MIMO антенна - что это такое и в чем ее приемущество? Технология MIMO: что это и с чем её едят

2 года назад

Как увеличить скорость передачи данных для Wi-Fi стандарта 802.11 и для WiMAX стандарта 802.16? Использовать беспроводные системы с применением нескольких антенн как для передатчика, так и для приемника. Это и есть технология MIMO, или Multiple-Input Multiple-Output.

Если дословно перевести на русский, то это означает «множественный вход множественный выход». Также ее называют «умной антенной системой» или по-английски - smart antenna systems.

Технология выполняет важную роль в реализации Wi-Fi стандарта 802.11n. Технология MIMO предусматривает применение нескольких передатчиков и приемников для того, чтобы одновременно передавать большое количество данных.

Технология MIMO использует эффект передачи радиоволн, который называют многолучевым распространением. Суть в том, что информация, которая передается, потом отражается от стен, потолков и других объектов. А принимающая антенна воспринимает сигналы под разными углами и в разное время.

Технология MIMO дает возможность использовать преимущества многолучевого распространения для того, чтобы объединить информацию из нескольких сигналов. Она повышает скорость и целостность данных.

На сегодня есть немало устройств по стандарту 802.11n. Самым простым из них может быть радиосистема с множеством раздельных путей передачи и приема. MIMO-системы используют определенное количество передатчиков и приемников. Стандарт 802.11n определяет набор возможных комбинаций от 1х1 до 4х4.

Отметим, что далеко не все Wi-Fi клиенты и Точки Доступа одинаковы с точки зрения MIMO.

Существуют клиенты 1х1, 2х1, 3х3 и т.д. Скажем, мобильные устройства типа смартфона преимущественно поддерживают MIMO 1x1, изредка 1x2. Это связано с двумя ключевыми проблемами. То есть с необходимостью обеспечить низкое потребление энергии и долгую жизнь аккумулятора, как и со сложностью в расположении в маленьком корпусе нескольких антенн с адекватным их разнесением. Это распространяется и на другие мобильные устройства, к примеру, планшетные компьютеры, КПК и т. д.

Ноутбуки высокого уровня в большинстве случаев сейчас поддерживают MIMO вплоть до 3х3. Условия множественного распространения сигнала постоянно меняются, поскольку Wi-Fi-устройства часто перемещаются. Смартфон с Wi-Fi может находиться в руках пользователя, а вокруг перемещаются самые разные объекты. Скажем, автомобили. И если сигналы прибывают в разное время и под разными углами, то возможны искажения и затухание сигнала.

Технология MIMO все чаще применяется во всех системах беспроводной передачи данных. Потенциал ее растет. Разрабатываются новые варианты конфигурации антенн, вплоть до 64х64 MIMO. Есть перспективы добиться еще больших скоростей передачи данных, емкости сети и спектральной эффективности.

Технология MIMO сыграла огромную роль в развитии WiFi. Несколько лет назад невозможно было представить и другие устройства с пропускной способностью в 300 Мбит/сек и выше. Появление новых скоростных стандартов связи, к примеру, 802.11n произошло во многом благодаря MIMO.

Вообще тут стоит упомянуть, что когда мы говорим о технологии WiFi, то на самом деле имеем в виду один из стандартов связи, а конкретно - IEEE 802.11. Брендом WiFi стал после того, как обрисовались заманчивые перспективы использования беспроводной передачи данных. Чуть подробнее о технологии вай-фай и стандарте 802.11 можно прочесть в .

Что представляет собой технология MIMO?

Если дать как можно более простое определение, то MIMO - это многопотоковая передача данных . Аббревиатуру можно перевести с английского как «несколько входов, несколько выходов» В отличие от предшественника (SingleInput/SingleOutput), в устройствах с поддержкой MIMO сигнал транслируется на одном радиоканале с помощью не одного, а нескольких приемников и передатчиков. При обозначении технических характеристик устройств WiFi рядом с аббревиатурой указывают их количество. Например, 3х2 - это 3 передатчика сигнала и 2 принимающих антенны.

Кроме того, в MIMO используется пространственное мультиплексирование . За устрашающим названием кроется технология одновременной передачи нескольких пакетов данных по одному каналу. Благодаря такому «уплотнению» канала его пропускную способность можно увеличить в два раза и более.

