под кодовым именем Westmere/Clarkdale ― технологическое совершенствование самых первых моделей Core i3/i5/i7 (Nehalem). Настала очередь Tock. Встречайте революционную микроархитектуру Sandy Bridge, на основе которой построены процессоры под общим названием Core 2011 ― полностью новые модели Core i3, Core i5, Core i7, а также бюджетные модели Pentium и Celeron.

    На этот раз производитель решил не мелочиться и сходу анонсировал множество моделей для мобильных и настольных компьютеров во всех ценовых диапазонов. Правда, в продажу поступили лишь некоторые, далеко не самые доступные версии, но об этом чуть позже.

    Пресса называет Sandy Bridge одной из самых существенных микроархитектур Intel за последние годы ― производитель сделал все возможное, чтобы вывести свои процессоры на новый уровень производительности, довел до ума представленные ранее технологии, предложил невероятную интеграцию вычислительных блоков и контроллеров. По сравнению с Sandy Bridge представленные ранее модели кажутся детским лепетом. Давайте рассмотрим изменения Core 2011 более подробно.

    Особенности новой микроархитектуры

    Блок-схема, изображающая микроархитектуру Sandy Bridge, вряд ли расскажет много о внедренных технологиях и общих изменениях. Однако стоит знать, что все компоненты новых процессоров существенно отличаются от компонентов тех же Westmere/Clarkdale. Главное, что нужно понимать перед изучением особенностей Sandy Bridge ― архитектурные доработки позволяют новым процессорам работать на 10-50% быстрее по сравнению с поколением Core 2010.

    Инженеры Intel переработали блок предсказывания ветвлений, изменили препроцессор, внедрили продвинутый декодированный кэш, скоростную кольцевую шину, блок продвинутых векторных расширений AVX, переработали интегрированный контроллер оперативной памяти и линки с шиной PCI Express, изменили интегрированный графический чип до неузнаваемости, ввели фиксированный блок для аппаратного ускорения транскодирования видео, довели до ума технологию авторазгона Turbo Boost и так далее. Теперь вы, вероятно, поверили в то, что изменений действительно очень и очень много? Мы попробуем вкратце пробежаться по каждому из них, чтобы составить определенную картину перед тем, как в наших блогах появится полноценное тестирование.

    Для начала, 4-ядерные модели Sandy Bridge состоят из 995 миллионов транзисторов, произведенных по отлаженному 32-нанометровому техпроцессу. Около 114 миллионов отведено под нужды графического чипа, каждое ядро занимает по 55 миллионов транзисторов, остальное уходит под дополнительные контроллеры. Для сравнения, полноценный 4-ядерный процессор AMD Phenom II X4 содержит 758 миллионов транзисторов, а 4-ядерные Nehalem использовали 731 миллион транзисторов. При всем при этом, полноценный процессорный кристалл Sandy Bridge занимает площадь 216 квадратных миллиметров ― кристалл одного из первых 4-ядерных процессоров Intel (Core 2 Quad) занимал аналогичную площадь при намного меньшем числе транзисторов и, соответственно, предлагал несоизмеримо меньшую производительность.

    Теперь, позвольте рассказать о ключевых нововведениях микроархитектуры по порядку.

    Кэш декодированных инструкций (micro-op cache) ― представленный в Sandy Bridge механизм micro-op cache сохраняет инструкции по мере их декодирования. При выполнении расчетов процессор определяет, попадала ли очередная инструкция в кэш. Если да, то препроцессор и вычислительный конвейер обесточиваются, что позволяет экономить электроэнергию. При этом 1,5 Кб декодированной кэш-памяти полностью интегрированы с кэшем первого уровня (L1).

    Переработанный блок предсказания ветвлений может похвастаться увеличенной точностью работы. Все это стало возможным благодаря нескольким существенным инновациям в дизайне.

    Кольцевая шина ― для объединения многочисленных архитектурных блоков в процессорах Sandy Bridge используется продвинутая и очень скоростная кольцевая шина. Своим появлением интерфейс обязан интегрированному графическому ядру и транскодеру видео ― необходимость общаться с кэшем третьего уровня сделала предыдущую схему соединения (около 1000 контактов для каждого ядра) неэффективной. К переработанной шине подключены все важные компоненты процессора ― графика, х86-совместимые ядра, транскодер, Системный Агент, кэш-память L3.

    Под названием «Системный Агент» (System Agent) скрывается блок, ранее известный, как un-core ― здесь объединены контроллеры, которые раньше были вынесены в северный мост на материнской плате. В состав агента входят 16 линков для соединения с шиной PCI Express 2.0, двухканальный контроллер оперативной памяти DDR3, интерфейс для соединения с общей системной шиной DMI, блок управления питанием и графический блок, ответственный за вывод картинки.

    Одним из самых важных нововведений Sandy Bridge принято считать переработанный с нуля графический чип. Начнем с того, что теперь графика интегрирована с другими блоками в едином кристалле (ранее под металлической крышкой процессоров Clarkdale скрывалось два разрозненных чипа). Инженеры Intel хвастаются двойным увеличением пропускной способности компонентов графического чипа по сравнению с предыдущим поколением Intel HD Graphics благодаря изменению архитектуры унифицированных шейдерных процессоров, появлению доступа к кэш-памяти L3 и другим улучшениям. При этом в новых процессорах можно будет обнаружить сразу две существенно отличающиеся модели графического ядра ― HD Graphics 2000 и HD Graphics 3000. Первая предлагает шесть унифицированных шейдерных процессоров, вторая ― двенадцать. По заявлениям Intel и профильной прессы, новая графика делает самые дешевые дискретные видеокарты излишними, но в этом нам еще предстоит убедиться в рамках отдельного обзора. Чуть не забыли сказать, новые модели HD Graphics поддерживают DirectX 10, переход к более современным графическим технологиям состоится уже в следующих поколениях процессоров.

