Матрицы i. Действия с матрицами

ОПРЕДЕЛЕНИЕ МАТРИЦЫ. ВИДЫ МАТРИЦ

Матрицей размером m ×n называется совокупность m·n чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов. Эту таблицу обычно заключают в круглые скобки. Например, матрица может иметь вид:

Для краткости матрицу можно обозначать одной заглавной буквой, например, А или В .

В общем виде матрицу размером m ×n записывают так

.

Числа, составляющие матрицу, называются элементами матрицы . Элементы матрицы удобно снабжать двумя индексами a ij : первый указывает номер строки, а второй – номер столбца. Например, a 23 – элемент стоит во 2-ой строке, 3-м столбце.

Если в матрице число строк равно числу столбцов, то матрица называется квадратной , причём число ее строк или столбцов называется порядком матрицы. В приведённых выше примерах квадратными являются вторая матрица – её порядок равен 3, и четвёртая матрица – её порядок 1.

Матрица, в которой число строк не равно числу столбцов, называется прямоугольной . В примерах это первая матрица и третья.

Различаются также матрицы, имеющие только одну строку или один столбец.

Матрица, у которой всего одна строка , называется матрицей – строкой (или строковой), а матрица, у которой всего один столбец, матрицей – столбцом .

Матрица, все элементы которой равны нулю, называется нулевой и обозначается (0), или просто 0. Например,

.

Главной диагональю квадратной матрицы назовём диагональ, идущую из левого верхнего в правый нижний угол.

Квадратная матрица, у которой все элементы, лежащие ниже главной диагонали, равны нулю, называется треугольной матрицей.

.

Квадратная матрица, у которой все элементы, кроме, быть может, стоящих на главной диагонали, равны нулю, называется диагональной матрицей. Например, или .

Диагональная матрица, у которой все диагональные элементы равны единице, называется единичной матрицей и обозначается буквой E. Например, единичная матрица 3-го порядка имеет вид .

ДЕЙСТВИЯ НАД МАТРИЦАМИ

Равенство матриц . Две матрицы A и B называются равными, если они имеют одинаковое число строк и столбцов и их соответствующие элементы равны a ij = b ij . Так если и , то A=B , если a 11 = b 11 , a 12 = b 12 , a 21 = b 21 и a 22 = b 22 .

Транспонирование . Рассмотрим произвольную матрицу A из m строк и n столбцов. Ей можно сопоставить такую матрицу B из n строк и m столбцов, у которой каждая строка является столбцом матрицы A с тем же номером (следовательно, каждый столбец является строкой матрицы A с тем же номером). Итак, если , то .

Эту матрицу B называют транспонированной матрицей A , а переход от A к B транспонированием .

Таким образом, транспонирование – это перемена ролями строк и столбцов матрицы. Матрицу, транспонированную к матрице A , обычно обозначают A T .

Связь между матрицей A и её транспонированной можно записать в виде .

Например. Найти матрицу транспонированную данной.

Сложение матриц. Пусть матрицы A и B состоят из одинакового числа строк и одинакового числа столбцов, т.е. имеют одинаковые размеры . Тогда для того, чтобы сложить матрицы A и B нужно к элементам матрицы A прибавить элементы матрицы B , стоящие на тех же местах. Таким образом, суммой двух матриц A и B называется матрица C , которая определяется по правилу, например,

Примеры. Найти сумму матриц:

Легко проверить, что сложение матриц подчиняется следующим законам: коммутативному A+B=B+A и ассоциативному (A+B )+C =A +(B+C ).

Умножение матрицы на число. Для того чтобы умножить матрицу A на число k нужно каждый элемент матрицы A умножить на это число. Таким образом, произведение матрицы A на число k есть новая матрица, которая определяется по правилу или .

Для любых чисел a и b и матриц A и B выполняются равенства:

Примеры.

Умножение матриц. Эта операция осуществляется по своеобразному закону. Прежде всего, заметим, что размеры матриц–сомножителей должны быть согласованы. Перемножать можно только те матрицы, у которых число столбцов первой матрицы совпадает с числом строк второй матрицы (т.е. длина строки первой равна высоте столбца второй). Произведением матрицы A не матрицу B называется новая матрица C=AB , элементы которой составляются следующим образом:

Таким образом, например, чтобы получить у произведения (т.е. в матрице C ) элемент, стоящий в 1-ой строке и 3-м столбце c 13 , нужно в 1-ой матрице взять 1-ую строку, во 2-ой – 3-й столбец, и затем элементы строки умножить на соответствующие элементы столбца и полученные произведения сложить. И другие элементы матрицы-произведения получаются с помощью аналогичного произведения строк первой матрицы на столбцы второй матрицы.