MIMO и WiFi

С ростом популярности беспроводной передачи данных по WiFi соединениям, конечно же, возросли требования к их скорости. И именно технология MIMO и другие разработки, взявшие ее за основу, позволили увеличить пропускную способность в несколько раз. Развитие WiFi идет по пути развития стандартов 802.11 - a, b, g, n и так далее. Мы не зря упомянули возникновение стандарта 802.11n. Multiple Input Multiple Output - его ключевой компонент, позволивший увеличить канальную скорость беспроводного соединения с 54 Мбит/сек до более 300 Мбит/сек.

Стандарт 802.11n позволяет применять как стандартную ширину канала в 20 МГц, так и использовать широкополосную линию в 40 МГц с более высокими показателями пропускной способности. Как уже упоминалось выше, сигнал многократно отражается, тем самым используя множество потоков на одном канале связи.

Благодаря этому доступ в интернет на основе WiFi теперь позволяет не только серфинг, проверку почты и общение в аське, но и онлайн-игры, онлайн-видео, общение в скайпе и прочий «тяжелый» трафик.

Более новый стандарт - также использует технологию MIMO.

Проблемы применения MIMO в WIFI

На заре становления технологии существовало затруднение совмещения устройств, работающих с поддержкой MIMO и без нее. Однако сейчас это уже не так актуально - практически каждый уважающий себя производитель беспроводного оборудования использует ее в своих устройствах.

Также одной из проблем при появлении технологии передачи данных с помощью нескольких приемников и нескольких передатчиков являлась цена устройства. Однако здесь настоящую ценовую революцию совершила компания . Ей не только удалось наладить производство беспроводного оборудования с поддержкой MIMO, но и сделать это по очень демократичным ценам. Посмотрите, к примеру, стоимость типичного комплекта компании - (базовая станция), (на стороне клиента). И в этих устройствах не просто MIMO, а фирменная улучшенная технология airMax на ее основе.

Проблемой остается только увеличение количества антенн и передатчиков (сейчас максимум 3) для устройств с PoE. Обеспечить питанием более энергоемкую конструкцию затруднительно, но опять-таки, постоянные сдвиги в этом направлении делает Ubiquiti.

Технология AirMAX

Компания Ubiquiti Networks является признанным лидером разработки и реализации инновационных технологий WiFi, в том числе и MIMO. Именно на ее основе Ubiquiti была разработана и запатентована технология AirMAX . Суть ее в том, что прием-передача сигнала несколькими антеннами на одном канале упорядочивается и структурируется протоколом TDMA с аппаратным ускорением: пакеты данных разнесены в отдельные временные слоты, очереди передачи координируются.

Это позволяет расширить пропускную способность канала, увеличить количество подключаемых абонентов без потери качества связи. Данное решение эффективно, удобно в использовании и, что немаловажно - недорого. В отличие от аналогичного оборудования, используемого в WiMAX - сетях, оборудование от Ubiquiti Networks с технологией AirMAX приятно радует ценами.


сайт

На пальцах о MIMO.

Представим, что информация это люди, а модем и базовая станция оператора это два города между которыми проложен один путь, а антенна это вокзал. Перевозить людей будем на поезде, который, для примера, может перевезти не больше ста человек. Пропускная способность между такими городами будет ограничена, т.к. поезд может отвезти только сто человек за один раз.

Чтобы 200 человек смогли прибыть в другой город в один и тот же момент времени между городами строят второй путь и запускают второй поезд одновременно с первым, тем самым увеличивая поток людей в два раза. Точно также работает и MIMO технология, по сути мы просто удваиваем количество потоков. Количество потоков определяет стандарт MIMO, два потока - MIMO 2x2, четыре потока - MIMO 4x4 и т.д. Для передачи данных по сети интернет, будь то 4G LTE или WiFi на сегодня, как правило, используется стандарт MIMO 2x2. Чтобы принимать двойной поток одновременно потребуется две обычных антенны или по аналогии два вокзала, или, для экономии средств одна MIMO антенна, как если бы это был один вокзал с двумя платформами. То есть, MIMO антенна - это две антенны внутри одной.

Панельная MIMO антенна может буквально иметь два набора излучающих элементов("патчей" ) в одном корпусе(например четыре патча работают в вертикальной поляризации, другие четыре в горизонтальной, всего восемь патчей ). Каждый набор подключен к своему гнезду.

А может иметь один набор патчей но имеющий двухпортовая(ортогональную) запитку, таким образом элементы антенны запитываются со сдвигом фазы на 90 градусов, и тогда каждый патч будет работать в вертикальной и горизонтальной поляризации одновременно.