    Кроме того, в новом графическом чипе предусмотрен отдельный блок Media Engine, состоящий из двух частей для транскодирования и декодирования видео. Инженеры Intel решили не испытывать судьбу ― раньше декодированием и кодированием видео занимались унифицированные шейдерные процессоры и, частично, маломощные фиксированные блоки. По словам очевидцев, фиксированный Media Engine справляется со своей задачей быстрее и качественнее, чем даже монструозные видеокарты высшего ценового диапазона.

    Измененные алгоритмы авторазгона Turbo Boost теперь позволяют процессору слегка переваливать за нормы прописанного энергопотребления на короткое время ― на практике это означает, что процессор сможет совершать скоростные забеги на малые дистанции. Разумеется, автоматика не даст перейти рубеж надежности. Напомним, Turbo Boost автоматически увеличивает частоту одного, двух, трех или четырех ядер при необходимости. Так, самая мощная модель Intel Core i7 2600 умеет увеличивать частоту одного ядра до 3,8 ГГц при работе с неоптимизированными под многоядерную архитектуру приложениями.
    Заблокированный разгон

    Со времен Pentium II компания Intel начала продавать процессоры с заблокированными множителями, чтобы пользователи не могли играть с частотой, а сама компания всегда имела возможность продавать одни и те же модели в разных ценовых диапазонах. Но оверклокеры всегда имели возможность регулировать частоту FSB. К сожалению, с приходом Sandy Bridge все снова меняется ― множитель в большинстве моделей наглухо заблокирован, а генератор частоты шины интегрирован в единственный мост чипсетов 6-й серии и заблокирован на частоте 100 МГц.

    Единственной оверклокерской отдушиной остаются модификации с разблокированными множителями ― таких моделей в новой линейке немного, но они есть и стоят вполне адекватных денег.

    Линейка

    Настало время рассказать о процессорах, которые были представлены в первую очередь ― разобраться в новых названиях и понять, какой именно процессор стоит выбрать для своих целей.
    Во время релиза Sandy Bridge компания Intel представила 29 (двадцать девять!) новых моделей Core iX ― четырнадцать для настольных и пятнадцать для мобильных компьютеров.

    Производитель перешел на новую, еще более замутненную схему обозначениях процессоров, в которой и предстоит покопаться.
    Итак, название каждого нового процессора настольной линейки состоит из обозначения бренда (Intel Core), названия конкретной линейки (i3, i5, i7), индекса (2600) и суффикса (K). Для настольной линейки предусмотрено всего три суффикса ― К (разблокированный множитель), S (энергопотребление 65 Вт) и T (энергопотребление 34-45 Вт). Теперь, самое странное ― мощный графический чип HD Graphics 3000 входит только в состав моделей с разблокированным множителем (К), остальные процессоры довольствуются заметно более слабым HD Graphics 2000.

    Изначальная линейка Core 2011 для настольных компьютеров достаточно красиво разбивается по названию линейки. Так, процессоры Core i7 ― это четырехъядерные чипы с поддержкой Hyper Threading (4 ядра, 8 потоков), Core i3 ― простенькие двухъядерные чипы без поддержки Turbo Boost, но с поддержкой Hyper Threading (2 ядра, 4 потока), Core i5 ― в первую очередь четырехъядерные модели с поддержкой Turbo Boost, но без Hyper Threading. К сожалению, в будущем в рамках линейки Core i5 появятся и двухъядерные модели, однако они будут доступны в первую очередь для сборщиков готовых систем.

    Еще один повод для дальнейшей дифференциации линейки ― авторазгон встроенного графического ядра. Изначально обе модели графики работают на частоте 850 МГц, однако процессоры Core i5 и Core i3 могут разгонять его до частоты 1100 МГц. Старшие Core i7 ― до 1350 МГц. Подумайте сами, каким образом подобное скажется на конечной производительности.

    С мобильными модификациями Sandy Bridge все немного сложнее. Для начала, абсолютно все мобильные процессоры в новой линейке задействуют мощный графический чип HD Graphics 3000 (даже самые экономичные модели). По непонятным причинам компания Intel решила нарушить негласный закон маркетинга и разгуляться в индексах ― как мы будем разбираться в моделях с индексами 2657, 2537, 2410 и 2720 мы пока не решили. С точки зрения индексов здесь есть обозначения XM, QM, M, указывающие на ноутбуки для разных задач. Соответственно, ХМ ― это экстремальные модели для геймерских систем, М ― двухъядерные процессоры для экономичных ноутбуков, QM ― четырехъядерные процессоры для мэйнстримовых ноутбуков.

    Разумеется, это далеко не все модели на ближайший год ― Intel продолжит экспериментировать и будет изредка радовать поклонников новыми модификациями. Главное, чтобы не нарушали придуманную собственными силами логику линеек.

