Принцип возможных перемещений. Общее уравнение динамики. Возможных перемещений принцип Общая формула перемещений

Принцип возможных перемещений : для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении была равна нулю. или в проекциях: .

Принцип возможных перемещений дает в общей форме условия равновесия для любой механической системы, дает общий метод решения задач статики .

Если система имеет несколько степеней свободы, то уравнение принципа возможных перемещений составляют для каждого из независимого перемещений в отдельности, т.е. будет столько уравнений, сколько система имеет степеней свободы.

Принцип возможных перемещений удобен тем, что при рассмотрении системы с идеальными связями их реакции не учитываются и необходимо оперировать только активными силами.

Принцип возможных перемещений формулируется следующим образом:

Для того, чтобы матер. система, подчиненная идеальным связям находилась в состоянии покоя, необходимо и достаточно, чтобы сумма элементарных работ, производимых активными силами на возможных перемещениях точек системы была положительная

Общее уравнение динамики - при движении системы с идеальными связями в каждый данный момент времен сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы будет равна нулю. Уравнение использует принцип возможных перемещений и принцип Даламбера и позволяет составить дифференциальные уравнения движения любой механической системы. Дает общий метод решения задач динамики.

Последовательность составления:

а) к каждому телу прикладывают действующие на него задаваемые силы, а также условно прикладывают силы и моменты пар сил инерции;

б) сообщают системе возможные перемещения;

в) составляют уравнения принципа возможных перемещений, считая систему находящейся в равновесии.

Следует отметить, что общее уравнение динамики можно применять и для систем с неидеальными связями, только в этом случае реакции неидеальных связей, таких, например, как сила трения или момент трения качения, необходимо отнести к категории активных сил.

Работа на возможном перемещении как активных, так и сил инерций , ищется также как и элементарная работа на действительном перемещении:

Возможная работа силы: .

Возможная работа момента (пары сил): .

Обобщенными координатами механической системы называются независимые между собой параметры q 1 , q 2 , …, q S любой размерности, однозначно определяющие положение системы в любой момент времени.

Число обобщенных координат равно S - числу степеней свободы механической системы. Положение каждой ν-й точки системы, то есть ее радиус вектор в общем случае всегда можно выразить в виде функции обобщенных координат:


Общее уравнение динамики в обобщенных координатах выглядит в виде системы S уравнений следующим образом:

……..………. ;

………..……. ;

здесь - обобщенная сила, соответствующая обобщенной координате :

а - обобщенная сила инерции, соответствующая обобщенной координате :

Число независимых между собою возможных перемещений системы называется числом степеней свободы этой системы. Например. шар на плоскости может перемещаться в любом направлении, но любое его возможное перемещение может быть получено как геометрическая сумма двух перемещений вдоль двух взаимно перпендикулярных осей. Свободное твердое тело имеет 6 степеней свободы.

Обобщенные силы. Каждой обобщенной координате можно вычислить соответствующую ей обобщенную силу Q k .

Вычисление производится по такому правилу.

Чтобы определить обобщенную силу Q k , соответствующую обобщенной координате q k , надо дать этой координате приращение (увеличить координату на эту величину), оставив все другие координаты неизменными, вычислить сумму работ всех сил, приложенных к системе, на соответствующих перемещениях точек и поделить ее на приращение координаты :

где - перемещение i -той точки системы, полученное за счет изменения k -той обобщенной координаты.

Обобщенная сила определяется с помощью элементарных работ. Поэтому эту силу можно вычислить иначе:

И так как есть приращение радиуса-вектора за счет приращения координаты при остальных неизменных координатах и времени t , отношение можно определять как частную производную . Тогда

где координаты точек - функции обобщенных координат (5).

Если система консервативная, то есть движение происходит под действием сил потенциального поля, проекции которых , где , а координаты точек - функции обобщенных координат, то

Обобщенная сила консервативной системы есть частная производная от потенциальной энергии по соответствующей обобщенной координате со знаком минус.

Конечно, при вычислении этой обобщенной силы потенциальную энергию следует определять как функцию обобщенных координат

П = П(q 1 , q 2 , q 3 ,…,q s ).

Замечания.

Первое. При вычислении обобщенных сил реакции идеальных связей не учитываются.

Второе. Размерность обобщенной силы зависит от размерности обобщенной координаты.