В таком случае один набор патчей будет подключен сразу к двум гнёздам, именно такие MIMO антенны и продаются в нашем интернет магазине.

Подробнее

Мобильная трансляция цифрового потока LTE напрямую относится к новым разработкам 4G. Взяв для анализа 3G сеть, можно обнаружить, что ее скорость передачи данных в 11 раз меньше, чем 4G. Все же скорость, как получения, так и трансляции данных LTE нередко бывает плохого качества. Связано это с нехваткой мощности или уровня сигнала, который получает модем 4G LTE от станции. Для существенного улучшения качества распространения информации внедряют антенны 4G MIMO.

Измененные антенны, по сравнению с обычными системами распределения данных, имеют другую схему передатчика. К примеру, нужен делитель цифровых потоков, чтобы распределять информацию на потоки с низкой скоростью, количество которых связано с числом антенн. Если скорость входящего потока примерно 200 Мегабит в секунду, то создастся два потока – оба по 100 Мегабит в секунду. Каждый поток должен транслироваться посредством отдельной антенны. Поляризация радиоволны, передающейся от каждой из двух антенн, будет отличаться, чтобы расшифровать данные во время приема. Приёмное устройство, чтобы сохранить скорость передачи данных должно так же иметь две приёмные антенны в разных поляризациях.

Достоинства MIMO

MIMO – это раздача сразу нескольких потоков информации всего по одному каналу с последующим прохождением их через пару или большее количество антенн до попадания в приемные независимые устройства для трансляции радиоволн. Это позволяет существенно улучшить пропускную способность сигнала, не прибегая к расширению полосы.

При трансляции радиоволн цифровой поток в радиоканале селективно замирает. Это можно заметить, если вы находитесь в окружении городских многоэтажных домов, двигаетесь на большой скорости или удаляетесь от зоны, которую могут охватить радиоволны. Для избавления от этой проблемы была создана антенна MIMO, способная транслировать информацию по нескольким каналам с незначительной задержкой. Информация предварительно кодируется, а затем восстанавливается на приемной стороне. В итоге не только увеличивается скорость распределения данных, но и значительно улучшается качество сигнала.

По своей конструктивной особенности антенны LTE делятся на обыкновенные и состоящие из двух приемопередающих устройств (MIMO). Обычная система распространения сигнала позволяет добиться скорости не более чем 50 Мегабит в секунду. MIMO дает шансы увеличить скорость трансляции сигнала более чем дважды. Достигается это благодаря монтажу в коробе сразу нескольких антенн, которые располагают на незначительном удалении одна от другой.

Одновременное получение, а также раздача цифрового потока антеннами к получателю происходит через два независимых кабеля. Это позволяет существенно увеличить скоростные параметры. MIMO применяется успешно в таких беспроводных системах, как WiFi, а также сотовые сети и WiMAX. Применение этой технологии, имеющей, как правило, два входа и два выхода, позволяет улучшить спектральные качества WiFi, WiMAX, 4G/LTE и прочих систем, поднять скорость передачи информации и емкость потока данных. Перечисленные достоинства достижимы благодаря трансляции данных от 4G антенны MIMO к получателю посредством нескольких беспроводных соединений. Отсюда и берется название этой технологии(Multiple Input Multiple Output - множественный вход и множественный выход).

. Где применяется MIMO

MIMO очень быстро завоевала популярность за счет увеличения емкости и пропускной способности таких протоколов передачи данных, как WiFi. Можно взять стандарт WiFi 802.11n в качестве наиболее популярного случая использования MIMO. Благодаря технологии связи MIMO в этом протоколе WiFi удается развить скорость более чем 300 Мегабит в секунду.

Помимо ускорения передачи потока информации, беспроводная сеть благодаря MIMO получила улучшенные характеристики в плане качества передачи данных даже в местах, где уровень приемного сигнала достаточно низок. WiMAX благодаря новой технологии получил возможность транслировать данные со скоростью до 40 Мегабит в секунду.

В стандарте 4G (LTE) возможно применение MIMO с конфигурацией до 8x8. Теоретически это позволит транслировать цифровой поток от основной станции к получателю на скорости больше 300 Мегабит в секунду. Еще одним привлекательным моментом от применения новой системы является качественное и устойчивое соединение, наблюдаемое даже на границе действия соты.