    Платформа

    Вместе с Sandy Bridge были представлены чипсеты 6-й серии с необходимым процессорным разъемом LGA1155 ― первыми ласточками стали Intel P67 и Intel H67. Разобраться в двух модификациях проще простого. Intel P67 подходит для конфигураций, где будет использоваться дискретная видеокарта, при этом платформа поддерживает средства разгона. Плюс, платы на основе P67 предлагают 2х8 линий PCI Express 2.0 для конфигураций с несколькими видеокартами в режима AMD CrossFire или NVIDIA SLI. Intel H67, напротив, малопригодна для разгона, поддерживает только один порт PCI Express x16, зато умеет выводить видеосигнал.

    Всем тем, кто мечтает получить все возможности на одной плате, придется немного подождать ― где-то во втором квартале 2011 года разработчики представят чипсет Intel Z68. Материнки на основе этого чипсета будут поддерживать встроенное в процессор графическое ядро, а также все особенности Intel P67.

    Пару слов о новом процессорном разъеме ― Intel переделала схематику и структуру гнезда, так что старые модели Core 2010 для LGA 1156 использовать уже не получится. К счастью, размер сокета остался прежним, сюда можно установить многочисленные кулеры для LGA 1156 и не мучиться с поиском самых новых моделей.

    В чипсетах все еще не появилась врожденная поддержка интерфейса USB 3.0, хотя рынок, вроде бы, вполне готов к подобным «инновациям». Поклонникам всего самого лучше придется ориентироваться на продвинутые материнские платы, куда производители встраивают сторонние контроллеры USB 3.0.

    Благо, про новую версию интерфейса SATA компания Intel не забыла ― новые платформы поддерживают SATA3 с пропускной способностью до 6 Гбит/с. Понятно, что для классических шпиндельных винчестеров все эти скоростные прибавки не нужно, но накопители на основе флэш-памяти оценят скоростное окно по достоинству. К примеру, один из представленных на выставке CES флэш-винчестер раскроет свои скоростные способности только в паре с SATA3 ― в рамках SATA2 ему тесно (речь о Crucial RealSSD C300). Что важно, порты SATA3 на новых материнских платах соседствуют с SATA2, хотя новый интерфейс и предлагает полную обратную совместимость с предыдущим поколением ― при подключении своего супер-дорогого SSD будьте внимательнее.

    В новых чипсетах производители наконец-то начинают избавляться от главного архаизма ― интерфейса BIOS. На замену топорному синему экрану из прошлого приходит UEFI ― новая оболочка поддерживает управление мышью (или тачпадом), предлагает заметно более современный и удобный интерфейс. Из других особенностей UEFI можно отметить врожденную поддержку жестких дисков объемом свыше 2,2 Тб.

    Что мы имеем в итоге?

    Среди экспертов распространено мнение, что Sandy Bridge ― это всего лишь эволюция предыдущих микроархитектур и ничего кардинально нового компания не представила. Мы же сходимся во мнении с другой частью аналитиков. Несмотря на то, что новая линейка не предлагает по-настоящему революционных возможностей, проделанная компанией Intel работа достойна всяческих похвал. Производитель довел все свои начинания до идеала ― провел полную интеграцию всех компонентов, улучшил графический чип до приемлемого уровня, доделал кольцевую шину, переработал функции препроцессора, пересмотрел возможности авторазгона Turbo Boost, внедрил фиксированный блок для обработки видео и так далее. В итоге перед нами совершенно новые процессоры, которые на голову опережают предыдущие поколения с точки зрения технических характеристик.

    В скорейшем будущем в блогах DNS появится тестирование нового процессора в играх и популярных программах, обзор возможностей разгона с использованием воздушного охлаждения, тест графического чипа против бюджетных дискретных видеокарт. Не пропустите.

    В эти дни компания Intel представляет миру долгожданные процессоры Sandy Bridge , архитектура которых заранее была окрещена как революционная. Но не только процессоры стали новинками этих дней, а и все сопутствующие компоненты новых настольной и мобильной платформ.

    Итак, на этой неделе анонсировано аж 29 новых процессоров, 10 чипсетов и 4 беспроводных адаптера для ноутбуков и настольных рабочих и игровых компьютеров.

    К мобильным новинкам относятся:

      процессоры Intel Core i7-2920XM, Core i7-2820QM, Core i7-2720QM, Core i7-2630QM, Core i7-2620M, Core i7-2649M, Core i7-2629M, Core i7-2657M, Core i7-2617M, Core i5-2540M, Core i5-2520M, Core i5-2410M, Core i5-2537M, Core i3-2310M;

      чипсеты Intel QS67, QM67, HM67, HM65, UM67 Express;

      беспроводные сетевые контроллеры Intel Centrino Advanced-N + WiMAX 6150, Centrino Advanced-N 6230, Centrino Advanced-N 6205, Centrino Wireless-N 1030.

    В настольном же сегменте появятся:

      процессоры Intel Core i7-2600K, Core i7-2600S, Core i7-2600, Core i5-2500K, Core i5-2500S, Core i5-2500T, Core i5-2500, Core i5-2400, Core i5-2400S, Core i5-2390T, Core i5-2300;

      чипсеты Intel P67, H67, Q67, Q65, B65 Express.