Уравнения Лагранжа 2-го рода выводятся из общего уравнения динамики в обобщенных координатах. Число уравнений соответствует числу степеней свободы:

Для составления уравнения Лагранжа 2-го рода выбираются обобщенные координаты и находятся обобщенные скорости . Находится кинетическая энергия системы, которая является функцией обобщенных скоростей, и, в некоторых случаях, обобщенных координат. Выполняются операции дифференцирования кинетической энергии, предусмотренные левыми частями уравнений Лагранжа.Полученные выражения приравниваются обобщенным силам, для нахождения которых помимо формул (26) часто при решении задач используют следующие:

В числителе правой части формулы - сумма элементарных работ все активных сил на возможном перемещении системы, соответствующем вариации i-й обобщенной координаты - . При этом возможном перемещении все остальные обобщенные координаты не изменяются. Полученные уравнения являются дифференциальными уравнениями движения механической системы с S степенями свободы.

Устанавливающий общее условие равновесия механической системы . Согласно этому принципу, для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма виртуальных работ A_i только активных сил на любом возможном перемещении системы была равна нулю (если система приведена в это положение с нулевыми скоростями).

Количество линейно независимых уравнений равновесия, которые можно составить для механической системы, исходя из принципа возможных перемещений, равно количеству степеней свободы этой механической системы.

Возможными перемещениями несвободной механической системы называются воображаемые бесконечно малые перемещения, допускаемые в данный момент наложенными на систему связями (при этом время, входящее явно в уравнения нестационарных связей, считается зафиксированным). Проекции возможных перемещений на декартовы координатные оси называются вариациями декартовых координат.

Виртуальными перемещениями называются бесконечно малые перемещения, допускаемые связями, при "замороженном времени". Т.е. они отличаются от возможных перемещений, только когда связи реономны (явно зависят от времени).

Если, например, на систему наложено l голономных реономных связей:

f_{\alpha}(\vec r, t) = 0, \quad \alpha = \overline{1,l}

То возможные перемещения \Delta \vec r - это те, которые удовлетворяют

\sum_{i=1}^{N} \frac{\partial f_{\alpha}}{\partial \vec{r}} \cdot \Delta \vec{r} + \frac{\partial f_{\alpha}}{\partial t} \Delta t = 0, \quad \alpha = \overline{1,l}

А виртуальные \delta \vec r:

\sum_{i=1}^{N} \frac{\partial f_{\alpha}}{\partial \vec{r}}\delta \vec{r} = 0, \quad \alpha = \overline{1,l}

Виртуальные перемещения, вообще говоря, не имеют отношения к процессу движения системы - они вводятся лишь для того, чтобы выявить существующие в системе соотношения сил и получить условия равновесия. Малость же перемещений нужна для того, чтобы можно было считать реакции идеальных связей неизменными.

Напишите отзыв о статье "Принцип возможных перемещений"

Литература

  • Бухгольц Н. Н. Основной курс теоретической механики. Ч. 1. 10-е изд. - Спб.: Лань, 2009. - 480 с. - ISBN 978-5-8114-0926-6 .
  • Тарг С. М. Краткий курс теоретической механики: Учебник для вузов. 18-е изд. - М .: Высшая школа, 2010. - 416 с. - ISBN 978-5-06-006193-2 .
  • Маркеев А. П. Теоретическая механика: учебник для университетов. - Ижевск: НИЦ "Регулярная и хаотичная динамика", 2001. - 592 с. - ISBN 5-93972-088-9 .

Отрывок, характеризующий Принцип возможных перемещений

– Nous у voila, [В этом то и дело.] отчего же ты прежде ничего не сказала мне?
– В мозаиковом портфеле, который он держит под подушкой. Теперь я знаю, – сказала княжна, не отвечая. – Да, ежели есть за мной грех, большой грех, то это ненависть к этой мерзавке, – почти прокричала княжна, совершенно изменившись. – И зачем она втирается сюда? Но я ей выскажу всё, всё. Придет время!

