Подключение в треугольник. Соединение обмоток электродвигателя в звезду и треугольник

Двигатели асинхронного типа имеют целый набор безусловных достоинств. Среди плюсов асинхронных двигателей в первую очередь хочется назвать высокую производительность и надежность их эксплуатации, совсем небольшую стоимость и неприхотливость ремонта и обслуживания двигателя, а также способность переносить достаточно высокие перегрузки механического типа. Все эти достоинства, которыми обладают асинхронные двигатели, обусловлена тем, что данный тип двигателей имеет очень простую конструкцию. Но, не смотря на большое число достоинств, асинхронным двигателям присущи и их определенные отрицательные моменты.

В практической работе принято использовать два основных способа подключения трёхфазных электродвигателей к электросети. Эти способы подключения носят названия: "подключение методом звезды" и "подключение методом треугольника".

Когда выполняется соединение трёхфазного электродвигателя по типу подключения "звезда", тогда соединение концов обмоток статора электродвигателя происходит в одной точке. При этом трехфазное напряжение подают на начала обмоток. Ниже, на рисунке 1, наглядно проиллюстрирована схема подключения асинхронного двигателя "звездой".

Когда выполняется соединение трёхфазного электродвигателя по типу подключения "треугольник", тогда обмотки статора электродвигателя присоединяются последовательно друг за другом. При этом начало последующей обмотки соединяется с концом предыдущей обмотки и так далее. Ниже, на рисунке 2, наглядно проиллюстрирована схема подключения асинхронного двигателя "треугольником".


Если не вдаваться в теоретические и технические основы электротехники, то можно принять на веру тот факт, что работа тех электродвигателей, у которых обмотки подключены по схеме "звезда", является более мягкой и плавной, чем у электродвигателей, обмотки которых соединены по схеме "треугольник". Но тут же стоит обратить внимание на ту особенность, что электродвигатели, обмотки которых подключены по схеме "звезда", не способны развить полную мощность, заявленную в паспортных характеристиках. В том случае, если соединение обмоток выполнено по схеме "треугольник", то электродвигатель работает на максимальную мощность, которая заявлена в техническом паспорте, но при этом имеют место быть очень высокие значения пусковых токов. Если произвести сравнение по мощности, то электродвигатели, чьи обмотки будут соединены по схеме "треугольник", способны выдавать мощность в полтора раза выше, чем те электродвигатели, обмотки которых подключены по схеме "звезда".

Основываясь на всем вышеописанном, для того, чтобы снизить токи при запуске, целесообразно применять подключение обмоток по комбинированной схеме "треугольник-звезда". Особенно такой тип подключения актуален для электродвигателей, обладающих большей мощностью. Таким образом, в связи с соединением по схеме "треугольник- звезда" изначально запуск выполняется по схеме «звезда», а после того, как электродвигатель «набрал обороты», выполняется переключение в автоматическом режиме по схеме «треугольник».

Схема управления электродвигателем представлена на рисунке 3.


Рис. 3 Схема управления

Еще один вариант схемы управления электродвигателем заключается в следующем (рис. 4).


Рис. 4 Схема управления двигателем

На контакт NC (нормально закрытый) реле времени K1, а также на контакт NC реле K2, в цепи катушки пускателя КЗ, подаётся напряжение питания.

После того, как произойдет включение пускателя КЗ, нормально закрытыми контактами КЗ расцепляются цепи катушки пускателя K2 (запрет случайного включения). Контакт КЗ в цепи питания катушки пускателя K1 замыкается.

Когда запускается магнитный пускатель K1, в цепи питания его катушки замыкаются контакты K1. Реле времени включается в то же самое время, контакт этого реле K1 в цепи катушки пускателя КЗ размыкается. А в цепи катушки пускателя K2 – замыкается.

При отключении обмотки пускателя КЗ, замкнётся контакт КЗ в цепи катушки пускателя K2. После того, как пускатель K2 включится, он размыкает своими контактами K2 цепь питания катушки пускателя КЗ.