В общем случае, если мы умножаем матрицу A = (a ij) размера m ×n на матрицу B = (b ij) размера n ×p , то получим матрицу C размера m ×p , элементы которой вычисляются следующим образом: элемент c ij получается в результате произведения элементов i -ой строки матрицы A на соответствующие элементы j -го столбца матрицы B и их сложения.

Из этого правила следует, что всегда можно перемножать две квадратные матрицы одного порядка, в результате получим квадратную матрицу того же порядка. В частности, квадратную матрицу всегда можно умножить саму на себя, т.е. возвести в квадрат.

Другим важным случаем является умножение матрицы–строки на матрицу–столбец, причём ширина первой должна быть равна высоте второй, в результате получим матрицу первого порядка (т.е. один элемент). Действительно,

.

Примеры.

Таким образом, эти простые примеры показывают, что матрицы, вообще говоря, не перестановочны друг с другом, т.е. A∙B B∙A . Поэтому при умножении матриц нужно тщательно следить за порядком множителей.

Можно проверить, что умножение матриц подчиняется ассоциативному и дистрибутивному законам, т.е. (AB)C=A(BC) и (A+B)C=AC+BC .

Легко также проверить, что при умножении квадратной матрицы A на единичную матрицу E того же порядка вновь получим матрицу A , причём AE=EA=A .

Можно отметить следующий любопытный факт. Как известно произведение 2-х отличных от нуля чисел не равно 0. Для матриц это может не иметь места, т.е. произведение 2-х не нулевых матриц может оказаться равным нулевой матрице.

Например , если , то

.

ПОНЯТИЕ ОПРЕДЕЛИТЕЛЕЙ

Пусть дана матрица второго порядка – квадратная матрица, состоящая из двух строк и двух столбцов .

Определителем второго порядка , соответствующим данной матрице, называется число, получаемое следующим образом: a 11 a 22 – a 12 a 21 .

Определитель обозначается символом .

Итак, для того чтобы найти определитель второго порядка нужно из произведения элементов главной диагонали вычесть произведение элементов по второй диагонали.

Примеры. Вычислить определители второго порядка.

Аналогично можно рассмотреть матрицу третьего порядка и соответствующий ей определитель.

Определителем третьего порядка , соответствующим данной квадратной матрице третьего порядка, называется число, обозначаемое и получаемое следующим образом:

.

Таким образом, эта формула даёт разложение определителя третьего порядка по элементам первой строки a 11 , a 12 , a 13 и сводит вычисление определителя третьего порядка к вычислению определителей второго порядка.

Примеры. Вычислить определитель третьего порядка.


Аналогично можно ввести понятия определителей четвёртого, пятого и т.д. порядков, понижая их порядок разложением по элементам 1-ой строки, при этом знаки "+" и "–" у слагаемых чередуются.

Итак, в отличие от матрицы, которая представляют собой таблицу чисел, определитель это число, которое определённым образом ставится в соответствие матрице.

>> Матрицы

4.1.Матрицы. Операции над матрицами

Прямоугольной матрицей размера mxn называется совокупность mxn чисел, расположенных в виде прямоугольной таблицы, содержащей m строк и n столбцов. Мы будем записывать ее в виде

или сокращенно в виде A = (a i j) (i = ; j = ), числа a i j , называются ее элементами; первый индекс указывает на номер строки, второй - на номер столбца. A = (a i j) и B = (b i j) одинакового размера называются равными, если попарно равны их элементы, стоящие на одинаковых местах, то есть A = B, если a i j = b i j .

Матрица, состоящая из одной строки или одного столбца, называется соответственно -строкой или вектор-столбцом. Вектор-столбцы и вектор-строки называют просто векторами.

Матрица, состоящая из одного числа, отождествляется с этим числом. A размера mxn, все элементы которой равны нулю, называются нулевой и обозначается через 0. Элементы с одинаковыми индексами называют элементами главной диагонали. Если число строк равно числу столбцов, то есть m = n, то матрицу называют квадратной порядка n. Квадратные матрицы, у которых отличны от нуля лишь элементы главной диагонали, называются диагональными и записываются так:

Если все элементы a i i диагонали равны 1, то она называется единичной и обозначается буквой Е:

.