Это означает, что даже на существенном расстоянии от станции, а также при расположении в помещении с толстыми стенами, будет замечено только небольшое снижение скоростных характеристик. MIMO можно применять почти в каждой системе передачи информации беспроводным путем. Надо отметить, что потенциал этой системы неисчерпаем.

Неустанно ищут пути по разработке новых конфигураций MIMO антенн, например, до 64x64. В недалеком будущем это даст возможность еще больше улучшить эффективность спектральных показателей, увеличить ёмкость сетей и величину скорости транслирования информации.

MIMO - м ногоантенные технологии в LTE

Функции MIMO (Multiple Input – Multiple Output )

Применение технологий MIMO (multiple input – multiple output) решает две задачи:

Увеличение качества связи за счет пространственного временного/ частотного кодирования и (или) формирования лучей (beamforming),

Повышение скорости передачи при применении пространственного мультиплексирования.

Структура MIMO

В различных реализациях MIMO имеется ввиду одновременная передача в одном физическом канале нескольких независимых сообщений. С целью реализации действия MIMO применяют многоантенные системы: на передающей стороне имеется N t передающих антенн, а на приемной стороне N r приемных. Данная структура приведена на рис. 1.

Рис. 1. MIMO структура

Что такое MIMO?

MIMO (англ. Multiple Input Multiple Output) - метод пространственного кодирования сигнала, позволяющий увеличить полосу пропускания канала, при котором передача данных осуществляется с помощью N антенн и их приёма М антеннами. Передающие и приёмные антенны разнесены настолько, чтобы достичь слабой корреляции между соседними антеннами.

История MIMO

История систем MIMO как объекта беспроводной связи пока весьма не продолжительна. Первый патент на использование MIMO-принципа в радиосвязи был зарегистрирован в 1984 году от имени сотрудника Bell Laboratories Джека Винтерса (Jack Winters). Основываясь на его исследованиях, Джек Селз (Jack Salz) из той же компании опубликовал в 1985 году первую статью по MIMO-решениям. Развитие данного направления продолжалось специалистами Bell Laboratories и другими исследователями вплоть до 1995 года. В 1996 году Грэг Ралей (Greg Raleigh) и Джеральд Дж. Фошини (Gerald J. Foschini) предложили новый вариант реализации MIMO-системы, увеличив тем самым ее эффективность. Впоследствии Грэг Ралей, которому присваивают авторство OFDM (Orthogonal Frequency Division Multiplexing – мультиплексирование посредством ортогональных несущих) для MIMO, основал компанию Airgo Networks, которая разработала первый MIMO-чипсет под названием True MIMO.

Однако, несмотря на довольно короткий промежуток времени с момента своего появления, MIMO-направление развивается весьма многопланово и включает в себя разнородное семейство методов, которые можно классифицировать по принципу разделения сигналов в приемном устройстве. При этом в MIMO-системах используются как уже вошедшие в практику подходы к разделению сигналов, так и новые. К ним относятся, например, пространственно-временное, пространственно-частотное, пространственно-поляризационное кодирование, а также сверхразрешение по направлению прихода сигнала в приемник. Благодаря обилию подходов к разделению сигналов удалось обеспечить столь долгую разработку стандартов на использование систем MIMO в средствах связи. Однако все разновидности MIMO направлены на достижение одной цели – увеличение пиковой скорости передачи данных в сетях связи за счет улучшения помехоустойчивости.

Простейшая антенна MIMO – это система из двух несимметричных вибраторов (монополей), ориентированных под углом ±45° относительно вертикальной оси (рис.2).

Рис. 2 Простейшая антенна MIMO

Такой угол поляризации позволяет каналам находиться в равных условиях, поскольку при горизонтально-вертикальной ориентации излучателей одна из поляризационных составляющих неизбежно получила бы большее затухание при распространении вдоль земной поверхности. Сигналы, излучаемые независимо каждым монополем, поляризованы взаимно ортогонально с достаточно высокой взаимной развязкой по кросс-поляризационной составляющей (не менее 20 дБ). Аналогичная антенна используется и на приемной стороне. Такой подход позволяет одновременно передавать сигналы с одинаковыми несущими, модулированными различным образом. Принцип поляризационного разделения обеспечивает удвоение пропускной способности линии радиосвязи по сравнению со случаем одиночного монополя (в идеальных условиях прямой видимости при идентичной ориентации приемных и передающих антенн). Таким образом, по сути любую систему с двойной поляризацией можно считать системой MIMO.