Трёхфазное напряжение питания подаётся на начало каждой из обмоток W1, U1 и V1 с помощью силовых контактов пускателя K1. Когда срабатывает магнитный пускатель КЗ, тогда при помощи его контактов КЗ выполняется замыкание, посредством которого между собой соединяются концы каждой из обмоток электродвигателя W2, V2 и U2. Таким образом, выполняется подключение обмоток электродвигателя по схеме соединения "звезда".

Реле времени, объединенное с магнитным пускателем K1, сработает спустя определенное время,. При этом происходит отключение магнитного пускателя КЗ и одновременное включение магнитного пускателя K2. Таким образом силовые контакты пускателя K2 замкнутся и напряжение питания будет подано на концы каждой из обмоток U2, W2 и V2 электродвигателя. Иными словами, электродвигатель включается по схеме подключения "треугольник".

Для того, чтобы электродвигатель запустить по схеме соединения "треугольник-звезда", различные изготовители производят специальные пусковые реле. Данные реле могут носить разнообразные названия, например, реле "старт-дельта" или "пусковое реле времени", а также и некоторые другие. Но назначение всех этих реле заключается в одном и том же.

Типовая схема, выполненная с реле времени, предназначенном для запуска, то есть реле "треугольник-звезда", для осуществления управления запуска трехфазного электродвигателя асинхронного типа представлена на рисунке 5.


Рис.5 Типовая схема с пусковым реле времени (реле "звезда/треугольник") для управления запуском трехфазного асинхронного двигателя.

Итак, подытожим все вышеописанное. Для того, чтобы понизить пусковые токи осуществлять запуск электродвигателя требуется в определенной последовательности, а именно:

  1. сперва электродвигатель запускают на пониженных оборотах соединённым по схеме "звезда";
  2. затем электродвигатель соединяют по схеме "треугольник".

Первоначальный запуск по схеме "треугольник" создаст максимальный момент, а последующее соединение по схеме "звезда" (для которой в 2 раза меньше пусковой момент) с продолжением работы в номинальном режиме, когда двигатель «набрал обороты», произойдёт переключение на схему соединения "треугольник" в автоматическом режиме. Но не стоит забывать о том, какая нагрузка создается перед запуском на валу, так как вращающий момент при соединении по схеме "звезда" ослаблен. По этой причине маловероятно, что данный метод запуска будет приемлем для электродвигателей с высокой нагрузкой, так как они в таком случае могут потерять свою работоспособность.

При создании любого прибора важно не только подобрать необходимые детали, но и верно их все соединить. И в рамках данной статьи будет рассказано про соединение звездой и треугольником. Где это применяется? Как схематически данное действие выглядит? На эти, а также другие вопросы и будут даны ответы в рамках статьи.

Что собой представляет трёхфазная система электроснабжения?

Она является частным случаем многофазных систем построения электрических цепей для переменного тока. В них действуют созданные с помощью общего источника энергии синусоидальные ЭДС, обладающие одинаковой частотой. Но при этом они сдвинуты относительно друг друга на определённую величину фазового угла. В трехфазной системе он равняется 120 градусам. Шестипроводная (часто ещё называемая многопроводной) конструкция для переменного тока была изобретена в своё время Николой Теслой. Также значительный вклад в её развитие внёс Доливо-Добровольский, который первым предложил делать трёх- и четырепроводные системы. Также он обнаружил ряд преимуществ, которые имеют трехфазные конструкции. Что же собой представляют схемы включения?

Схема звезды

Так называют соединение, при котором концы фаз обмоток генератора соединяют в общую точку. Её называют нейтралью. Концы фаз обмоток потребителя также соединяются в одну общую точку. Теперь к проводам, которые их соединяют. Если он находится между началом фаз потребителя и генератора, его называют линейным. Провод, который соединяет нейтрали, обозначают как нейтральный. Также от него зависит название цепи. Если есть нейтральный, схема называется четырёхпроводной. В ином случае она будет трёхпроводной.