В то время как такие разговоры происходили в приемной и в княжниной комнатах, карета с Пьером (за которым было послано) и с Анной Михайловной (которая нашла нужным ехать с ним) въезжала во двор графа Безухого. Когда колеса кареты мягко зазвучали по соломе, настланной под окнами, Анна Михайловна, обратившись к своему спутнику с утешительными словами, убедилась в том, что он спит в углу кареты, и разбудила его. Очнувшись, Пьер за Анною Михайловной вышел из кареты и тут только подумал о том свидании с умирающим отцом, которое его ожидало. Он заметил, что они подъехали не к парадному, а к заднему подъезду. В то время как он сходил с подножки, два человека в мещанской одежде торопливо отбежали от подъезда в тень стены. Приостановившись, Пьер разглядел в тени дома с обеих сторон еще несколько таких же людей. Но ни Анна Михайловна, ни лакей, ни кучер, которые не могли не видеть этих людей, не обратили на них внимания. Стало быть, это так нужно, решил сам с собой Пьер и прошел за Анною Михайловной. Анна Михайловна поспешными шагами шла вверх по слабо освещенной узкой каменной лестнице, подзывая отстававшего за ней Пьера, который, хотя и не понимал, для чего ему надо было вообще итти к графу, и еще меньше, зачем ему надо было итти по задней лестнице, но, судя по уверенности и поспешности Анны Михайловны, решил про себя, что это было необходимо нужно. На половине лестницы чуть не сбили их с ног какие то люди с ведрами, которые, стуча сапогами, сбегали им навстречу. Люди эти прижались к стене, чтобы пропустить Пьера с Анной Михайловной, и не показали ни малейшего удивления при виде их.
– Здесь на половину княжен? – спросила Анна Михайловна одного из них…
– Здесь, – отвечал лакей смелым, громким голосом, как будто теперь всё уже было можно, – дверь налево, матушка.
– Может быть, граф не звал меня, – сказал Пьер в то время, как он вышел на площадку, – я пошел бы к себе.
Анна Михайловна остановилась, чтобы поровняться с Пьером.
– Ah, mon ami! – сказала она с тем же жестом, как утром с сыном, дотрогиваясь до его руки: – croyez, que je souffre autant, que vous, mais soyez homme. [Поверьте, я страдаю не меньше вас, но будьте мужчиной.]
– Право, я пойду? – спросил Пьер, ласково чрез очки глядя на Анну Михайловну.

Элементы аналитической механики

В своих попытках познать окружающий мир человеческой природе свойственно стремление свести систему знаний в данной области к наименьшему числу исходных положений. Это прежде всего относится к научным областям. В механике такое стремление привело к созданию фундаментальных принципов, из которых вытекают основные дифференциальные уравнения движения для различных механических систем. Настоящий раздел учебника призван познакомить читателя с частью этих принципов.

Начнем изучение элементов аналитической механики с рассмотрения вопроса о классификации связях, встречающихся не только в статике, но и в динамике.

Классификация связей

Связь любого вида ограничения, накладываемые на положения и скорости точек механической системы .

Связи классифицируют:

· По изменению во времени:

- нестационарныесвязи , т.е. меняющиеся со временем . Движущаяся в пространстве опора – пример нестационарной связи.

- стационарныесвязи , т.е. не меняющиеся со временем. К стационарным связям относятся все связи, рассмотренные в разделе «Статика».

· По типу накладываемых кинематических ограничений:

- геометрическиесвязи накладывают ограничения на положения точек системы ;

- кинематические , или дифференциальныесвязи накладывают ограничения на скорости точек системы . По возможности сведения одного типа связи к другой:

- интегрируемая , или голономная (простая) связь , если кинематическую (дифференциальную) связь можно представить как геометрическую . В таких связях зависимости между скоростями удается свести к зависимости между координатами. Катящейся без проскальзывания цилиндр – пример интегрируемой дифференциальной связи: скорость оси цилиндра связана с его угловой скоростью по известной формуле , или , а после интегрирования приводится к геометрической связи между смещением оси и углом поворота цилиндра в виде .

- неинтегрируемая , или неголономнаясвязь если кинематическую (дифференциальную) связь нельзя представить как геометрическую . Пример – качение шара без проскальзывания при его непрямолинейном движении.

· По возможности «освобождения» от связи:

- удерживающиесвязи , при которых налагаемые ими ограничения сохраняются всегда, например, маятник, подвешенный на жестком стержне;

- неудерживающие связи - ограничения могут нарушаться при определенном типе движения системы , например, маятник, подвешенный на сминаемой нити.

Введем несколько определений.

· Возможное (или виртуальное ) перемещение (обозначается ) является элементарным (бесконечно малым) и таково, что не нарушает наложенные на систему связи .

Пример: точка, находясь на поверхности, в качестве возможных имеет множество элементарных перемещений в любом направлении вдоль опорной поверхности, не отрываясь от нее. Движение точки, приводящее к ее отрыву от поверхности, нарушает связь и, в соответствии с определением, не является возможным перемещением.

