Принцип работы сенсорного. Что такое тачскрин на смартфоне

Наверняка все из вас пользуются компьютерами и мобильными устройствами, и лишь единицы в общем способны рассказать, как работают их процессоры, операционные системы и прочие компоненты.

В эру мобильных гаджетов у всех есть с сенсорным (ещё его называют интеллектуальным) экраном, и почти никто не знает, что такое этот сенсорный дисплей, как он работает и какие его виды существуют.

Что это такое

Сенсорный дисплей (экран) – это устройство для визуализации цифровой информации с возможностью оказывать управленческое воздействие посредством прикосновений к поверхности дисплея.

Основываясь на различных технологиях, разные дисплеи реагируют только на определенные факторы.

Одни считывают изменение ёмкости или сопротивления в области соприкосновения, другие на перепады температуры , некоторые сенсоры реагируют только на специальное перо , чтобы избежать случайных нажатий.

Мы рассмотрим принцип действия всех распространённых видов дисплеев, области их применения, сильные и слабые стороны.

Среди всех существующих принципов управления устройством посредством чувствительной к каким-либо факторам матрицы, обратим внимание на следующие технологии:

  • резистивная (4-5-ти проводная);
  • матричная;
  • ёмкостная и её варианты;
  • поверхностно-акустическая;
  • оптическая и иные менее распространённые и практичные.

В общем схема работы следующая: пользователь прикасается к области экрана, датчики передают контроллеру данные об изменении какой-либо переменной (сопротивления, ёмкости), тот рассчитывает точные координаты места соприкосновения и отправляет их .

Последний, основываясь на программе, соответствующим образом реагирует на нажатие.

Резистивные

Самый простой сенсорный экран – резистивный. Он реагирует на изменение сопротивления в области касания постороннего предмета и экрана.

Это самая примитивная и распространённая технология. Устройство состоит из двух основных элементов:

  • токопроводящая прозрачная подложка (панель) из полиэстера или иного полимера толщиной в несколько десятков молекул;
  • светопроводящая мембрана из полимерного материала (как правило, используется тонкий слой пластика).

На оба слоя напылен резистивный материал. Между ними расположены микроизоляторы в виде шариков.

Во время этапа эластичная мембрана деформируется (прогибается), соприкасается со слоем подложки и замыкает её.

Контроллер посредством аналого-цифрового преобразователя реагирует на замыкание. Он высчитывает разницу между исходным и текущим сопротивлением (или проводимостью) и координаты точки или области, где это осуществляется.

Практика быстро выявила недостатки таких устройств, и инженеры приступили к поиску решений, которые вскоре были найдены путём добавления 5-го провода.

Четырёхпроводной

Верхний электрод находится под напряжением 5В, а нижний заземлён.

Левый с правым соединены напрямую, они и являются индикатором изменения напряжения по оси Y.

Затем верхний с нижним закорачиваются, а на левый с правым подается 5В, чтобы считать X-координату.

Пятипроводной

Надёжность обусловлена заменой резистивного покрытия мембраны на токопроводящее.

Панель же изготавливается из стекла и остается покрытой резистивным материалом , а на её углах размещаются электроды.

Сначала все электроды заземляются, а мембрана находится под напряжением, которое постоянно мониторится тем же аналого-цифровым преобразователем.

Во время прикосновения контроллер (микропроцессор) улавливает изменение параметра и проводит расчёты точки/области, где напряжение изменилось по схеме с четырьмя проводами.

Важное преимущество – возможность наносить на выпуклые и вогнутые поверхности.

На рынке встречаются и 8-ми проводные экраны. Их точность выше, чем рассмотренные, но на надёжность это ни коим образом не влияет, а цена заметно отличается.

Заключение

Рассмотренные сенсоры используются повсеместно ввиду низкой себестоимости и стойкости к влиянию факторов внешней среды, таких как загрязнение и пониженные температуры (но не ниже нуля).

Они отлично откликаются на прикосновение практически любым предметом, но не острым.

Площади карандаша или спички, как правило, недостаточно для вызова реакции контроллера.

Ставятся такие дисплеи на , используются в сфере обслуживания (офисы, банки, магазины), медицине и образовании.

Везде, где устройства изолированы от внешней среды, а вероятность быть повреждённым минимальна.

Невысокая надёжность (экран легко повредить) частично компенсируется защитной плёнкой.