Треугольник

Это тип соединения, в котором начало (Н) и конец (К) схемы находятся в одной точке. Так, К первой фазы подсоединён у Н второй. Её К соединяется с Н третьей. А её конец соединён с началом первой. Такую схему можно было бы назвать кругом, если не особенность её монтирования, когда более эргономичным является размещение в виде треугольника. Чтобы узнать все особенности соединения, ознакомитесь с ниже приведёнными видами соединений. Но до этого ещё немного информации. Чем отличается соединение звездой и треугольником? Разница между ними заключается в том, что по-разному соединяются фазы. Также существуют определённые отличия в эргономичности.

Виды

Как можно понять из рисунков, существует довольно много вариантов реализации включения деталей. Сопротивления, которые возникают в таких случаях, называют фазами нагрузки. Выделяют пять видов соединений, по которым может быть подключен генератор к нагрузке. Это:

  1. Звезда-звезда. Вторая используется с нейтральным проводом.
  2. Звезда-звезда. Вторая используется без нейтрального провода.
  3. Треугольник-треугольник.
  4. Звезда-треугольник.
  5. Треугольник-звезда.

А что это за оговорки в первом и втором пунктах? Если вы уже успели задаться этим вопросом, прочитайте информацию, которая идёт к схеме звезды: там есть ответ. Но здесь хочется сделать небольшое дополнение: начала фаз генераторов обозначаются с применением заглавных букв, а нагрузки - прописными. Это относительно схематического изображения. Теперь по опыту использования: когда выбирают направление протекания тока, в линейных проводах делают так, чтобы он был направлен со стороны генератора к нагрузке. С нулевыми поступают полностью наоборот. Посмотрите, как выглядит схема соединения звезда-треугольник. Рисунки очень хорошо наглядно показывают, как и что должно быть. Схема соединения обмоток звезда/треугольник представлены в разных ракурсах, и проблем с их пониманием быть не должно.

Преимущества

Каждая ЭДС работает в определённой фазе периодического процесса. Для обозначения проводников используют латинские буквы A, B, C, L и цифры 1, 2, 3. Говоря про трехфазные системы, обычно выделяют такие их преимущества:

  1. Экономичность при передаче электричества на значительные расстояния, которое обеспечивает соединение звездой и треугольником.
  2. Малая материалоёмкость трехфазных трансформаторов.
  3. Уравновешенность системы. Данный пункт является одним из самых важных, поскольку позволяет избежать неравномерной механической нагрузки на электрогенерирующую установку. Из этого вытекает больший срок службы.
  4. Малой материалоёмкостью обладают силовые кабели. Благодаря этому при одинаковой потребляемой мощности в сравнении с однофазными цепями уменьшаются токи, которые необходимы, чтобы поддерживать соединение звездой и треугольником..
  5. Можно без значительных усилий получить круговое вращающееся магнитное поле, что необходимо для работоспособности электрического двигателя и целого ряда других электротехнических устройств, работающих по похожему принципу. Это достигается благодаря возможности создания более простой и одновременно эффективной конструкции, что, в свою очередь, вытекает из показателей экономичности. Это ещё один значительный плюс, который имеет соединение звездой и треугольником.
  6. В одной установке можно получить два рабочих напряжения - фазное и линейное. Также можно сделать два уровня мощности, когда присутствует соединение по принципу «треугольника» или «звезды».
  7. Можно резко уменьшать мерцание и стробоскопический эффект светильников, работающих на люминесцентных лампах, пойдя по пути размещения в нём устройств, питающихся от разных фаз.

Благодаря вышеуказанным семи преимуществам трехфазные системы сейчас являются наиболее распространёнными в современной электронике. Соединение обмоток трансформатора звезда/треугольник позволяет подобрать оптимальные возможности для каждого конкретного случая. К тому же неоценимой является возможность влиять на напряжение, передающееся по сетям к домам жителей.

Заключение

Данные системы соединения являются самыми популярными благодаря своей эффективности. Но следует помнить, что работа идёт с высоким напряжением, и необходимо соблюдать крайнюю осторожность.