Квадратная матрица называется треугольной, если все элементы, стоящие выше (или ниже) главной диагонали, равны нулю. Транспонированием называется такое преобразование, при котором строки и столбцы меняются местами с сохранением их номеров. Обозначается транспонирование значком Т наверху.

Если в (4.1) переставим строки со столбцами, то получим

,

которая будет транспонированной по отношению к А. В частности, при транспонировании вектора-столбца получается вектор-строка и наоборот.

Произведением А на число b называется матрица, элементы которой получаются из соответствующих элементов А умножением на число b: b A = (b a i j).

Суммой А = (a i j) и B = (b i j) одного размера называется C = (c i j) того же размера, элементы которой определяются по формуле c i j = a i j + b i j .

Произведение АВ определяется в предположении, что число столбцов А равно числу строк В.

Произведением AB, где А = (a i j) и B = (b j k), где i = , j= , k= , заданных в определенном порядке АВ, называется С = (c i k), элементы которой определяются по следующему правилу:

c i k = a i 1 b 1 k + a i 2 b 2 k +... + a i m b m k = a i s b s k . (4.2)

Иначе говоря, элемент произведения AB определяются следующим образом: элемент i-й строки и k-го столбца С равен сумме произведений элементов i-й строки А на соответствующие элементы k-го столбца В.

Пример 2.1. Найти произведение AB и .

Решение. Имеем: А размера 2x3, В размера 3x3, тогда произведение АВ = С существует и элементы С равны

С 11 = 1×1 +2×2 + 1×3 = 8, с 21 = 3×1 + 1×2 + 0×3 = 5, с 12 = 1×2 + 2×0 + 1×5 = 7,

с 22 =3×2 + 1×0 + 0×5 = 6, с 13 = 1×3 + 2×1 + 1×4 = 9, с 23 = 3×3 + 1×1 + 0×4 = 10.

, а произведение BA не существует.

Пример 2.2. В таблице указано количество единиц продукции, отгружаемой ежедневно на молокозаводах 1 и 2 в магазины М 1 , М 2 и М 3 , причем доставка единицы продукции с каждого молокозавода в магазин М 1 стоит 50 ден. ед., в магазин М 2 - 70, а в М 3 - 130 ден. ед. Подсчитать ежедневные транспортные расходы каждого завода.

Молокозавод

Решение. Обозначим через А матрицу, данную нам в условии, а через
В - матрицу, характеризующую стоимость доставки единицы продукции в магазины, т.е.,

,

Тогда матрица затрат на перевозки будет иметь вид:

.

Итак, первый завод ежедневно тратит на перевозки 4750 ден. ед., второй - 3680 ден.ед.

Пример 2.3. Швейное предприятие производит зимние пальто, демисезонные пальто и плащи. Плановый выпуск за декаду характеризуется вектором X = (10, 15, 23). Используются ткани четырех типов Т 1 , Т 2 , Т 3 , Т 4 . В таблице приведены нормы расхода ткани (в метрах) на каждое изделие. Вектор С = (40, 35, 24, 16) задает стоимость метра ткани каждого типа, а вектор P = (5, 3, 2, 2) - стоимость перевозки метра ткани каждого вида.

Расход ткани

Зимнее пальто

Демисезонное пальто

1. Сколько метров ткани каждого типа потребуется для выполнения плана?

2. Найти стоимость ткани, расходуемой на пошив изделия каждого вида.

3. Определить стоимость всей ткани, необходимой для выполнения плана.

Решение. Обозначим через А матрицу, данную нам в условии, т. е.,

тогда для нахождения количества метров ткани, необходимой для выполнения плана, нужно вектор X умножить на матрицу А:

Стоимость ткани, расходуемой на пошив изделия каждого вида, найдем, перемножив матрицу А и вектор C T:

.

Стоимость всей ткани, необходимой для выполнения плана, определится по формуле:

Наконец, с учетом транспортных расходов вся сумма будет равна стоимости ткани, т. е. 9472 ден. ед., плюс величина

X А P T =
.

Итак, X А C T + X А P T = 9472 + 1037 = 10509 (ден. ед).

Инструкция

Число столбцов и строк задают размерность матрицы . К примеру, размерность ю 5×6 имеет 5 строк и 6 столбцов. В общем случае, размерность матрицы записывается в виде m×n, где число m указывает на количество строк, n – столбцов.