Плохое функционирование на морозе, низкое светопропускание (0,75 и 0,85 соответственно), ресурс (не более 35 миллионов нажатий для терминала, которым постоянно пользуются, совсем немного) – слабые стороны технологии.

Матричные

Более упрощенная резистивная технология, возникшая ещё до неё.

Мембрана покрыта рядами вертикальных проводников , а подложка – горизонтальными.

При нажатии происходит вычисление области, где сомкнулись проводники и полученные данные передаются в процессор.

Он уже вырабатывает управляющий сигнал и устройство определённым образом реагирует, например, выполняет закреплённое за кнопкой действие).

Особенности:

  • очень низкая точность (количество проводников весьма ограничено);
  • самая низкая цена среди всех;
  • реализации функции мультитач из-за опроса экрана по строчкам.

Используются только в устаревшей электронике и почти вышли из обихода ввиду наличия прогрессивных решений.

Ёмкостные

Принцип основан на способности объектов большой ёмкости становиться проводниками переменного электрического тока.

Экран изготовлен в виде стеклянной панели с тонким слоем напыленного резистивного вещества.

Электроды по углам дисплея подают небольшое напряжение переменного тока на проводящий слой.

В момент соприкосновения осуществляется утечка тока , если предмет имеет большую электрическую ёмкость, чем экран.

По углам экрана регистрируется ток, а сведения с датчиков отправляются контроллеру на обработку. На их основании происходит вычисление области контакта.

В первых прототипах использовалось напряжение постоянного тока. Решение делало конструкцию проще, но часто возникали сбои, когда пользователь не соприкасался с землёй.

Данные девайсы очень надёжны, их ресурс превышает резистивные ~ в 60 раз (порядка 200 млн. нажатий), влагостойкие и отлично терпят загрязнения, не проводящие электрический ток.

Прозрачность находится на уровне 0,9, что немного выше, резистивных, и работают при температуре до - 15 0 С.

Недостатки:

  • не реагирует на перчатку и большинство посторонних предметов;
  • проводящее покрытие находится в верхнем слое и очень уязвимо к механическим повреждениям.

Используются в тех же банкоматах и терминалах под закрытым небом.

Проекционно-ёмкостные

На внутреннюю поверхность наносится электродная сетка, образующая с телом человека ёмкость (конденсатор). Электроника (микроконтроллер и датчики) работают над расчётом координат при и отправляет расчёты центральному процессору.

Обладают всеми особенностями ёмкостных.

Вдобавок могут оснащаться толстой пленкой до 1,8 см, что повышает защиту от механических воздействий.

Токопроводящие загрязнения, где их тяжело или невозможно устранить, без проблем убираются программным методом.

Чаще всех иных устанавливаются в персональные электронные устройства, банкоматы и различную технику, установленную фактически под открытым небом (под накрытием). Apple также отдают предпочтение проекционно-ёмкостным дисплеям.

Поверхностно-акустическая волна

Изготавливается в виде стеклянной панели, оснащённой пьезоэлектрическими преобразователями ПЭП, расположенными на противоположных углах, и приёмниками.

Их тоже пара и находятся на противоположных углах.

Генератор отправляет электрический сигнал ВЧ на ПЭП, тот превращает череду импульсов в ПАВ, а отражатели распространяют её.

Отраженные волны улавливаются датчиками и поступают на ПЭП, который преобразовывает их обратно в электричество.

Сигнал отправляется на контроллер, который анализирует его.

При касании параметры волны изменяются, в частности поглощается часть её энергии в определённом месте. На основании этой информации производится расчёт области касания и его силы.

Весьма высокая прозрачность (выше 95%) обусловлена отсутствием проводящих/резистивных поверхностей.

Порой для устранения бликов отражатели света вместе с приёмниками монтируются непосредственно на экран.

Сложность конструкции никоим образом не отражается на эксплуатации девайса с таким экраном, а число прикосновений в одной точке равняется 50 млн раз, что немного превышает ресурс резистивной технологии (65 млн. раз в общем).

Выпускаются с тонкой плёнкой порядка 3 мм и утолщенной – 6 мм. Благодаря такой защите дисплей выдерживает несильный удар кулаком.

Слабые стороны:

  • плохая работа в условиях вибрации и тряски (в транспорте, при ходьбе);
  • отсутствие стойкости к загрязнениям – любой посторонний предмет влияет на функционирование дисплея;
  • помехи при наличии акустических шумов определённой конфигурации;
  • точность немногим ниже, чем в ёмкостных, из-за чего непригодны для рисования.