Переменный ток , рассмотренный ранее, называется однофазным. Трехфазным называется ток, представляющий собой совокупность трех однофазных токов, сдвинутых друг относительно друга по фазе.

Простейший генератор трехфазного тока отличается от генератора однофазного тока тем, что имеет три обмотки. При вращении либо этих обмоток в поле постоянного магнита (рис.164), либо самого магнита (рис.165) в обмотках возникают переменные ЭДС одинаковой частоты, сдвинутые друг относительно друга по фазе так, что сумма трех фазных углов составляет .

Если амплитуды ЭДС равны, а сдвиг фаз между двумя любыми смежными ЭДС равен , то трехфазная система называется симметричной. В этом случае на обмотках возникают

одинаковые по величине, но сдвинутые по фазе напряжения: , , .

Использование несвязанных между собой обмоток эквивалентно трем отдельным генераторам и требует для передачи электроэнергии потребителю три пары проводов.

Соединение обмоток между собой позволяет уменьшить количество проводов при передаче энергии и поэтому широко используется в технике.

При соединении обмоток звездой (рис.166) они имеют одну общую точку. Напряжение на каждой обмотке называется фазным. Проводник, соединенный с точкой общего потенциала, называется нулевым проводом. Проводники, соединенные со свободными концами обмоток, называются фазными проводами.

Фазные напряжения, в этом случае, это напряжения между фазными проводами и нулевым проводом. Напряжение между фазными проводами называется линейным. Ток, текущий через обмотки, называется фазным током, а ток текущий в линии, - током линии.

Из векторной диаграммы, при соединении звездой, следует, что . Кроме того при этом фазные токи равны токам в линии.

РИС.166 РИС.167 РИС.168 РИС.169 РИС.170

Если каждую обмотку замкнуть на одинаковую нагрузку R, то суммарная сила тока по нулевому проводу , так как из векторной диаграммы .

Соединение обмоток генератора звездой позволяет использовать при передаче энергии четыре провода вместо шести.

При соединении обмоток треугольником (рис.168) они образуют замкнутый контур с весьма малым сопротивлением. Линейный провод отходит от общих точек начала одной фазы и конца другой и, поэтому фазные напряжения равны линейным (рис.169).

Из векторной диаграммы токов (рис.170) следует, что

, На практике используется не только соединение обмоток генератора, но и соединение между собой нагрузок звездой или треугольником. Таких комбинаций возможного соединения генератора и нагрузок - четыре.

РИС.171 РИС.172 РИС.173 РИС.174

При соединении звезда - звезда (рис.171) на всех нагрузках разное напряжение, но если сопротивление нагрузок приблизительно равно, то ток по нулевому проводу практически равен нулю.


Тем не менее, нулевой провод нельзя убирать или ставить в него предохранители потому, что без него на каждую из пар нагрузок действует линейное напряжение, причем оно распределяется в соответствии с сопротивлением нагрузок. Получается, что напряжение, подаваемое на нагрузку, зависит от ее сопротивления, что неэффективно и опасно.

Если генератор и нагрузки соединены звезда - треугольник (рис.172), то на каждой нагрузке, независимо от ее сопротивления, одинаковое напряжение, равное линейному.

При соединении треугольник - треугольник (рис.173) на всех нагрузках фазное напряжение, независимо от их сопротивления.

Если генератор и нагрузки соединены треугольник - звезда (рис.174), то на каждой нагрузке напряжение равно .

Трехфазный ток используется для получения вращающегося магнитного поля. В этом случае трехфазный ток подводится к трем обмоткам, расположенным на неподвижной станине - статоре. Внутри статора помещен стальной барабан - ротор, вдоль образующих которого в пазах уложены провода, соединенные между собой на обоих торцах кольцами.

Обмотки статора создают магнитный поток одинаковой величины, но сдвинутый по фазе, т.е. он как бы вращается относительно ротора. В обмотках ротора возникают индукционные потоки, которые, в свою очередь, взаимодействуют с вращающимся магнитным потоком, что приводит ротор во вращение, т.е. получается электродвигатель достаточно простого устройства.