    Но сразу же стоит отметить, что анонс новой платформы не является одночастным для всех моделей процессоров и чипсетов – с начала января доступны только решения класса «майнстрим», а большинство более массовых и не таких дорогих появятся в продаже немного позднее. Вместе с выпуском настольных процессоров Sandy Bridge представлен и новый процессорный разъем для них LGA 1155 . Таким образом, новинки не дополняют модельный ряд Intel Core i3/i5/i7, а являются заменой для процессоров под LGA 1156, большинство из которых теперь становятся совсем неперспективным приобретением, ибо в ближайшее время их выпуск вообще должен прекратиться. И только для энтузиастов до конца года Intel обещает продолжать выпуск старших четырехъядерных моделей на ядре Lynnfield.

    Однако, судя по «роадмапу» платформа долгожитель Socket T (LGA 775) все еще будет оставаться актуальной как минимум до середины года, являясь основой для систем начального уровня. Для наиболее же производительных игровых систем и настоящих энтузиастов до конца года будут актуальны процессоры на ядре Bloomfield по разъем LGA 1366. Как видим, жизненный цикл двухъядерных процессоров с «интегрированным» графическим адаптером на ядре Clarkdale оказался очень коротки, всего один год, но именно они «протоптали» дорожку для представленных «сегодня» Sandy Bridge, приучив потребителя к мысли, что в процессоре может быть интегрирован не только контроллер памяти, а и видеокарта. Теперь же пришло время не просто выпустить более быстрые версии подобных процессоров, серьезно обновить архитектуру, чтобы обеспечить заметное увеличение их эффективности.

    Ключевыми особенностями процессоров архитектуры Sandy Bridge являются:

      выпуск с соблюдением 32 нм техпроцесса;

      заметно увеличившаяся энергоэффективность;

      оптимизированная технология Intel Turbo Boost и поддержка Intel Hyper-Threading;

      значительное увеличение производительности встроенного графического ядра;

      реализация нового набора инструкций Intel Advanced Vector Extension (AVX) для ускорения обработки вещественных чисел.

    Но все вышеуказанные нововведения не обеспечивали бы возможности говорить о действительно новой архитектуре, если бы все это не было реализовано теперь в пределах одного ядра (кристалла), в отличие от процессоров на ядре Clarkdale.

    Естественно, чтобы все узлы процессора заработали согласовано, нужно было организовать быстрый обмен информацией между ними – важным архитектурным нововведением стала кольцевая шина Ring Interconnect.

    Объединяет же Ring Interconnect через кэш-память L3, теперь называемую LLC (Last Level Cache), процессорные ядра, графическое ядро и системный агент (System Agent), включающий в себя контроллер памяти, контроллер шины PCI Express, контроллер DMI, модуль управления питанием и другие контроллеры и модули, ранее имеющие объединенные названием «uncore».

    Кольцевая шина Ring Interconnect является следующим этапом развития шины QPI (QuickPath Interconnect), которая после «обкатки» в серверных процессорах с обновленной 8-ядерной архитектурой Nehalem-EX, перекочевала и в ядро процессоров для настольных и мобильных систем. Посредством Ring Interconnect образуются четыре 32-разрядных кольца для шин Данных (Data Ring), Запросов (Request Ring), Мониторинга состояния (Snoop Ring) и Подтверждения (Acknowledge Ring). Функционирует кольцевая шина на частоте ядер, поэтому её пропускная способность, задержки и энергопотребление полностью зависят от частоты работы вычислительных блоков процессора.

    Кэш-память третьего уровня (LLC - Last Level Cache) является общей для всех вычислительных ядер, графического ядра, системного агента и других блоков. При этом графический драйвер определяет какие потоки данных разместить в кэш-памяти, но и любой другой блок может получить доступ ко всем данным в LLC. Специальный механизм контролирует распределение кэш-памяти, чтобы не возникло коллизий. В целях ускорения работы для каждого из процессорных ядер выделен «свой» сегмент кэш-памяти, к которому оно имеет прямой доступ. Каждый такой сегмент включает независимый контроллер доступа к шине Ring Interconnect, но при этом ведется постоянное взаимодействие с системным агентом, который производит общее управление кэш-памятью.

    Системный агент (System Agent), по сути, является встроенным в процессор «северным мостом» и объединяет контроллеры шин PCI Express, DMI, оперативной памяти, блок обработки видео (медиапроцессор и управление интерфейсами), диспетчер питания и другие вспомогательные блоки. С остальными узлами процессора системный агент взаимодействует через кольцевую шину. Кроме упорядочения потоков данных, системный агент следит за температурой и загрузкой различных блоков, и через Power Control Unit обеспечивает управление напряжением питания и частотами, дабы обеспечить наилучшую энергоэффективность при высокой производительности. Здесь же можно отметить, что для питания новых процессоров нужно трехкомпонентный стабилизатор питания (или двух, если встроенное видеоядро останется неактивным) – отдельно для вычислительных ядер, системного агента и интегрированной видеокарты.

    Встроенная в процессор шина PCI Express соответствует спецификации 2.0 и насчитывает 16 линий для возможности увеличения мощности графической подсистемы при помощи мощного внешнего 3D-ускорителя. В случае использования старших наборов системной логики и согласования лицензионных вопросов эти 16 линий могут быть разделены на 2 или три слота в режимах 8x+8x или 8x+4x+4x соответственно для NVIDIA SLI и/или AMD CrossFireX.