Пользователи смартфонов, плохо владеющие английским, бывают озадачены, услышав название «тачскрин» - это что за часть телефона? Обычно так именуют любой сенсорный экран вне зависимости от того, на каком устройстве он установлен. В настоящее время подобные дисплеи используются не только для мобильных гаджетов, но и встраиваются в различные терминалы самообслуживания.

Что представляет собой тачскрин?

Данный термин произошел от слияния 2 английских слов: touch и screen, что в переводе обозначает «сенсорный экран». Такой дисплей реагирует на прикосновения и позволяет упростить управление техникой. Однако стоит различать несколько типов оборудования, поскольку принцип их работы не совсем похож.

В современных гаджетах, например на айфоне, устанавливают емкостные и проекционно-емкостные дисплеи. Последний вид можно назвать более продвинутым, поскольку он способен считывать определенное количество прикосновений одновременно. Сами по себе такие тачскрины являются стеклянными панелями со слоем резистивного материала и электродами.

Также существуют дисплеи, на которые нанесена гибкая мембрана. Между ней и стеклом располагаются микроизоляторы, нажатие на которые провоцирует изменение сопротивления. Его фиксирует контроллер и преобразует в координаты, в результате чего происходит управление девайсом.

Основное различие между этими типами технологий в том, что емкостный дисплей не реагирует на касание каким-либо предметом и даже простым стилусом, чего не скажешь о резистивном тачскрине. Таким образом, блокировка смартфона на нем срабатывает намного лучше, чем на его устаревшем «собрате».

Принцип работы разных экранов

Существует всего 3 вида Touch Screen, 2 из которых уже были кратко описаны:

  • емкостный;
  • волновой;
  • резистивный.

Начать стоит с наиболее используемого, т. е. емкостного дисплея. Как работает такой экран на телефоне? Все довольно просто. Резистивный слой служит накопителем заряда, который пропускают электроды, в то время как пользователь своим касанием выталкивает часть энергии в определенной точке. Это работает благодаря тому, что в человеческом теле тоже присутствует ток. Когда степень заряда уменьшается, данное изменение фиксируют микросхемы и передают его драйверу тачскрина.

Главное преимущество таких дисплеев в том, что они довольно износостойкие. В течение долгого времени не теряют изначальной яркости и способны передавать более четкие изображения.

Принцип работы резистивного экрана был изложен выше. Если разбираться в этом подробнее, то следует сказать, что гибкая мембрана представляет собой упругую металлическую пластину, которая пропускает ток. Между ней и слоем проводника находится пустое пространство. Взаимодействуя с дисплеем, пользователь производит легкое нажатие на его поверхность, смыкая мембрану с проводником в этой точке. Далее все происходит по той же схеме: система считывает координаты, а драйвер отдает команды ОС.

Резистивные дисплеи уже давно не являются ходовыми, поскольку их функциональность несколько ограничена в сравнении с емкостными тачскринами. Такие экраны можно встретить только в сильно устаревшей технике или различных терминалах, но реже.

Что такое тачскрин волновой? Это также стеклянная поверхность с сеткой координат и преобразователями. Один из них передает импульсы, в то время как другой принимает сигналы, отраженные рефлектором. Таким образом, заряд «гуляет» по преобразователям, создавая акустическую волну, которую пользователь прерывает нажатием. Так определяется место прикосновения.

Данный вид дисплея является лучшим вариантом для художников и графических дизайнеров, т. к. он не искажает изображение в связи с отсутствием металлического покрытия. Он же является самым дорогостоящим, при этом многие относят его к технологиям будущего, считая что даже емкостный дисплей уйдет в небытие, уступив место волновой технологии.

Видео обзор: виды тачскрина

В наше время ни у кого не возникает сомнений в том, что сенсорный экран на вашем телефоне - штука удобная. Такие дисплеи используются для создания множества устройств - планшетов, мобильных телефонов, ридеров, справочных устройств и кучи другой периферии. Сенсорный экран позволяет заменить многочисленные механические кнопки, и это очень удобно, поскольку в этом случае они объединяют и дисплей, и высококачественное устройство ввода. Уровень надежности устройств значительно повышается, ведь механические части отсутствуют. В настоящее время сенсорные экраны принято подразделять на несколько видов: резистивные (бывают четырех-, пяти-, восьмипроводными), проекционно-емкостные, матрично-емкостные, оптические и тензометрические. Кроме того, дисплеи могут создаваться на основе поверхностно-акустических волн либо инфракрасных лучей. Насчитывается уже несколько десятков запатентованных технологий. В наше время чаще всего используются емкостные и резистивные экраны. Их и рассмотрим подробнее.