Для стационарных систем обычное действительное (реальное) элементарное перемещение входит во множество возможных перемещений.

· Число степеней свободы механической системы это число независимых между собой ее возможных перемещений .

Так, при перемещение точки на плоскости любое ее возможное перемещение выражается через две свои ортогональные (а значит и независимые) составляющие.

У механической системы с геометрическими связями число независимых координат, определяющих положение системы, совпадает с числом ее степеней свободы .

Таким образом, точка на плоскости имеет две степени свободы. Свободная материальная точка – три степени свободы. У свободного тела – шесть (добавляются повороты по углам Эйлера) и т.д.

· Возможная работа это элементарная работа силы на возможном перемещении .

Принцип возможных перемещений

Если система находится в равновесии, то для любой ее точки выполняется равенство , где - равнодействующие действующих на точку активных сил и сил реакций. Тогда и сумма работ этих сил при любом перемещении также равна нулю . Просуммировав для всех точек, получим: . Второе слагаемое для идеальных связей равно нулю, откуда формулируется принцип возможных перемещений :

. (3.82)

В условиях равновесия механической системы с идеальными связями сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении системы равна нулю .

Ценность принципа возможных перемещений заключается в формулировке условий равновесия механической системы (3.81), в которых не фигурируют неизвестные реакции связей.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1. Какое перемещение точки называется возможным?

2. Что называется возможной работой силы?

3. Сформулируйте и запишите принцип возможных перемещений.

Принцип Даламбера

Перепишем уравнение динамики к -й точки механической системы (3.27), перенеся левую часть в правую. Введем в рассмотрение величину

Силы в уравнении (3.83) образуют уравновешенную систему сил.

Распространяя этот вывод ко всем точкам механической системы, придем к формулировке принципаДаламбера , названного в честь французского математика и механика Жана Лерона Даламбера (1717–1783 г.г.), рис.3.13:

Рис.3.13

Если ко всем силам, действующим в данной механической системе, добавить все силы инерции, полученная система сил будет уравновешенной и к ней можно применять все уравнения статики .

Фактически это означает, что от динамической системы путем добавления сил инерции (сил Даламбера) переходят к псевдостатической (почти статической) системе.

Используя принцип Даламбера, можно получить оценку главного вектора сил инерции и главного момента сил инерции относительно центра в виде:

Динамические реакции, действующие на ось вращающегося тела

Рассмотрим твердое тело, вращающееся равномерно с угловой скоростью ω вокруг оси, закрепленной в подшипниках АиВ(рис. 3.14). Свяжем с телом вращающиеся вместе с ним оси Ахуz;преимущество таких осей в том, что по отношению к ним координаты центра масс и моменты инерции тела будут величинами постоянными. Пусть на тело действуют заданные силы . Обозначим проекции главного вектора всех этих сил на оси Ахуz через ( и т.д.), а их главные моменты относительно тех же осей - через ( и т.д.); при этом, так как ω =const, то = 0.

Рис.3.14

Для определения динамических реакций Х А, У А, Z А , Х B , Y B подшипников, т.е. реакций, возникающих при вращении тела, при­соединим ко всем действующим на тело заданным силам и реакциям связей силы инерции всех частиц тела, приведя их к центру А. Тогда силы инерции будут представлены одной силой, равной и приложенной в точке А, и парой сил с моментом, рав­ным . Проекции этого момента на оси к и у будут: , ; здесь опять , так как ω =const.

Теперь, составляя согласно принципу Даламбера уравнения (3.86) в проекциях на оси Ахуz и полагая АВ=b, получим

. (3.87)

Последнее уравнение удовлетворяется тождественно, так как .

Главный вектор сил инерции , где т - масса тела (3.85). При ω =const центр масс С имеет только нормальное ускорение , где - расстоя­ние точки С от оси вращения. Следовательно, направление вектора совпадаете с на­правлением ОС. Вычисляя проекции на координатные оси и учитывая, что ,где - координаты центра масс, найдем:

Чтобы определить и , рассмотрим какую-нибудь частицу тела с массой m k , отстоящую от оси на расстоянии h k . Для нее при ω =const сила инерции тоже имеет только центробежную составляющую , проекции которой, как и вектора R", равны.