    Для обмена данными с системой (накопителями, портами ввода-вывода, периферией, контроллеры которых находятся в чипсете) используется шина DMI 2.0, позволяющая прокачать до 2 ГБ/с полезной информации в обоих направлениях.

    Важной частью системного агента является встроенный в процессор двухканальный контроллер памяти DDR3, номинально поддерживающий модули на частоте 1066-1333 МГц, но при использовании в материнских платах на чипсете Intel P67 Express без проблем обеспечивающий функционирование модулей на частоте до 1600 и даже 2133 МГц. Размещение контроллера памяти в одном кристалле с процессорными ядрами (ядро Clarkdale состояло из двух кристаллов) должно уменьшить латентность памяти и, соответственно, увеличить производительность системы.

    Отчасти благодаря расширенному мониторингу параметров всех вычислительных ядер, кэш-памяти и вспомогательных блоков, который реализован в Power Control Unit, в процессорах Sandy Bridge появилась усовершенствованная технология Intel Turbo Boost 2.0. Теперь, в зависимости от нагрузки и выполняемых задач, ядра процессора при высокой необходимости могут ускоряться даже с превышением теплового пакета, как при обычном ручном разгоне. Но системный агент будет следить за температурой процессора и его компонентов, и когда будет зафиксирован «перегрев» частоты узлов будут постепенно уменьшаться. Однако в настольных процессорах лимитировано время работы в сверхускоренном режиме, т.к. здесь значительно легче организовать в разы более эффективное охлаждение, чем «боксовый» кулер. Такой «овербуст» позволит получить прибавку производительности в критичные для системы моменты, что должно создать у пользователя впечатление работы с более мощной системой, а также уменьшить время ожидания реакции системы. Также Intel Turbo Boost 2.0 гарантирует, что и в настольных компьютерах встроенное видеоядро имеет динамическую производительность.

    Архитектура процессоров Sandy Bridge подразумевает не только изменения в структуре межкомпонентного взаимодействия и улучшение возможностей и энергоэффективности этих компонентов, но и внутренние изменения в каждом вычислительном ядре. Если отбросить «косметические» улучшения, то наиболее важными окажутся следующие:

      возврат к выделению кэш-памяти для примерно 1,5 тысяч декодированных микроопераций L0 (использовался в Pentium 4), являющейся обособленной частью L1, что позволяет одновременно обеспечить более равномерную загрузку конвейеров и снизить энергопотребление вследствие увеличения пауз в работе достаточно сложных схем декодеров операций;

      повышение эффективности блока предсказания ветвлений вследствие увеличение емкости буферов адресов результатов ветвления, истории команд, истории ветвлений, что увеличило эффективность конвейеров;

      увеличение емкости буфера переупорядоченных команд (ROB - ReOrder Buffer) и повышение эффективности этой части процессора благодаря внедрению физического регистрового файла (PRF – Physical Register File, тоже характерной особенности Pentium 4) для хранения данных, а также расширение других буферов;

      удвоение емкости регистров для работы с потоковыми вещественными данными, что в ряде случаев может обеспечить в два раза большую скорость выполнения операций, их использующих;

      увеличение эффективности исполнения инструкций шифрования для алгоритмов AES, RSA и SHA;

      введение новых векторных инструкций Advanced Vector Extension (AVX);

    • оптимизацию работы кэш-памяти первого L1 и второго L2 уровней.

    Важной особенностью графического ядра процессоров Sandy Bridge является то, что оно теперь находится в одном кристалле с остальными блоками, а управление его характеристиками и слежение за состоянием выполняет на аппаратном уровне системный агент. При этом блок обработки медиаданных и формирования сигналов для видеовыходов вынесен в этот самый системный агент. Такая интеграция обеспечивает более тесное взаимодействие, меньшие задержки, большую эффективность и т.д.

    Однако самой архитектуре графического ядра не так много изменений, как того хотелось бы. Вместо ожидаемой поддержки DirectX 11 была просто добавлена поддержка DirectX 10.1. Соответственно и не многие приложения с поддержкой OpenGL ограничены аппаратной совместимостью только с 3-й версией спецификации этого свободного API. При этом, хотя и говорится об усовершенствовании вычислительных блоков, но их осталось столько же – 12, и то только для старших процессоров. Однако увеличение тактовой частоты до 1350 МГц обещает заметный прирост производительности в любом случае.

    С другой стороны, создать встроенное видеоядро с действительно высокой производительностью и функциональностью для современных игр при невысоком его энергопотреблении очень тяжело. Поэтому отсутствие поддержки новых API повлияет лишь на совместимость с новыми играми, а производительность при действительно большом желании комфортно играть нужно будет наращивать с помощью дискретного 3D-ускорителя. А вот расширение функциональности при работе с мультимедийными данными, в первую очередь при кодировании и декодировании видео в рамках Intel Clear Video Technology HD, можно причислить к достоинствам Intel HD Graphics II (Intel HD Graphics 2000/3000).

    Обновленный медиапроцессор позволяет разгрузить процессорные ядра при кодировании видео в форматах MPEG2 и H.264, а также расширяет набор пост-процессинговых функций аппаратной реализацией алгоритмов для автоматической подстройки контрастности изображения (ACE – Adaptive Contrast Enhancement), корректировки цветов (TCC – Total Color Control) и улучшения отображения кожи (STE – Skin Tone Enhancement). Повышает перспективность использования встроенной видеокарты реализованная поддержка интерфейса HDMI версии 1.4, совместимой с Blu-ray 3D (Intel InTru 3D).