Резистивный экран.

Самый простой вид – это четырехпроводной, который состоит из специальной стеклянной панели, а также пластиковой мембраны. Пространство между стеклом и пластиковой мембраной обязательно должно заполняться микроизоляторами, которые могут надежно изолировать токопроводящие поверхности друг от друга. По всей поверхности слоев установлены электроды, являющиеся тонкими пластинками, сделанными из металла. В заднем слое электроды находятся в вертикальном положении, а в переднем слое – в горизонтальном для того, чтобы могло производиться вычисление координат. Если на дисплей нажать, то панель и мембрана автоматически замкнутся, а специальный датчик будет воспринимать нажатие, преобразовывая его в сигнал. Наиболее усовершенствованным видом считаются восьмипроводные дисплеи, которые отличаются высоким уровнем точности. Однако данные экраны отличаются низким уровнем надежности и недолговечностью. Если же важно, чтобы дисплей был надежным, необходимо остановить выбор на пятипроводном его виде.

1 - стеклянная панель, 2 - резистивное покрытие, 3 - микроизоляторы, 4 - пленка с проводящим покрытием

Матричные экраны.

Конструкция похожа на резистивный дисплей, хотя она и была упрощена. На мембрану специально нанесли вертикальные проводники, а на стекло – горизонтальные. Если нажать на дисплей, то проводники обязательно соприкоснутся, замкнутся крест-накрест. Процессор может отследить, какие проводники замкнулись, и это помогает обнаружить координаты нажатия. Матричные экраны нельзя назвать высокоточными, поэтому их уже продолжительное время не используют.


Емкостные экраны.

Конструкция емкостных экранов является достаточно сложной, и основана она на том, что тело человека и дисплей вместе образуют конденсатор, проводящий переменный ток. Подобные экраны выполняются в виде стеклянной панели, которую покрывают резистивным материалом для того, чтобы электрический контакт не затруднялся. Электроды располагаются по четырем углам дисплея, и на них подано переменное напряжение. Если же коснуться поверхности дисплея, то будет происходить утечка переменного тока через вышеупомянутый \"конденсатор\". Это регистрируется датчиками, после чего информацию обрабатывает микропроцессор устройства. Емкостные дисплеи могут выдержать до 200 миллионов нажатий, они отличаются средним уровнем точности, но, увы, они боятся любого влияния жидкостей.

Проекционно-емкостные экраны.

Проекционно-емкостные экраны могут, в отличие от предыдущих рассмотренных типов, способны определить сразу несколько нажатий. На внутренней стороне всегда есть специальная сетка элетродов, и во время соприкосновения с ними обязательно будет образован конденсатор. В данном месте будет изменена электрическая емкость. Контроллер сможет определить точку, в которой пересеклись электроды. Затем происходят вычисления. Если сразу нажать экран в нескольких местах, то будет образован не один конденсатор, а несколько.


Экран с сеткой инфракрасных лучей.

Принцип работы подобных дисплеев является простым, и он в какой-то степени похож на матричный. В этом случае проводники заменяют специальными инфракрасными лучами. Вокруг данного экрана проходит рамка, в которой есть встроенные излучатели, а также приемники. Если нажать на экран, то некоторые лучи будут перекрываться, и они не могут достигнуть собственного пункта назначения, а именно приемника. В итоге контроллер вычисляет место контакта. Подобные экраны могут пропускать свет, они долговечны, поскольку чувствительного покрытия нет и механического касания не происходит вообще. Однако такие дисплеи в настоящий момент не отвечают высокой точности и боятся любых загрязнения. Зато время диагональ рамки такого дисплея может достигать 150 дюймов.


Сенсорные экраны на поверхностно-акустических волнах.