КЛАССИФИКАЦИЯ СВЯЗЕЙ

Введенное в § 3 понятие о связях охватывает не все их виды. Поскольку рассматриваемые даже методы решения задач механики применимы вообще к системам не с любыми связями, рассмотрим вопрос о связях и об их классификации несколько подробнее.

Связями называются любого вида ограничения, которые налагаются на положения и скорости точекмеханической системы и выполняются независимо от того, какие на систему действуют заданные силы. Рассмотрим, как классифицируются эти связи.

Связи, не изменяющиеся со временем, называются стационарными, а изменяющиеся со с временем - нестационарными.

Связи, налагающие ограничения на положения (координаты) точек системы, называются геометрическими, а налагающие ограничения еще и на скорости (первые производные от координат по времени) точек системы - кинематическими или дифференциальными.

Если дифференциальную связь можно представить как геометрическую, т. е. устанавливаемую этой связью зависимость между скоростями свести к зависимости между координатами, то такая связь называется интегрируемой, а в противном случае - неинтегрируемой.

Геометрические и интегрируемые дифференциальные связи называют связями голсномньши, а неинтегрируемые дифференциальные связи - неголономньши.

По виду связей механические системы тоже разделяют на голономные (с голономными связями) и неголономные (содержащие неголономные связи).

Наконец, различают связи удерживающее (налагаемые ими ограничения сохраняются при любом положении системы) и неудерживающие, которые этим свойством не обладают (от таких связей, как говорят, система может «освобождаться»). Рассмотрим примеры.

1. Все связи, рассмотренные в § 3, являются геометрическими (голономными) и притом стационарными. Движущийся лнфт, изображенный на рис. 271, а, будет для лежащего в нем груза, когда положение груза рассматривается по отношению к осям Оху, нестационарной геометрической связью (пол кабины, реализующий связь, изменяет со временем свое положение в пространстве).

2 Положение катящегося без скольжения колеса (см. рис. 328) определяется координатой центра С колеса и углом поворота . При качении выполняется условие или

Это дифференциальная связь, но полученное уравнение интегрируется и дает , т. е. сводится к зависимости между координатами. Следовательно, наложенная связь голономная.

3. В отличие от колеса для шара, катящегося без скольжения по шероховатой плоскости, условие того, что скорость точки шара, касающаяся плоскости, равна нулю, не может быть сведено (когда центр шара движется не прямолинейно) к каким-нибудь зависимостям между координатами, определяющими положение шара. Это пример негалоиомной связи. Другой пример дают связи, налагаемые на управляемое движение. Например, если на движение точки (ракеты) налагается условие (связь), что ее скорость в любой момент времени должна быть направлена в другую движущуюся точку (самолет), то это условие к какой-нибудь зависимости между координатами тоже не сводится и связь является неголономной.



4. В § 3 связи, показанные на рис. являются, удерживающими, а на рис. 8 и 9 - неудерживающими (на рис. 8, а шарик может покинуть поверхность, а на рис. 9 - перемещаться в сторону точки А, сминая нить). С учетом особенностей неудерживающих связей мы сталкивались в задачах 108, 109 (§ 90) и в задаче 146 (§ 125).

Перейдем к рассмотрению еще одного принципа механики, который устанавливает общее условиеравновесия механической системы. Под равновесием (см. § 1) мы понимаем то состояние системы, при котором все ее точки под действием приложенных сил находятся в покое по отношению к инерциальной системе отсчета(рассматриваем так называемое «абсолютное» равновесие). Одновременно будем считать все наложенные на систему связи стационарными и специально это в дальнейшем каждый раз оговаривать не будем.

Введем понятие о возможной работе, как об элементарной работе, которую действующая на материальную точку сила могла бы совершить на перемещении, совпадающем с возможным перемещением этой точки. Будем возможную работу активной силы обозначать символом , а возможную работу реакции N связи - символом

Дадим теперь общее определение понятия об идеальных связях, которым мы уже пользовались (см. § 123): идеальными называются связи, для которых сумма элементарных работ их реакций на любом возможном перемещении системы равна нулю, т. е.

Приведенное в § 123 и выраженное равенством (52) условие идеальности связей, когда они одновременно являются стационарными, соответствует определению (98), так как при стационарных связях каждое действительное перемещение совпадает с одним из возможных. Поэтому примерами идеальных связей будут все примеры, приведенные в § 123.