При увеличении скорости ротора уменьшается относительная скорость движения его проводников относительно магнитного поля . Если бы он достиг той же скорости вращения, что и магнитный поток статора, то индукционный ток равнялся бы нулю и, соответственно, вращающий момент стал бы равным нулю.

Следовательно, при наличии тормозного момента магнитный поток и ротор не могут вращаться с той же скоростью, что и поток статора (синхронно), - скорость вращения ротора всегда несколько меньше. Поэтому двигатели такого типа называются асихронными (несинхронными).

Трехфазная система, изобретенная русским инженером М.О. Доливо-Добровольским в XIX, применяется во всем мире для передачи и распределения энергии. Доливо-Добровольский первым получил вращающееся магнитное поле с помощью трехфазного тока и построил первый асинхронный двигатель. Трехфазная система обеспечивает наиболее экономичную передачу энергии и позволяет создать надежные в работе и простые по устройству электродвигатели, генераторы и трансформаторы.

На практике, например, электрические лампы изготавливаются на номинальные напряжения 127 и 220В. Способ их включения в цепь трехфазного тока зависит от величины линейного напряжения трехфазной сети.

Лампы с номинальным напряжением 127 В включаются звездой с нейтральным проводом при линейном напряжении сети 220 В или треугольником при линейном напряжении сети 127 В.

Лампы с номинальным напряжением 220 В соответственно включаются звездой в сеть с линейным напряжением 380 В и треугольником в сеть с напряжением 220 В.

Обмотки трехфазных двигателей изготавливаются на номинальные фазные напряжения 127, 220 и 380 В. Каждый трехфазный двигатель может быть включен или звездой в трехфазную сеть с линейным напряжением, превышающим его фазное в раз, или треугольником, если линейное напряжение сети равно фазному напряжению его обмотки. Обычно на паспорте двигателя указано, например: треугольник -220В, звезда - 380В.

Линейные цепи. Правила Кирхгофа. Методы анализа линейных цепей. Переходные процессы в цепи с конденсатором.

Элемент электрической цепи называется линейным, если его параметры не зависят от напряжения и силы тока, т.е. вольт-амперная характеристика прямая.

Электрическая цепь называется линейной если она состоит из линейных элементов.

Применение закона Ома для расчета сложных разветвленных цепей, содержащих несколько источников довольно сложно. Для расчетов таких цепей используют два правила немецкого физика Г. Кирхгофа , первое из которых вытекает из закона сохранения заряда, а второе является обобщением закона Ома на произвольное число источников сторонних ЭДС в изолированном замкнутом контуре.

Для того чтобы использовать правила Кирхгофа необходимо ввести несколько понятий.

Электрическая схема - графическое изображение электрической цепи.

Ветвь электрической цепи - один или несколько последовательно соединенных элементов цепи, по которым течет один и тот же ток.

Узел - соединение трех или большего количества ветвей. Ток, входящий в узел, считается положительным, а ток, выходящий из узла, - отрицательным.

Первое правило Кирхгофа: алгебраическая сумма токов, сходящихся в узле, равна нулю:

Например, для узла на рис.64 I 1 -I 2 +I 3 -I 4 -I 5 =0

Контур - любой замкнутый путь, проходящий по нескольким ветвям. Положительное направление обхода контура выбирается произвольно, но одно и то же для всех контуров электрической цепи. Токи совпадающие по направлению с направлением обхода контура, считаются положительными, не совпадающие с направлением обхода - отрицательными. ЭДС считаются положительными, если они создают ток, направленный в сторону обхода контура.

Рассмотрим цепь, содержащую три источника (рис.65). Пусть R 1 , R 2 , R 3 общие сопротивления ветвей АВ, ВС, СА соответственно. Положительное направление обхода примем по часовой стрелке. Применим к каждой ветви закон Ома для неоднородного участка цепи.