Дальнейшая эволюция MIMO

К тому моменту, когда технология MIMO была специфицирована в релизе 7, шло активное распространение по миру стандарта . Были попытки совместить сети третьего поколения с технологией MIMO, но широкого распространения не получили. По данным Глобальной Ассоциации Поставщиков Мобильного Оборудования (Global mobile Suppliers Association, GSA) от 04.11.2010 на тот момент из 2776 типов устройств с поддержкой HSPA , представленных на рынке, только 28 моделей поддерживают MIMO. К тому же внедрение MIMO сети с низким проникновением MIMO-терминалов приводит к снижению пропускной способности сети. Компания Nokia разработала технологию для минимизации потерь пропускной способности, но она показала бы свою эффективность только в том случае, когда проникновение MIMO-терминалов составило бы не менее 40% абонентских устройств. Добавляя к выше сказанному, стоит напомнить, что 14 декабря 2009 года состоялся запуск первой в мире мобильной сети на базе технологии LTE , которая позволяла достичь гораздо более высоких скоростей. Исходя из этого видно, что операторы были нацелены на скорейшее развертывание сетей LTE, нежели на модернизацию сетей третьего поколения.

На сегодняшний день можно отметить бурный рост объема трафика в сетях подвижной связи 4 поколения, и чтобы обеспечить необходимую скорость всем своим абонентам, операторам приходится искать различные методы по повышению скорости передачи данных или по повышению эффективности использования частотного ресурса. MIMO же позволяет в имеющейся полосе частот передавать почти в 2 раза больше данных за тот же временной промежуток при варианте 2х2. Если же использовать антенную реализацию 4х4, то, к сожалению, максимальная скорость загрузки информации составит 326 Мбит/с, а не 400 Мбит/с, как предполагает теоретический расчет. Это связано с особенностью передачи через 4 антенны. Каждой антенне выделены определенные ресурсные элементы (РЭ) для передачи опорных символов. Они необходимы для организации когерентной демодуляции и оценки каналов. Расположение этих РЭ изображено на рис. 3. Передающим антеннам присваивают номера логических антенных портов. Символы, помеченные R0 передает порт 0, символы R1 – порт 1 и т.д. В итоге 14,3% от всех РЭ выделено на передачу опорных символов, чем и обусловлено различие теоретической и практических скоростей.

Одно из самых существенных и важных нововведений Wi-Fi за прошедшие 20 лет - технология Multi User - Multiple Input Multiple Output (MU-MIMO). MU-MIMO расширяет функциональность появившегося недавно обновления беспроводного стандарта 802.11ac «Wave 2». Безусловно, это огромный прорыв для беспроводной связи. Данная технология помогает увеличить максимальную теоретическую скорость беспроводного соединения от 3,47 Гбит/с в оригинальной спецификации стандарта 802.11ac до 6,93 Гбит/с в обновлении стандарта 802.11ac Wave 2. Это одна из самых сложных функциональностей Wi-Fi на сегодняшний день.

Давайте разберемся как это работает!

Технология MU-MIMO повышает планку за счет разрешения нескольким устройствам принимать несколько потоков данных. Она базируется на однопользовательской технологии MIMO (SU-MIMO), которая была представлена почти 10 лет назад со стандартом 802.11n.

SU-MIMO увеличивает скорость Wi-Fi-соединения, позволяя паре беспроводных устройств одновременно принимать или отправлять несколько потоков данных.

Рисунок 1. Технология SU-MIMO предоставляет многоканальные входные и выходные потоки одному устройству в одно и то же время. Технология MU-MIMO обеспечивает одновременную связь с несколькими устройствами.

По сути, революционные изменения для Wi-Fi обеспечивают две технологии. Первая из этих технологий, называемая beamforming, позволяет Wi-Fi-маршрутизаторам и точкам доступа более эффективно использовать радиоканалы. До появления этой технологии Wi-Fi-маршрутизаторы и точки доступа работали как электрические лампочки, посылая сигнал во всех направлениях. Проблема заключалась в том, что несфокусированному сигналу ограниченной мощности трудно добраться до клиентских Wi-Fi-устройств.

С помощью технологии beamforming Wi-Fi-маршрутизатор или точка доступа обменивается с клиентским устройством информацией о своем местоположении. Затем маршрутизатор изменяет свою фазу и мощность для формирования лучшего сигнала. Как результат: более эффективно используются радиосигналы, ускоряется передача данных и, возможно, увеличивается максимальная дистанция соединения.