Если массив имеет размерность m×n, его можно умножить на массив n×l. Число столбцов первой матрицы должно равняться числу строк второй, иначе операция умножения не будет определена.

Размерность матрицы указывает на число уравнений в системе и количество переменных. Число строк совпадает с количеством уравнений, а за каждым столбцом закреплена своя переменная. Решение системы линейных уравнений «записано» в действиях над матрицами. Благодаря матричной системе записи возможным системы высоких порядков.

Если число строк равно числу столбцов, матрица квадратной. В ней можно выделить главную и побочную диагонали. Главная идет от левого верхнего угла к правому нижнему, побочная – от правого верхнего к левому нижнему.

Массивы размерность ю m×1 или 1×n являются векторами. Также в виде вектора можно представить любую строку и любой столбец произвольной таблицы. Для таких матриц определены все операции над векторами.

В программировании для прямоугольной таблицы задается два индекса, один из которых пробегает всей строки, другой – длину столбца. При этом цикл для одного индекса помещен внутрь цикла для другого, за счет чего последовательное прохождение всей размерности матрицы .

Матрицы - это эффективный способ представления числовой информации. Решение любой системы линейных уравнений можно записать в виде матрицы (прямоугольника, составленного из чисел). Умение перемножать матрицы - один из самых важных навыков, которым обучают на курсе "Линейной алгебры" в высших учебных заведениях.

Вам понадобится

  • Калькулятор

Инструкция

Для проверки этого условия проще всего воспользоваться следующим алгоритмом - запишите размерность первой матрицы как (a*b). Дальше размерность второй - (c*d). Если b=c - матрицы соразмерны, их можно перемножать.

Дальше произведите само перемножение. Помните - при перемножении двух матриц получается матрица. То есть, задача перемножения сводится к задаче нахождения новой, с размерностью (a*d). На СИ задачи перемножения матрицы выглядит следующим образом:
void matrixmult(int m1[n], int m1_row, int m1_col, int m2[n], int m2_row, int m2_col, int m3[n], int m3_row, int m3_col)
{ for (int i = 0; i < m3_row; i++)
for (int j = 0; j < m3_col; j++)
m3[i][j]=0;
for (int k = 0; k < m2_col; k++)
for (int i = 0; i < m1_row; i++)
for (int j = 0; j < m1_col; j++)
m3[i][k] += m1[i][j] * m2[j][k];
}

Проще говоря, новой матрицы - это сумма произведений элементов строки первой матрицы на элементы столбца второй матрицы. Если вы элемент третьей матрицы с номером (1;2), то вы должны просто умножить первую строку первой матрицы на второй столбец второй. Для этого считаете начальную сумму равной нулю. Дальше умножаете первый элемент первой строки на первый элемент второго столбца, значение добавляете в сумму. Делаете так: умножаете i-тый элемент первой строки на i-тый элемент второго столбца и добавляете результаты к сумме, пока не кончится строка. Итоговая сумма и будет искомым элементом.

После того, как вы нашли все элементы третьей матрицы, записываете ее. Вы нашли произведение матриц.

Источники:

  • Главный математический портал России в 2019
  • как находить произведение матриц в 2019

Математическая матрица представляет собой упорядоченную таблицу элементов. Размерность матрицы определяется числом ее строк m и столбцов n. Под решением матриц понимается множество обобщающих операций, производимых над матрицами. Различают несколько типов матриц, к некоторым из них не применим ряд операций. Существует операция сложения для матриц с одинаковой размерностью. Произведение двух матриц находится, только если они согласованны. Для любой матрицы определяется детерминант. Также матрицу можно транспонировать и определить минор ее элементов.

Инструкция

Запишите заданные . Определите их размерность. Для этого посчитайте количество столбцов n и строк m. Если для одной матрицы m = n, матрица считается квадратной. Если все элементы матрицы равны нулю – матрица нулевая. Определите главную диагональ матриц. Ее элементы располагаются с левого верхнего угла матрицы до правого нижнего. Вторая, обратная диагональ матрицы является побочной.

Проведите транспонирование матриц. Для этого замените в каждой элементы строк на элементы столбцов относительно главной диагонали. Элемент а21 станет элементом а12 матрицы и наоборот. В итоге из каждой исходной матрицы получится новая транспонированная матрица.