    Все выше перечисленные архитектурные особенности обеспечивают новому поколению процессоров заметное превосходство по быстродействию над моделями предыдущего поколения, как в вычислительных задачах, так и при работе с видео.

    В итоге платформа Intel LGA 1155 становится более производительной и функциональной, приходя на смену LGA 1156.

    Если подытожить, то процессоры семейства Sandy Bridge спроектированы для решения очень широкого круга задач при высокой энергоэффективности, что должно их сделать действительно массовыми в новых производительных системах, особенно когда в продаже появятся более доступные модели в широком ассортименте.

    В ближайшее время постепенно покупателям станут доступны 8 процессоров для настольных систем разного уровня: Intel Core i7-2600K, Intel Core i7-2600, Intel Core i5-2500K, Intel Core i5-2500, Intel Core i5-2400, Intel Core i5-2300, Intel Core i3-2120 и Intel Core i3-2100. Модели с индексом K отличаются свободным множителем и более быстрым встроенным видеоадаптером Intel HD Graphics 3000.

    Также для критичных к энергопотреблению систем выпущены энергоэффективные (индекс S) и высокоэнергоэффективные (индекс T) модели.

    Для поддержки новых процессоров уже сегодня доступны материнские платы на чипсетах Intel P67 Express и Intel H67 Express, в а недалеком будущем ожидаются на Intel Q67 Express и Intel B65 Express, ориентированные на корпоративных пользователей и малый бизнес. Все эти чипсеты наконец-то начали поддерживать накопители с интерфейсом SATA 3.0, хотя и не всеми портами. А вот поддержки, казалось бы даже более востребованной шины USB 3.0 в них нет. Интересными особенностями новых чипсетов для обычных материнских плат стало то, что в них отказались от поддержки шины PCI. Кроме того, теперь тактовый генератор встроен в чипсет и управлять его характеристиками без последствий для стабильности работы системы можно лишь в очень небольшом диапазоне, если повезет то всего ±10 МГц, а на практике и того меньше.

    Также нужно отметить, что разные чипсеты оптимизированы под использование с разными процессорами в системах, предназначенных для различных целей. То есть Intel P67 Express от Intel H67 Express отличается не только отсутствием поддержки работы со встроенным видео, но и расширенными возможностями для «оверклокинга» и тюнинга производительности. В свою очередь Intel H67 Express вообще не замечает свободный множитель у моделей с индексом K.

    А ведь вследствие архитектурных особенностей, разгон процессоров Sandy Bridge пока возможен только с помощью множителя, если это модель K-серии. Хотя к некоторой оптимизации и «овербусту» склонны все модели.

    Таким образом, временно для создания иллюзии работы на очень мощном процессоре даже модели с заблокированным множителем способны на заметное ускорение. Время такого ускорения для настольных систем, как было упомянуто выше, ограничено аппаратно, а не только температурой, как в мобильных ПК.

    После представления всех архитектурных особенностей и нововведений, а также обновленных фирменных технологий, остается только еще раз просуммировать, чем же Sandy Bridge такие инновационные и напомнить о позиционировании.

    Для высокопроизводительных и массовых производительных систем в ближайшее время можно будет купить процессоры серий Intel Core i7 и Intel Core i5, которые между собой отличаются поддержкой технологии Intel Hyper-Threading (для четырехъядерных моделей Intel Core i5 она отключена) и объемом кэш-памяти третьего уровня. Для более экономных покупателей представлены новые модели Intel Core i3, которые имеют в 2 раза меньше вычислительных ядер, хоть и с поддержкой Intel Hyper-Threading, всего 3 МБ кэш-памяти LLC, не поддерживают Intel Turbo Boost 2.0 и все укомплектованы Intel HD Graphics 2000.

    В середине года для массовых систем будут представлены процессоры Intel Pentium (от этого бренда очень тяжело отказаться, хотя еще год назад это пророчили) на основе очень упрощенной архитектуры Sandy Bridge. Фактически эти процессоры для «рабочих лошадок» будут напоминать по возможностям еще вчера актуальные Core i3-3xx на ядре Clarkdale, т.к. практически всех функций, присущих старшим моделям для LGA 1155, они лишатся.

    Остается отметить, что выпуск процессоров Sandy Bridge и целой настольной платформы LGA 1155 стал очередным «Так» в рамках концепции Intel «Тик-Так», т.е. серьезным обновлением архитектуры для выпуска по уже отлаженному 32 нм техпроцессу. Примерно через год нас будут ждать процессоры Ivy Bridge с оптимизированной архитектурой и выполненные по 22 нм техпроцессу, которые, наверняка, снова будут иметь «революционную энергоэффективность», но, надеемся, не упразднят процессорный разъем LGA 1155. Что ж, подождем – увидим. А пока у нас есть минимум год на изучение архитектуры Sandy Bridge и её всестороннее тестирование, к чему и собираемся приступить уже в ближайшие дни .

    Статья прочитана 14572 раз(а)

    Подписаться на наши каналы

    Его детального обзора на нашем сайте (правда, поддержка состояния глубокого сна C6 и низковольтной памяти LV-DDR3 появилась только в Westmere). А что появилось в SB?