Возможности beamforming расширяются. До сих пор Wi-Fi-маршрутизаторы или точки доступа были по своей сути однозадачными, посылая или принимая данные только от одного клиентского устройства одновременно. В более ранних версиях семейства стандартов беспроводной передачи данных 802.11, включая стандарт 802.11n и первую версию стандарта 802.11ac, существовала возможность одновременного приема или передачи нескольких потоков данных, но до сих пор не существовало метода, позволяющего Wi-Fi-маршрутизатору или точке доступа в одно и то же время «общаться» сразу с несколькими клиентами. Отныне же с помощью MU-MIMO такая возможность появилась.

Это действительно большой прорыв, так как возможность одновременной передачи данных сразу нескольким клиентским устройствам значительно расширяет доступную полосу пропускания для беспроводных клиентов. Технология MU-MIMO продвигает беспроводные сети от старого способа CSMA-SD, когда в одно и то же время обслуживалось только одно устройство, к системе, где сразу несколько устройств могут одновременно «говорить». Для большей наглядности примера, представьте себе переход от однополосной проселочной дороги к широкой автомагистрали

Сегодня беспроводные маршрутизаторы и точки доступа второго поколения стандарта 802.11ac Wave 2 активно завоевывают рынок. Каждый, кто разворачивает Wi-Fi понимать специфику работы технологии MU-MIMO. Предлагаем вашему вниманию 13 фактов, которые ускорит ваше обучение в этом направлении.

1. MU-MIMO использует только «Downstream» поток (от точки доступа к мобильному устройству).

В отличие от SU-MIMO, технология MU-MIMO в настоящее время работает только для п ередачи данных от точки доступа к мобильному устройству. Только беспроводные маршрутизаторы или точки доступа могут одновременно передавать данные нескольким пользователям, будь то один или несколько потоков для каждого из них. Сами же беспроводные устройства (такие, как смартфоны, планшеты или ноутбуки) по-прежнему должны по очереди направлять данные к беспроводному маршрутизатору или точке доступа, хотя при этом при наступлении их очереди они по отдельности могут использовать технологию SU-MIMO для передачи нескольких потоков.

Технология MU-MIMO будет особенно полезной в тех сетях, где пользователи больше скачивают данные, чем загружают.

Возможно, в будущем будет реализована версия технологии Wi-Fi: 802.11ax , где метод MU-MIMO будем применим и для «Upstream» трафика.

2. MU-MIMO работает только в Wi-Fi-диапазоне частот 5 ГГц

Технология SU-MIMO работает как в диапазоне частот 2,4 ГГц, так и 5 ГГц. Беспроводные роутеры и точки доступа второго поколения стандарта 802.11ac Wave 2 могут одновременно обслуживать несколько пользователей только на полосе частот 5 ГГц. С одной стороны, конечно, жаль, что на более узкой и более перегруженной полосе частот 2,4 ГГц мы не сможем использовать новую технологию. Но, с другой стороны, на рынке появляется все больше двухдиапазонных беспроводных устройств, поддерживающих технологию MU-MIMO, которые мы можем использовать для разворачивания производительных корпоративных Wi-Fi-сетей.

3. Технология Beamforming помогает направлять сигналы

В литературе СССР можно встретить понятие Фазированная Антенная Решётка, которая была разработана для военных радаров в конце 80-х. Аналогичная технология была применена в современном Wi-Fi. MU-MIMO использует технологию формирования направленного сигнала (в англоязычной технической литературе известной как «beamforming»). Beamfiorming позволяет направлять сигналы в направлении предполагаемого местоположения беспроводного устройства (или устройств), а не посылать их случайным образом во всех направлениях. Таким образом получается сфокусировать сигнал и существенно увеличить дальность действия и скорость работы Wi-Fi-соединения.

Хотя технология beamforming стала опционально доступна еще со стандартом 802.11n, тем ни менее большинство производителей реализовывали свои проприетарные версии этой технологии. Эти вендоры и сейчас предлагают проприетарные реализации технологии в своих устройствах, но теперь им придется включить хотя бы упрощенную и стандартизированную версию технологии формирования направленного сигнала, если они хотят поддерживать технологию MU-MIMO в своей продуктовой линейке стандарта 802.11ac.