Данный дисплей всегда выполняется в виде стеклянной панели, в которую встроены пьезоэлектрические преобразователи, расположенные по разным углам. По периметру также находятся отражающие, приемные датчики. Контроллер отвечает за формирование сигналов, частота которых является высокой. После этого сигналы всегда посылаются на пьезоэлектрические преобразователя, которые могут преобразовывать поступившие сигналы в акустические колебания, отражающиеся впоследствии от отражающих датчиков. Затем волны могут улавливаться приемниками, повторно посылаться на пьезоэлектрические преобразователи, после чего превращаются в электрический сигнал. Если нажать на дисплей, то энергия акустических волн будет частично поглощена. Приемники отличаются восприимчивостью к подобным изменениям, а процессор может вычислить точки касания. Основным преимуществом является то, что сенсорные экраны на поверхностно-акустических волнах отслеживают координаты точки нажатия, силу нажатия. Дисплеи данного вида отличаются долговечностью, ведь они могут выдержать 50 миллионов касаний. Чаще всего их используют для игровых автоматов, справочных системах. Следует учитывать то, что работа такого дисплея может быть неточной в условии окружающих шумов, вибрации, акустического загрязнения.

iPhone 2G был первым мобильным телефоном, управление которым полностью строилось на взаимодействии с сенсорным экраном. С момента его презентации прошло больше десяти лет, но многие из нас все еще не знают, как устроен Touchscreen. А ведь мы сталкиваемся с этим интуитивным средством ввода не только в смартфонах, но и в банкоматах, платежных терминалах, компьютерах, автомобилях и самолетах - буквально повсюду.
До тачскринов самым распространенным интерфейсом для ввода команд в электронные устройства были различные клавиатуры. Хотя, кажется, что у них с тачскринами нет ничего общего, на самом деле то, насколько сенсорный экран по принципам работы схож с клавиатурой, может удивить. Давайте рассмотрим их устройство в деталях.

Клавиатура представляет собой печатную плату, на которой устанавливается несколько рядов переключателей-кнопок. Вне зависимости от их конструкции, мембранной или механической, при нажатии каждой из клавиш происходит одно и то же. На компьютерной плате под кнопкой замыкается электрическая цепь, компьютер регистрирует прохождение тока в этом месте схемы, «понимает», какая клавиша нажата и выполняет соответствующую ей команду. В случае с сенсорным экраном происходит почти тоже самое.

Существует порядка десятка различных видов сенсорных экранов, однако большинство из этих моделей или давно устарело и не используется, или относится к экспериментальным и вряд ли когда-нибудь появится в серийных устройствах. Прежде всего, я расскажу об устройстве актуальных технологий, тех из них, с которыми постоянно взаимодействуете или хотя бы можете столкнуться в повседневной жизни.

Резистивный сенсорный экран

Резистивные сенсорные экраны изобретены еще в 1970 году и с тех пор изменились мало.
В дисплеях с такими сенсорами над матрицей располагается пара дополнительных слоев. Впрочем, оговорюсь, матрица здесь вовсе не обязательна. Первые резистивные сенсорные устройства не были экранами вовсе.

Нижний сенсорный слой состоит из стеклянной основы и называется резистивным слоем. На него наносится прозрачное металлическое покрытие, хорошо передающее ток, например, из такого полупроводника, как оксид индия-олова. Верхний слой тачскрина, с которым взаимодействует пользователь нажимая на экран, сделан из гибкой и упругой мембраны. Он называется проводящим слоем. В пространстве между слоями оставляют воздушную прослойку, либо равномерно усеивают его микроскопическими изолирующими частицами. По краям к сенсорному слою подводится четыре, пять или восемь электродов, связывающих его с датчиками и микроконтроллером. Чем больше электродов, тем выше чувствительность резистивного такчскрина, поскольку изменение напряжения на них постоянно отслеживается.


Вот экран с резистивным тачскрином включен. Пока ничего не происходит. Электрический ток свободно течет по проводящему слою, но когда пользователь дотрагивается до экрана, мембрана сверху прогибается, изолирующие частицы расступаются, и она касается нижнего слоя тачскрина, вступает в контакт. За этим следует изменение напряжения разом на всех электродах экрана.

Контроллер тачскрина обнаруживает изменения напряжения и считывает показания с электродов. Четыре, пять, восемь значений и все разные. По разнице в показаниях между правым и левым электродами микроконтроллер вычислит X-координату нажатия, а по различиям в напряжении на верхнем и нижнем электродах, определит Y-координату и, таким образом, сообщит компьютеру точку, в которой слои сенсорного слоя экрана соприкоснулись.

Резистивные сенсорные экраны могут похвастать длинным перечнем недостатков. Так, они в принципе не способны распознать двух одновременных нажатий, не говоря уже о большем числе. Они плохо ведут себя на холоде. Из-за необходимости в прослойке между слоями сенсора, матрицы таких экранов заметно теряют в яркости и контрастности, склонны бликовать на солнце, и в целом выглядят заметно хуже. Тем не менее, там, где качество изображения играет второстепенную роль, их продолжают применять в силу устойчивости к загрязнениям, возможности использования в перчатках и, что самое главное, низкой стоимости.