Для определения необходимого условия равновесия докажем, что если механическая система с идеальными связями находится действием приложенных сил в равновесии, то при любом возможном перемещении системы должно выполняться равенство

где - угол между силой и возможным перемещением.

Обозначим равнодействующие всех (и внешних, и внутренних) активных сил и реакций связей, действующих на какую-нибудь точку системы соответственно через . Тогда, поскольку каждая из точек системы находится в равновесии, , а следовательно, и сумма работ этих сил при любом перемещении точки будет тоже равна нулю, т. е. . Составив такие равенства для всех точек системы и сложив их почленно, получим

Но так как связи идеальные, представляют собой возможные перемещения точек системы, то вторая сумма по условию (98) будет равна нулю. Тогда равна нулю и первая сумма, т. е. выполняется равенство (99). Таким образом, доказано, что равенство (99) выражает необходимое условие равновесия системы.

Покажем, что это условие является и достаточным, т. е. что если к точкам механической системы, находящейся в покое, приложить активные силы удовлетворяющие равенству (99), то система останется в покое. Предположим обратное, т. е. что система при этом Придет в движение и некоторые ее точки совершат действительные перемещения . Тогда силы совершат на этих перемещениях работу и по теореме об изменении кинетической энергии будет:

где, очевидно, , так как вначале система была в покое; следовательно, и . Но при стационарных связях действительные перемещения совпадают с какими-то из возможных перемещений и на этих перемещениях тоже должно быть что противоречит условию (99). Таким образом, когда приложенные силы удовлетворяют условию (99), система из состояния покоя выйти не может и это условие является достаточным условием равновесия.

Из доказанного вытекает следующий принцип возможных перемещений: для равновесия механической системыс идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении системы была равна нулю. Математически сформулированное условие равновесия выражается равенством (99), которое называют также уравнением возможных работ. Это равенство можно еще представить в аналитической форме (см. § 87):

Принцип возможных перемещений устанавливает общее условие равновесия механической системы, не требующее рассмотрения равновесия отдельных частей (тел) этой системы и позволяющее при идеальных связях исключить из рассмотрения все наперед неизвестные реакции связей.

Рисунок 2.4

Решение

Заменим распределенную нагрузку сосредоточенной силой Q = q∙DH . Эта сила приложена в середине отрезка DH – в точке L .

Силу F разложим на составляющие, спроецировав ее на оси : горизонтальную F x cosα и вертикальную F y sinα .

Рисунок 2.5

Чтобы решить задачу с помощью принципа возможных перемещений, необходимо, чтобы конструкция могла перемещаться и при этом чтобы в уравнении работ была одна неизвестная реакция . В опоре A реакция раскладывается на составляющие X A , Y A .

Для определения X A изменим конструкцию опоры A так, чтобы точка A могла перемещаться только по горизонтали. Выразим перемещения точек конструкции через возможный поворот части CDB вокруг точки B на угол δφ 1 , часть AKC конструкции в этом случае поворачивается вокруг точки C V1 — мгновенного центра вращения (рисунок 2.5) на угол δφ 2 , и перемещения точек L и C – будут

δS L = BL∙δφ 1 ;
δS C = BC∙δφ 1
.

В то же время

δS C = CC V1 ∙δφ 2

δφ 2 = δφ 1 ∙BC/CC V1 .

Уравнение работ удобнее составить через работу моментов заданных сил , относительно центров вращений.

Q∙BL∙δφ 1 + F x ∙BH∙δφ 1 + F y ∙ED∙δφ 1 +
+ M∙δφ 2 — X A ∙AC V1 ∙δφ 2 = 0
.

Реакция Y A работу не совершает. Преобразуя это выражение, получим

Q∙(BH + DH/2)∙δφ 1 + F∙cosα∙BD∙δφ 1 +
+ F∙sinα∙DE∙δφ 1 + M∙δφ 1 ∙BC/CC V1 —
— X A ∙AC V1 ∙δφ 1 ∙BC/CC V1 = 0
.

Сократив на δφ 1 , получим уравнение, из которого легко находится X A .

Для определения Y A конструкцию опоры A изменим так, чтобы при перемещении точки A работу совершала только сила Y A (рисунок 2.6). Примем за возможное перемещение части конструкции BDC поворот вокруг неподвижной точки B δφ 3 .

Рисунок 2.6

Для точки C δS C = BC∙δφ 3 , мгновенным центром вращения для части конструкции AKC будет точка C V2 , и перемещение точки C выразится.