Сложив почленно эти уравнения, получим

Второе правило Кирхгофа : в любом замкнутом контуре, произвольно выбранном в разветвленной электрической цепи, алгебраическая сумма произведений сил токов на сопротивления соответствующих участков этого контура равна алгебраической сумме ЭДС, встречающихся в этом контуре:

При расчете сложных цепей постоянного тока с применением правил Кирхгофа необходимо:

1. Выбрать произвольное направление токов на всех участках цепи; действительное направление токов выяснится при решении: если искомый ток получится положительным, то его направление было выбрано правильно, а если отрицательным, то его истинное направление противоположно выбранному;

2. Выбрать направление обхода контуров и строго его придерживаться; записывая со соответствующими знаками токи и ЭДС;

3. Составить количество уравнений равное количеству искомых величин (в систему уравнений должны входить все сопротивления и ЭДС рассматриваемой цепи).

Каждый статор трехфазного электродвигателя имеет три катушечные группы (обмотки) — по одной на каждую фазу, а у каждой катушечной группы имеется по 2 вывода — начало и конец обмотки, т.е. всего 6 выводов которые подписываются следующим образом:

  • С1 (U1) — начало первой обмотки, С4 (U2) — конец первой обмотки.
  • С2 (V1) — начало второй обмотки, С5 (V2) — конец второй обмотки.
  • С3 (W1) — начало третьей обмотки, С6 (W2) — конец третьей обмотки.

Условно на схемах каждая обмотка изображается следующим образом:

Начала и концы обмоток выводятся в клемную коробку электродвигателя в следующем порядке:

Основными схемами соединения обмоток являются треугольник (обозначается — Δ) и звезда (обозначается — Y) их мы и разберем в данной статье.

Примечание: В клемной коробке некоторых электродвигателей можно увидеть только три вывода — это значит, что обмотки двигателя уже соединены внутри его статора. Как правило внутри статора обмотки соединяются при ремонте электродвигателя (в случае если заводские обмотки сгорели). В таких двигателях обмотки, как правило, соединены по схеме «звезда» и рассчитаны на подключение в сеть 380 Вольт. Для подключения такого двигателя необходимо просто подать три фазы на три его вывода.

  1. Схема соединения обмоток электродвигателя по схеме «треугольник»

Что бы соединить обмотки электродвигателя по схеме «треугольник» необходимо: конец первой обмотки (С4/U2) соединить с началом второй (С2/V1) , конец второй (С5/V2) — с началом третьей (С3/W1) , а конец третьей обмотки (С6/W2) — с началом первой (С1/U1).

На выводы «A», «B» и «C» подается напряжение.

В клемной коробке электродвигателя соединение обмоток по схеме «треугольник» имеет следующий вид:

A, B, C — точки подключения питающего кабеля.

  1. Схема соединения обмоток электродвигателя по схеме «звезда»

Что бы соединить обмотки электродвигателя по схеме «звезда» необходимо концы обмоток (С4/ U2, С5/V2 и С6/W2) соединить в общую точку, напряжение при этом подается на начала обмоток (С1/U1, С2/V1 и С3/W1).

Условно на схеме это изображается следующим образом:

В клемной коробке электродвигателя соединение обмоток по схеме «звезда» имеет следующий вид:

  1. Определение выводов обмоток

Иногда возникают ситуации когда сняв крышку с клемной коробки электродвигателя можно с ужасом обнаружить следующую картину:

При этом выводы обмоток не подписаны, что же делать? Без паники, этот вопрос вполне решаем.

Первое, что нужно сделать — это разделить выводы по парам, в каждой паре должны быть выводы относящиеся к одной обмотке, сделать это очень просто, нам понадобится тестер или двухполюсный указатель напряжения.

В случае использования тестера устанавливаем его переключатель в положение измерения сопротивления (подчеркнуто красной линией), при использовании двухполюсного указателя напряжения им, перед применением, необходимо коснуться токоведущих частей находящихся под напряжением на 5-10 секунд, для его зарядки и проверки работоспособности.