Такие средства ввода повсеместно монтируются в недорогих массовых устройствах, вроде информационных терминалов в общественных местах и все еще встречаются в устаревающих гаджетах, типа дешевых MP3-плееров.

Инфракрасный сенсорный экран

Следующим, куда менее распространенным, но, тем не менее, актуальным вариантом сенсорного экрана является инфракрасный тачскрин. Он не имеет ничего общего с резистивным сенсором, хотя и выполняет схожие функции.

Инфракрасный тачскрин сконструирован из массивов светодиодов и светочувствительных фотоэлементов, расположенных на противоположных сторонах экрана. Светодиоды подсвечивают поверхность экрана невидимым инфракрасным светом, образуя на ней нечто вроде паутины или координатной сетки. Это напоминает охранную сигнализацию, какой ее показывают в шпионских боевиках или компьютерных играх.

Когда к экрану что-то прикасается, не важно палец это, рука в перчатке, стилус, или карандаш, два или более луча прерываются. Фотоэлементы фиксируют это событие, контроллер тачскрина выясняет, какие из них недополучают инфракрасный свет и по их положению вычисляет зону экрана, в которой возникло препятствие. Остальное - сопоставить прикосновение с тем, какой элемент интерфейса находится на экране в этом месте - задача программного обеспечения.

Сегодня с инфракрасными сенсорными экранами можно столкнуться в тех гаджетах, чьи экраны обладают нестандартной конструкцией, там, где добавлять дополнительные сенсорные слои технически сложно или нецелесообразно - в электронных книгах на базе дисплеев E-link, например, Amazon Kindle Touch и Sony Ebook. Кроме того, устройства с подобными сенсорами из-за простоты и ремонтопригодности приглянулись военным.

Емкостный сенсорный экран

Если в резестивных сенсорных экранах компьютер регистрирует изменение проводимости, последовавшее за нажатием на экран, непосредственно между слоями сенсора, то емкостные сенсоры фиксируют прикосновение непосредственно.

Человеческое тело, кожа - хорошие проводники электричества и обладают электрическим зарядом. Обычно это замечаешь пройдясь по шерстяному ковру или сняв любимый свитер, а затем прикоснувшись к чему-либо металлическому. Все мы знакомы со статическим электричеством, испытывали его действие на себе и видели крошечные искры, срывающиеся с наших пальцев в темноте. Более слабый, незаметный обмен электронами между человеческим телом и различными проводящими поверхностями происходит постоянно и именно его фиксируют емкостные экраны.

Первые такие тачскрины назывались поверхностно-емкостными и были логичным развитием резистивных сенсоров. В них всего один проводящий слой, похожий на тот, что использовался ранее, устанавливался прямо поверх экрана. К нему также присоединялись чувствительные электроды, на этот раз по углам сенсорной панели. Следящие за напряжением на электродах датчики и их программное обеспечение были сделаны заметно чувствительнее и теперь могли улавливать малейшие изменения в течении электрического тока по экрану. Когда палец (другой проводящий ток предмет, например, стилус) касается поверхности с поверхностно-емкостным тачскрином, проводящий слой немедленно начинает обмениваться с ним электронами, а микроконтроллер это замечает.

Появление поверхностно-емкостных тачскринов стало прорывом, однако из-за того, что нанесенный прямо поверх стекла токопроводящий слой было легко повредить, они не были пригодны для устройств нового поколения.


Для создания первого iPhone потребовались проекционно-емкостные сенсоры. Этот тип тачскринов быстро стал наиболее распространенным в современной потребительской электронике: смартфонах, планшетах, ноутбуках, моноблоках и прочих бытовых устройствах.

Верхний слой экрана с тачскрином этого типа выполняет защитную функцию и может быть сделан из закаленного стекла, например, знаменитого Gorilla Glass. Ниже располагаются тончайшие электроды, образующие сетку. Поначалу их накладывали друг на друга в два слоя, затем для уменьшения толщины экрана стали располагать на одном уровне.

Выполненные из полупроводниковых материалов, в том числе уже упоминавшегося оксида индия-олова, эти токопроводящие волоски создают электростатическое поле в местах своего пересечения.