    Во-первых - второй тип термодатчиков. Привычный термодиод, показания которого «видят» BIOS и утилиты, измеряет температуру для регулировки оборотов вентиляторов и защиты от перегрева (частотным троттлингом и, если не поможет, аварийным отключением ЦП). Однако его площадь весьма велика, потому их всего по одному в каждом ядре (включая ГП) и в системном агенте. К ним в каждом крупном блоке добавлено по нескольку компактных аналоговых -схем с термотранзисторами. У них меньший рабочий диапазон измерений (80–100 °C), но они нужны для уточнения данных термодиода и построения точной карты нагрева кристалла, без чего нереализуемы новые функции TB 2.0. Более того, силовой контроллер может использовать даже внешний датчик, если производитель системной платы разместит и подключит его - хотя не совсем ясно, чем он поможет.

    Добавлена функция перенумерации C-состояний, для чего отслеживается история переходов между ними для каждого ядра. Переход занимает время тем большее, чем больше «номер сна», в который ядро входит или из которого выходит. Контроллер определяет, имеет ли смысл усыплять ядро с учётом вероятности его «пробудки». Если таковая ожидается скоро, то вместо затребованного ОС ядро будет переведено в C3 или C1, соответственно, т. е. в более активное состояние, быстрее выходящее в рабочее. Как ни странно, несмотря на большее потребление энергии в таком сне, общая экономия может не пострадать, т. к. сокращаются оба переходных периода, в течение которых процессор совсем не спит.

    Для мобильных моделей перевод всех ядер в C6 вызывает сброс и отключение кэша L3 общими для банков силовыми ключами. Это ещё сильнее снизит потребление при простое, но чревато дополнительной задержкой при пробуждении, т. к. ядрам придётся несколько сотен или тысяч раз промахнуться в L3, пока туда подкачаются нужные данные и код. Очевидно, в совокупности с предыдущей функцией это произойдёт, лишь если контроллер точно уверен, что ЦП засыпает надолго (по меркам процессорного времени).

    Core i3/i5 прошлого поколения являлись своеобразными рекордсменами по требованиям к сложности системы питания ЦП на системной плате, требуя аж 6 напряжений - точнее, все 6 были и ранее, но не все вели в процессор. В SB изменились не числом, а использованием:

    • x86-ядра и L3 - 0,65–1,05 В (в Nehalem L3 отделён);
    • ГП - аналогично (в Nehalem почти весь северный мост, который, напомним, являлся там вторым кристаллом ЦП, питается общей шиной);
    • системный агент, у которого частота фиксирована, а напряжение - постоянное 0,8, 0,9 или 0,925 В (первые два варианта - для мобильных моделей), либо динамически регулируемое 0,879–0,971 В;
    • - постоянное 1,8 В или регулируемое 1,71–1,89 В;
    • драйвер шины памяти - 1,5 В или 1,425–1,575 В;
    • драйвер PCIe - 1,05 В.

    Регулируемые версии силовых шин используются в разблокированных видах SB с буквой K. В настольных моделях частота простоя x86-ядер повышена с 1,3 до 1,6 ГГц, судя по всему, без ущерба для экономии. При этом 4-ядерный ЦП при полном простое потребляет 3,5–4 Вт. Мобильные версии простаивают на 800 МГц и просят ещё меньше. Модели и чипсеты

    Производительность

    Что эта глава делает в теоретическом обзоре микроархитектуры? А то, что есть один общепризнанный тест, уже 20 лет (в разных версиях) использующийся для оценки не теоретической, а программно достижимой скорости компьютеров - SPEC CPU. Он может комплексно оценить производительность процессора, причём в наилучшем для него случае - когда исходный код тестов скомпилирован и оптимизирован для тестируемой системы (т. е. походя проверяется ещё и компилятор с библиотеками). Таким образом, полезные программы окажутся быстрее лишь с написанными вручную вставками на ассемблере, на что сегодня идут редкие смельчаки-программисты с большим запасом времени. SPEC можно отнести к полусинтетическим тестам, т. к. он и ничего полезного не вычисляет, и никаких конкретных цифр не даёт (IPC, флопсы, тайминги и пр.) - «попугаи» одного ЦП нужны только для сравнения с другими.

    Обычно Intel предоставляет результаты для своих ЦП почти одновременно с их выпуском. Но с SB произошла непонятная 3-месячная задержка, а полученные в марте цифры всё ещё предварительны. Что именно их задерживает - неясно, однако это всё равно лучше, чем ситуация с AMD, вообще не выпустившей официальных результатов своих последних ЦП. Нижеуказанные цифры для Opteron даны производителями серверов, использовавшими компилятор Intel, так что эти результаты могут быть недооптимизированы: что программный инструментарий Intel может сделать с кодом, исполняемым на «чужом» ЦП, . ;)


    Сравнение систем в тестах SPEC CPU2006. Таблица составлена Дэвидом Кантером с по данным на март"2011.