4. MU-MIMO поддерживает ограниченное количество одновременных потоков и устройств

К огромному сожалению, маршрутизаторы или точки доступа с реализованной технологией MU-MIMO не могут одновременно обслуживать неограниченное количество потоков и устройств. Маршрутизатор или точка доступа имеют собственное ограничение на число потоков, которые они обслуживают (зачастую это 2, 3 или 4 потока), и это количество пространственных потоков также ограничивает количество устройств, которые точка доступа может одновременно обслужить. Так, точка доступа с поддержкой четырех потоков может одновременно обслуживать четыре различных устройства, либо, к примеру, один поток направить к одному устройству, а три других потока агрегировать на другое устройство (увеличив скорость от объёединения каналов).​

5. От пользовательских устройств не требуется наличие нескольких антенн

Как и в случае с технологией SU-MIMO, только беспроводные устройства со встроенной поддержкой MU-MIMO могут агрегировать потоки (скорость). Но, в отличие от ситуации с технологией SU-MIMO, беспроводным устройствам не обязательно требуется иметь несколько антенн, чтобы принимать MU-MIMO-потоки от беспроводных маршрутизаторов и точек доступа. Если беспроводное устройство оснащено только одной антенной, оно может принять только один MU-MIMO-поток данных от точки доступа, используя beamforming для улучшения приёма.

Большее количество антенн позволит беспроводному пользовательскому устройству принимать большее количество потоков данных одновременно (обычно из расчета один поток на одну антенну), что, безусловно, положительно скажется на производительности этого устройства. Однако, наличие нескольких антенн у пользовательского устройства негативно сказывается на потребляемой мощности и размере этого изделия, что критично для смартфонов.

Однако технология MU-MIMO предъявляет меньшие аппаратные требования к клиентским устройствам, чем обременительная в техническом плане технология SU-MIMO, то можно с уверенностью предположить, что производители гораздо охотнее станут оснащать свои ноутбуки и планшеты поддержкой технологии MU-MIMO.​

6. Точки доступа выполняют «тяжелую» обработку

Стремясь к упрощению требований к устройствам конечных пользователей, разработчики технологии MU-MIMO постарались переложить на точки доступа большую часть работы по обработке сигнала. Это еще один шаг вперед по сравнению с технологией SU-MIMO, где бремя по обработке сигнала большей частью лежало на пользовательских устройствах. И опять же, это поможет производителям клиентских устройств экономить на мощности, размере и других затратах при производстве своих продуктовых решений с поддержкой MU-MIMO, что должно весьма позитивно сказаться на популяризации данной технологии.

7. Даже бюджетные устройства получают ощутимую выгоду от одновременной передачи через несколько пространственных поток

Подобно агрегации каналов в сети Ethernet (802.3ad и LACP), объединение потоков 802.1ac не увеличивает скорость соединения «точка-точка». Т.е. если вы единственный пользователь и у Вас запущено только одно приложение - вы задействует только 1 пространственный поток.

Однако существует возможность увеличить общую пропускную способность сети за счет предоставления возможности по обслуживанию точкой доступа нескольких пользовательских устройств одновременно.

Но если все используемые в вашей сети пользовательские устройства поддерживают работу только с одним потоком, то MU-MIMO позволит вашей точке доступа обслуживать одновременно до трех устройств, вместо одного за раз, в то время как другим (более продвинутым) пользовательским устройствам придется ожидать своей очереди.




Рисунок 2​.

8. Некоторые пользовательские устройства имеют скрытую поддержку технологии MU-MIMO

Не смотря на то, что в настоящее время все еще не так много маршрутизаторов, точек доступа или мобильных устройств поддерживают MU-MIMO, в компании-производителе Wi-Fi-чипов утверждают, что часть производителей в своем производственном процессе учла аппаратные требования для поддержки новой технологии для некоторых своих устройств для конечных пользователей еще несколько лет назад. Для таких устройств относительно простое обновление программного обеспечения добавит поддержку технологии MU-MIMO, что также должно ускорить популяризацию и распространение технологии, а также стимулировать компании и организации модернизировать свои корпоративные беспроводные сети с помощью оборудования с поддержкой стандарта 802.11ac.