Когда палец касается стекла, за счет электропроводных свойств кожи он искажает локальное электрическое поле в местах ближайших пересечений электродов. Это искажение может быть измерено, как изменение емкости в отдельно взятой точке сетки.

Поскольку массив электродов делается достаточно мелким и плотным, такая система способна отслеживать касание очень точно и без проблем улавливает сразу несколько прикосновений. Кроме того, отсутствие дополнительных слоев и прослоек в бутерброде из матрицы, сенсора и защитного стекла положительно сказывается на качестве изображения. Правда, по той же причине, разбитые экраны, как правило, заменяются полностью. Однажды собранный воедино, экран с проекционно-емкостным сенсором чрезвычайно сложно поддается ремонту.

Сейчас преимущества проекционно-емкостных тачскринов не звучат, как что-то удивительное, но на момент презентации iPhone они обеспечили технологии колоссальный успех, несмотря на объективные минусы - чувствительность к загрязнениям и влажности.

Чувствительные к давлению сенсорные экраны - 3D Touch

Идейным предшественником сенсорных экранов, чувствительных к давлению, стала фирменная технология Apple, под названием Force Touch, применявшаяся в умных часах компании, MacBook, MackBook Pro и Magic Trackpad 2.

Опробовав на этих устройствах интерфейсные решения и различные сценарии использования распознавания силы нажатия, Apple начала внедрение похожего решения в свои смартфоны. В iPhone 6s и 6s Plus распознавание и измерение давления стало одной из функций тачскрина и получило коммерческое наименование 3D Touch.


Хотя в Apple и не скрывали, что новая технология лишь модифицирует привычные нам емкостные сенсоры и даже показали схему, в общих чертах объяснявшую принцип ее действия, подробности об устройстве сенсорных экранов с 3D Touch появились только после того, как первые iPhone нового поколения были разобраны энтузиастами.

Для того, чтобы научить емкостной сенсорный экран распознавать нажатия и различать несколько степеней давления, инженерам из Купертино потребовалось пересобрать бутерброд сенсорного экрана. Они внесли изменения в отдельные его части и добавили к емкостному еще один, новый слой. И, что интересно, делая это, они явно вдохновлялись устаревшими резистивными экранами.


Сетка емкостных сенсоров осталась без изменений, однако она была перенесена назад, ближе к матрице. Между набором электрических контактов, следящих за местом прикосновения к дисплею, и защитным стеклом был интегрирован дополнительный массив из 96 отдельных датчиков.


Его задача заключалась не в том, чтобы определить местоположение пальца на экране iPhone. С этим по-прежнему отлично справлялся емкостный тачскрин. Эти пластины необходимы для обнаружения и измерения степени изгиба защитного стекла. Компания Apple специально для iPhone заказала у Gorilla Glass разработку и производство такого защитного покрытия, которое бы сохраняло прежнюю прочность и, в то же время, было достаточно гибким, чтобы экран мог реагировать на давление.

На этой разработке можно было закончить материал, повествующий о сенсорных экранах, если бы не еще одна технология, которой несколько лет назад прочили большое будущее.

Волновые сенсорные экраны

Неожиданно, но они не используют электричество и даже не имеют ничего общего со светом. Технология Surface Acoustic Wave system для определения точки прикосновения применяет поверхностные акустические волны, распространяющиеся вдоль поверхности экрана. Ультразвук, создаваемый пьезоэлектрическими элементами по углам, слишком высок для того, чтобы его мог уловить человеческий слух. Он распространяется взад и вперед, многократно отражаясь от краев экрана. Звук анализируется на предмет аномалий, создаваемых прикасающимися к экрану предметами.

Недостатков у волновых сенсорных экранов не много. Они начинают ошибаться после сильного загрязнения стекла и в условиях сильного шума, но, при этом, в экранах с таким сенсором нет дополнительных слоев, увеличивающих толщину и влияющих на качество изображения. Все компоненты сенсора прячутся под рамкой дисплея. Кроме того, волновые сенсоры позволяют точно подсчитывать площадь соприкосновения экрана с пальцем или другим предметом и по этой площади косвенно рассчитать силу нажатия на экран.