Далее необходимо взять один любой вывод обмотки, условно примем его за начало первой обмотки и соответственно подписываем его «U1», после касаемся одним щупом тестера или указателя напряжения подписанного нами вывода «U1», а вторым щупом любого другого вывода из оставшихся пяти неподписанных концов. В случае, если коснувшись вторым щупом второго вывода показания тестера не изменились (тестер показывает единицу) или в случае с указателем напряжения — ни одна лампочка не зажглась — оставляем этот конец и касаемся вторым щупом другого вывода из оставшихся четырех концов, перебираем вторым щупом концы до тех пор пока показания тестера не изменятся, либо, в случае с указателем напряжения — до тех пор пока не загорится лампочка «Test». Найдя таким образом второй вывод нашей обмотки принимаем его условно как конец первой обмотки и подписываем его соответственно «U2».

Таким же образом поступаем с оставшимися четырьмя выводами, так же разделив их на пары подписав их соответственно как V1,V2 и W1,W2. Как это делается можно увидеть на видео ниже.

Теперь, когда все выводы разделены по парам, необходимо определить реальные начала и концы обмоток. Сделать это можно двумя методами:

Первый и самый простой метод — метод подбора, может применяться для электродвигателей мощностью до 5 кВт. Для этого берем наши условные концы обмоток (U2,V2 и W2) и соединяем их, а на условные начала (U1,V1 и W1), кратковременно, желательно не более 30 секунд, подаем трехфазное напряжение:

Если двигатель запустился и работает нормально, значит начала и концы обмоток определены верно, если двигатель сильно гудит и не развивает должные обороты, значит где то есть ошибка. В этом случае необходимо всего лишь поменять любые два вывода одной обмотки местами, например U1 c U2 и запустить заново:

Если проблема не устранилась, возвращаем U1 и U2 на свои места и меняем местами следующие два вывода — V1 с V2:

Если двигатель заработал нормально, выводы определены верно, работа закончена, если нет — возвращаем V1 и V2 по своим местам и меняем местами оставшиеся выводы W1 с W2.

Второй способ: Соединяем последовательно вторую и третью обмотки т.е. соединяем вместе конец второй обмотки с началом третьей (выводы V2 с W1),а на первую обмотку к выводам U1 и U2 подаем пониженное переменное напряжение (не более 42 Вольт). При этом на выводах V1 и W2 так же должно появиться напряжение:

Если напряжение не появилось, значит вторая и третья обмотки соединены неверно, фактически оказались соединены вместе два начала (V1 с W1) или два конца (V2 c W2), в данном случае нам просто нужно поменять надписи на второй или на третьей обмотке, например V1 с V2. Затем аналогичным способом проверить первую обмотку, соединив ее последовательно со второй, а на третью подав напряжение. Данный способ представлен на следующем видео:

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы ? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? . Мы обязательно Вам ответим.

Асинхронные трехфазные двигатели более эффективны по сравнению с однофазными и получили намного большее распространение. Электрические устройства, работающие на двигательной тяге, чаще всего оснащаются именно трехфазными электромоторами.

Электродвигатель состоит из двух частей: вращающегося ротора и неподвижного статора. Ротор располагается внутри статора. Оба элемента имеют токопроводящие обмотки. Статорная обмотка уложена в пазы магнитопровода с соблюдением расстояния в 120 электрических градусов. Начала и концы обмоток выведены в и зафиксированы в два ряда. Контакты промаркированы литерой С, каждому присвоено цифровое обозначение от 1 до 6.

Фазы статорных обмоток при подключении к питающей сети соединяют по одной из схем:

  • «треугольник» (Δ);
  • «звезда» (Y);
  • комбинированная схема «звезда-треугольник» (Δ/Y).

Подключение по комбинированной схеме применяется для двигателей мощностью свыше 5 кВт.

«Звездой » называют соединение всех концов статорных обмоток в одной точке. Питающее подается на начала каждой из них. При последовательном соединении обмоток в замкнутую ячейку образуется «треугольник ». Контакты с клеммами располагают таким образом, чтобы ряды были смещены относительно друг друга, напротив вывода С6 располагался С1 и т.д.