    В сравнении с предыдущими ЦП SB показывает превосходные (в прямом смысле) результаты в абсолюте и вовсе рекордные на каждое ядро и гигагерц. Включение HT и добавление 2 МБ к L3 даёт +3% к вещественной скорости и +15% к целой. Однако самую высокую удельную скорость имеет 2-ядерная модель, и в этом - поучительное наблюдение: очевидно, Intel задействовала AVX, но т. к. целочисленного прироста пока получить нельзя, то можно ожидать резкое ускорение лишь вещественных показателей. Но и для них никакого скачка нет, что показывает сравнение 4-ядерных моделей - а результаты для i3-2120 раскрывают причину: имея те же 2 канала ИКП, каждое ядро получает вдвое бо́льшую ПСП, что отражается 34-процентным приростом удельной вещественной скорости. Видимо, кэш L3 на 6–8 МБ слишком мал, и масштабирование его собственной ПС за счёт кольцевой шины уже не спасает. Теперь ясно, зачем Intel планирует оснастить серверные Xeon 3- и даже 4-канальными ИКП. Только вот тамошним 8 ядрам уже и их не хватит, чтобы развернуться по полной…

    Дополнение: В появились финальные результаты SB - цифры (ожидаемо) чуть подросли, но качественные выводы те же. Перспективы и итоги

    О выходящем весной 2012 г. 22-нанометровом преемнике Sandy Bridge под названием Ivy Bridge («плющевый мост») уже многое известно. Ядра общего назначения будут поддерживать чуть обновлённый поднабор AES-NI; вполне возможно и «бесплатное» копирование регистров на стадии переименования. Улучшений в Turbo Boost не предвидится, зато ГП (который, кстати, заработает на всех версиях чипсета) нарастит максимальное число ФУ до 16, станет поддерживать подключение не двух, а трёх экранов, наконец-то обретёт нормальную поддержку OpenCL 1.1 (вместе с DirectX 11 и OpenGL 3.1) и улучшит возможности по аппаратной обработке видео. Скорее всего, уже и в настольных и мобильных моделях ИКП станет поддерживать частоту 1600 МГц, а контроллер PCIe - версию шины 3.0. Главное технологическое новшество - в кэше L3 будут использоваться (впервые в массовом микроэлектронном производстве!) транзисторы с вертикально расположенным многосторонним затвором-ребром (FinFET), имеющие радикально улучшенные электрические характеристики (детали - в одной из ближайших статей). Ходят слухи, что версии с ГП снова станут многочиповыми, только на этот раз к процессору добавят один или несколько кристаллов быстрой видеопамяти.

    Ivy Bridge будет подключаться к новым чипсетам (т. е. южным мостам) 70-й серии: Z77, Z75 и H77 для дома (заменят Z68/P67/H67) и Q77, Q75 и B75 для офиса (вместо Q67/Q65/B65). Она (т. е. физическая микросхема под разными именами) по-прежнему будет иметь не более двух портов SATA 3.0, а поддержка USB 3.0 наконец-то появится, но на год позже, чем у конкурента. Встроенная поддержка PCI исчезнет (после 19 лет шине пора на покой), зато контроллер дисковой подсистемы в Z77 и Q77 получит технологию Smart Response для увеличения производительности кэшированием дисков с помощью SSD. Впрочем, наиболее волнительная новость заключается в том, что несмотря на старую добрую традицию, настольные версии Ivy Bridge не просто будут размещаться в том же разъёме LGA1155, что и SB, но и будут обратно совместимы с ними - т. е. современные платы подойдут и новому ЦП.

    Ну а для энтузиастов уже в 4-м квартале этого года будет готов куда более мощный чипсет X79 (к 4–8-ядерным SB-E для «серверно-экстремального» разъёма LGA2011). Он пока не будет иметь USB 3.0, зато портов SATA 3.0 будет уже 10 из 14 (плюс поддержка 4 видов RAID), а 4 из 8 полос PCIe могут соединяться с ЦП параллельно с DMI, удваивая ПС связи «ЦП-чипсет». К сожалению, X79 не подойдёт к 8-ядерным Ivy Bridge.

    В качестве исключения (а может быть, и нового правила) список того, что бы хотелось улучшить и исправить в Sandy Bridge, приводить не будем. Уже очевидно, что любое изменение является сложным компромиссом - строго по закону сохранения вещества (в формулировке Ломоносова): если где-то что-то прибыло, то где-то столько же и убудет. Если бы Intel кидалась в каждой новой архитектуре исправлять ошибки старой, то число наломанных дров и полетевших щепок могло бы превысить выгоду от полученного. Поэтому вместо крайностей и недостижимого идеала экономически выгодней искать баланс между постоянно меняющимися и подчас противоположными требованиями.

    Несмотря на некоторые пятна, новая архитектура должна не только ярко засветить (что, судя по тестам, она и делает), но и затмить все предыдущие - как свои, так и соперника. Объявленные цели по производительности и экономности достигнуты, за исключением оптимизации под набор AVX, которая вот-вот должна проявиться в новых версиях популярных программ. И тогда Гордон Мур ещё раз удивится своей прозорливости. Судя по всему, Intel во всеоружии подходит к Эпической Битве между архитектурами, которую мы увидим в этом году.

    Благодарности выражаются:

    • Максиму Локтюхину, тому самому «представителю Intel», сотруднику отдела программной и аппаратной оптимизации - за ответы на многочисленные уточняющие вопросы.
    • Марку Бакстону, ведущему программному инженеру и главе отдела оптимизации - за его ответы, а также за саму возможность получить какую-то официальную реакцию.
    • Агнеру Фогу, программисту и исследователю процессоров - за независимое низкоуровневое тестирование SB, обнаружившее массу нового и загадочного.
    • Внимательному Читателю - за внимательность, стойкость и громкий храп.
    • Яростным фанатам Противоположного Лагеря - до кучи.