9. Устройства без поддержки MU-MIMO также оказываются в выигрыше

Не смотря на то, что Wi-Fi-устройства обязательно должны иметь поддержку MU-MIMO для того, чтобы использовать эту технологию, даже те клиентские устройства, которые такой поддержкой не имеют, могут получить косвенную выгоду от работы в беспроводной сети, где маршрутизатор или точки доступа поддерживают технологию MU-MIMO. Следует помнить, что скорость передачи данных по сети напрямую зависит от общего времени, в течение которого абонентские устройства подключены к радиоканалу. И если технология MU-MIMO позволит обслуживать часть устройств быстрее, то это означает, что у точек доступа в такой сети останется больше времени на обслуживание других клиентских устройств.

10. MU-MIMO помогает увеличить пропускную способность беспроводной сети

Когда вы увеличиваете скорость Wi-Fi-соединения, вы также увеличиваете пропускную способность беспроводной сети. Так как устройства обслуживаются более быстро, то у сети появляется больше эфирного времени на обслуживание большего количества клиентских устройств. Таким образом, технология MU-MIMO может значительно оптимизировать работу беспроводных сетей с интенсивным трафиком или большим количеством подключенных устройств, таких как общественные Wi-Fi-сети. Это прекрасная новость, так как количество смартфонов и других мобильных устройств с возможностью подключения к Wi-Fi-сети, скорее всего, продолжит увеличиваться.

11. Поддерживается любая ширина канала

Одним из способов расширения пропускной способности Wi-Fi-канала является связывание каналов, когда объединяются два соседних канала в один канал, который в два раза шире, что фактически удваивает скорость Wi-Fi-соединения между устройством и точкой доступа. Стандарт 802.11n предусматривал поддержку каналов шириной до 40 МГц, в оригинальной спецификации стандарта 802.11ac поддерживаемая ширина канала была увеличена до 80 МГц. В обновленном стандарте 802.11ac Wave 2 поддерживаются каналы шириной 160 МГц.



Рисунок 3. На сегодняшний день стандарт 802.11ac поддерживает каналы шириной до 160 МГц в диапазоне частот 5 ГГц

Однако, не следует забывать, что использование в беспроводной сети каналов большей ширины увеличивает вероятность возникновения помех в совмещенных каналах. Поэтому такой подход не всегда будет правильным выбором для разворачивания всех без исключения Wi-Fi-сетей. Тем ни менее, технология MU-MIMO, как мы можем убедиться, может быть использована для каналов любой ширины.

Тем ни менее, даже если ваша беспроводная сеть использует более узкие каналы шириной 20 МГц или 40 МГц, технология MU-MIMO все равно может помочь ей работать быстрее. А вот насколько быстрее, будет зависеть от того, сколько необходимо будет обслуживать клиентских устройств и сколько потоков каждое из этих устройств поддерживает. Таким образом, использование технологии MU-MIMO даже без широких связанных каналов может более чем в два раза увеличить пропускную способность выходного беспроводного соединения для каждого устройства.

12. Обработка сигналов повышает безопасность

Интересным побочным эффектом технологии MU-MIMO является то, что маршрутизатор или точка доступа шифрует данные перед их отправкой через радиоканалы. Достаточно трудно декодировать данные, передаваемые с использованием технологии MU-MIMO, т. к. не ясно какая часть кода в каком пространственном потоке находится. Хотя впоследствии могут быть разработаны специальные инструменты, позволяющие другим устройствам перехватывать передаваемый трафик, на сегодняшний день технология MU-MIMO эффективно маскирует данные от расположенных вблизи устройств прослушивания. Таким образом, новая технология помогает повысить Wi-Fi-безопасность, что особенно актуально для открытых беспроводных сетей, таких как общественные Wi-Fi-сети, а также точек доступа, работающих в персональном режиме или использующих упрощенный режим аутентификации пользователей (Pre-Shared Key, PSK) на базе технологий защиты Wi-Fi-сети WPA или WPA2.

13. MU-MIMO лучше всего подходит для неподвижных Wi-Fi-устройств

Также существует одно предостережение о технологии MU-MIMO: она не очень хорошо работает с быстродвижущимися устройствами, так как процесс формирования направленного сигнала по технологии beamforming становится более сложным и менее эффективным. Поэтому MU-MIMO не сможет обеспечить вам заметную пользу для устройств, часто использующих роуминг в вашей корпоративной сети. Однако, следует понимать, что эти «проблемные» устройства никак не должны повлиять ни на MU-MIMO-передачу данных другим клиентским устройствам, которые менее подвижны, ни на их производительность.

Подписка на новости