Подача питающего напряжения от трехфазной сети на статорные обмотки создает вращающее магнитное поле, которое приводит ротор в движение. Вращательного момента, возникающего после того, как , для запуска недостаточно. Чтобы увеличить вращающий момент, в сеть включают дополнительные элементы.

Самый простой и распространенный способ подключения к бытовым сетям – подключение с использованием фазосдвигающего конденсатора.

При подаче питающего напряжения от обоих типов электросетей частота вращения ротора асинхронного двигателя будет почти одинаковой. В то же время мощность в трехфазных сетях выше, чем в аналогичных однофазных. Соответственно, подключение трехфазного электродвигателя в однофазную сеть неизбежно сопровождается заметной потерей мощности.

Существуют электромоторы, которые изначально не рассчитаны на возможность подключения в бытовую сеть. Приобретая электромотор для использования в бытовых условиях, лучше сразу искать модели с короткозамкнутым ротором.

Подключение двигателя «звездой» и «треугольником» в сетях с разным номинальным напряжением

В соответствии с номинальным питающим напряжением асинхронные трехфазные двигатели отечественного производства подразделены на две категории: для работы от сетей 220/127 В и 380/220 В. Двигатели, рассчитанные на работу от сети 220/127 В имеют небольшую мощность — на сегодняшний день их применение сильно ограничено.

Электромоторы, рассчитанные на номинальное напряжение 380/220 В распространены повсеместно.

Независимо от номинального напряжения при установке мотора используется правило: более низкие значения напряжения используются при подключении в «треугольник», высокие – исключительно в соединениях статорных обмоток по схеме «звезда».

То есть, напряжение в 220 В подается на «треугольник », 380 В – на «звезду », в противном случае мотор быстро перегорит.

Основные технические характеристики агрегата, включая рекомендованную схему подключения и возможность ее изменения отображаются на бирке мотора и его техническом паспорте. Наличие метки вида Δ/Y указывает на возможность соединения обмоток и «звездой», и «треугольником». Чтобы минимизировать потери мощности, неизбежные при работе от однофазных бытовых сетей, мотор такого типа лучше подключать «треугольником».

Знаком Y обозначают двигатели, где возможность подключения в «треугольник» не предусмотрена. В распределительной коробке таких моделей вместо 6 контактов находятся только три, соединение трех других выполнено под корпусом.

Подключение трехфазных с номинальным питающим напряжением 220/127 В к стандартным однофазным сетям выполняют только по типу «звезды». Подключение агрегата, рассчитанного на низкое питающее напряжение в «треугольник» быстро приведет его в негодность.

Особенности работы электромотора при подключении разными способами

Подключение электродвигателя «треугольником» и «звездой» характеризуется определенным набором своих преимуществ и недостатков.

Соединение обмоток двигателя в «звезду» обеспечивает более мягкий запуск. При этом происходит значительная потеря мощности агрегата. По этой схеме также производится подключение всех электромоторов отечественного происхождения на 380В.

Подключение «треугольник» обеспечивает выходную мощность до 70% от номинальной, но пусковые токи при этом достигают значительных величин и двигатель может выйти из строя. Эта схема – единственно правильный вариант для подключения к российским электросетям импортных электромоторов европейского производства, рассчитанных на номинальное напряжение 400/690.

Функцию пуска для схем переключения «звезда»-«треугольник» используют только для двигателей с пометкой Δ/Y, в которых реализована возможность обоих вариантов соединения. Запуск двигателя производят при подключении «звездой», чтобы уменьшить пусковой ток.

Когда двигатель разгонится, производится переключение в «треугольник», чтобы получить максимально возможную выходную мощность.

Применение комбинированного способа неизбежно связано со скачками токов. В момент переключение между схемами подача тока прекращается, скорость вращения ротора снижается, в некоторых случаях происходит ее резкое снижение. Через некоторое время скорость вращения восстанавливается.

Примеры подключения звездой и треугольником на видео