Мы уже вряд ли столкнемся с этой технологией в смартфонах из-за нынешней моды на безрамочные дисплеи, но несколько лет назад компания Samsung экспериментировала с Surface Acoustic Wave system в моноблоках, а в качестве комплектующих для игровых автоматов и рекламных терминалов панели с акустическими тачскринами продаются и сейчас

Вместо заключения

За очень краткий срок тачскрины завоевали мир электроники. Несмотря на отсутствие тактильного отклика и другие свои недостатки, сенсорные экраны стали очень интуитивным, понятным и удобным методом ввода информации в компьютеры. Не в последнюю очередь, своим успехом они обязаны разнообразием технических реализаций. Каждая со своими преимуществами и недостатками, подходящая для своего класса устройств. Резистивные экраны для самых дешевых и массовых гаджетов, емкостные экраны для смартфонов и планшетов и настольных компьютеров с которыми мы взаимодействуем каждый день и инфракрасные тачскрины для тех случаев, когда конструкцию экрана следует оставить в неприкосновенности. В заключение, остается лишь констатировать, что сенсорные экраны с нами надолго, замены им в ближайшем будущем не предвидится.

Нечасто мы задумываемся о том, как работает дисплей устройства лежащего у нас в руках. Но иногда бывают случаи, когда недавно купленный телефон или планшет отказывается реагировать на привычное цифровое перо от старого девайса. В этом случае, становится очевидным, что экран новинки собран по какой-то другой технологии. Тут уже вспоминается, что есть резистивные экраны и емкостные, последние из которых постепенно вытесняют первых.

Стоит заметить, что мало кто знает о различии между поверхностно- и проекционно-емкостными дисплеями. А ведь экраны почти всех современных планшетов, смартфонов с Android или iOS от Apple относятся именно к проекционно-емкостным, благодаря которым и возможна такая уже необходимая функция, как мультитач.

Поверхностно-емкостные экраны

Все емкостные скрины при работе используют тот факт, что все предметы, обладающие электрической емкостью, тело человека в том числе, хорошо проводят переменный ток.

Первые экземпляры емкостных тач-скринов работали на постоянном токе, что упрощало устройство электроники, аналого-цифрового преобразователя в частности, но загрязненность экрана или рук часто приводила к сбоям. Для постоянного тока даже ничтожное емкостное сопротивление является непреодолимой преградой.

Емкостные экраны так же, как и резистивные собраны в простейшем случае из LCD или AMOLED экрана, дающего изображение в самом низу и сенсорной активной панели поверху .

Активная часть поверхностно-емкостных экранов представляет собой кусок стекла, покрытый на одной стороне прозрачным, с высоким сопротивлением материалом. В качестве этого электропроводящего вещества применяется оксид индия или оксид олова.

По углам экрана расположены четыре электрода, через которые подается небольшое переменное напряжение, одинаковое со всех сторон. При касании поверхности экрана электропроводящим предметом или напрямую пальцем появляется утечка тока через тело человека. Протекание ничтожно малых токов регистрируется одновременно во всех четырех углах датчиками, а микропроцессор по разности величин токов определяет координаты места касания.

Поверхностно-емкостной экран всё ещё хрупок, так как его проводящее покрытие нанесено на внешнюю поверхность и ничем не защищено. Но не такой нежный, как резистивный, поскольку на его поверхности нет тонкой мягкой мембраны. Отсутствие мембраны улучшает прозрачность дисплея, и позволяет применять менее яркую и энергоэкономную подсветку.

Проекционно-ёмкостные экраны

Этот тип сенсорного экрана способен определять одновременно координаты двух и более точек прикосновения, то есть поддерживает функцию мультитач. Именно этого типа дисплеи устанавливаются на все современные мобильные устройства.

Работают они по схожему с поверхностно-емкостными экранами принципу, отличие заключается в том, что активный проводящий слой у них нанесен внутри, а не на внешней поверхности. Благодаря чему активная панель получается значительно более защищенной. Можно закрыть её стеклом толщиной вплоть до 18 мм, таким образом, сделав сенсорный экран крайне вандалоустойчивым.

При прикосновении к сенсорному экрану, между пальцем человека и одним из электродов за стеклом образуется небольшая ёмкость. Микроконтроллер прощупывает импульсным током, в каком именно месте на сетке электродов возросло напряжение из-за внезапно образовавшейся ёмкости. На стекающие капли воды экран не реагирует, так как такие проводящие помехи легко подавляются программным методом.

Общим недостатком для всех емкостных экранов является невозможность работать с ними любыми изолирующими предметами. Можно только специальным стилусом или голым пальцем. На удобное пластмассовое перо или руку в теплой перчатке они не среагируют.

Травление печатных плат Самодельный миниатюрный низковольтный паяльник Хитрый способ распайки плат