Сложите заданные матрицы , если они имеют одинаковую размерность m х n. Для этого возьмите первый матрицы а11 и сложите его с аналогичным элементом b11 второй матрицы . Результат сложения запишите в новую на ту же позицию. Затем сложите элементы а12 и b12 обоих матриц. Таким образом заполните все строки и столбцы суммирующей матрицы .

Определите, являются ли заданные матрицы согласованными. Для этого сравните число строк n в первой матрицы и число столбцов m второй матрицы . Если они равны, выполните произведение матриц. Для этого попарно умножьте каждый элемент строки первой матрицы на соответствующий элемент столбца второй матрицы . После чего найдите сумму этих произведений. Таким образом, первый элемент результирующей матрицы g11 = а11* b11 + а12*b21 + а13*b31 + … + а1m*bn1. Выполните умножение и сложение всех произведений и заполните результирующую матрицу G.

Найдите определитель или детерминант для каждой заданной матрицы . Для матриц второго - размерностью 2 на 2 – определитель находится, как произведений элементов главной и побочной диагоналей матрицы . Для трехмерной матрицы определителя: D = а11* а22*а33 + а13* а21*а32 + а12* а23*а31 - а21* а12*а33 - а13* а22*а31 - а11* а32*а23.

Источники:

  • матрица как решать

Матрицы представляют собой совокупность строк и столбцов, на пересечении которых находятся элементы матрицы. Матрицы широко применяются для решения различных уравнений. Одной из базовых алгебраических операций над матрицами является сложение матриц. Как складывать матрицы?

Инструкция

Складывать можно только одноразмерные матрицы. Если одна имеет m строк и n столбцов, то и другая матрица должна иметь m строк и n столбцов. Убедитесь, что складываемые матрицы являются одноразмерными.

Если представленные матрицы один и тот же размер, то есть допускают алгебраическую операцию сложения, то при матрица того же размера. Чтобы её , необходимо попарно сложить все элементы двух , стоящие на одних и тех же местах.Возьмите первой матрицы, находящийся в первой строке и первом столбце. Сложите его с элементом второй матрицы, находящемся на том же месте. Полученное занесите в элемент первой строки столбца суммарной матрицы. Проделайте эту операцию со всеми элементами.

Сложение трех и более матриц сводится к сложению двух матриц. Например, чтобы найти сумму матриц A+B+C, найдите сначала сумму матриц A и B, затем полученную сложите с матрицей C.

Видео по теме

Непонятные на первый взгляд матрицы, на самом деле не так сложны. Они находят широкое практическое применение в экономике и бухгалтерии. Выглядят матрицы как таблицы, в каждом столбце и строке содержащие число, функцию или любую другую величину. Существует несколько видов матриц.

Инструкция

Для того чтобы научиться матрицы, познакомьтесь с ее основными понятиями. Определяющими элементами матрицы являются ее диагонали - и побочная. Главная начинается с элемента в первом ряду, первом столбце и продолжается до элемента последнего столбца, последнего ряда (то есть идет слева направо). Побочная же диагональ начинается наоборот в первом ряду, но последнем столбце и продолжается до элемента, имеющего координаты первого столбца и последнего ряда (идет справа налево).

Для того чтобы перейти к следующим определениям и алгебраическим операциям с матрицами, изучите виды матриц. Самые простые из них - это квадратная, единичная, нулевая и обратная. В совпадает число столбцов и строк. Транспонированная матрица, назовем ее В, получается из матрицы А, путем замены столбцов на строки. В единичной все элементы главной диагонали - единицы, а другие - нули. А в нулевой даже элементы диагоналей нулевые. Обратная матрица - это та, на которую исходная матрица приходит к единичному виду.

Также матрица может быть симметрична относительно главной или побочной осей. То есть элемент, имеющий координаты а(1;2), где 1 - это номер строки, а 2 - столбца, равен а(2;1). А(3;1)=А(1;3) и так далее. Матрицы согласованными - это те, где количество столбцов одной равно количеству строк другой (такие матрицы можно перемножать).

Главные действия, которые можно совершить с матрицами - это сложение, умножение и нахождение определителя. Если матрицы одинакового размера, то есть имеют равное количество строк и столбцов, то их можно сложить. Складывать необходимо элементы, стоящие на одинаковых местах в матрицах, то есть а (m;n) сложите с в (m;n), где m и n - это соответствующие координаты столбца и строки. При сложении матриц действует главное правило обычного арифметического сложения - при перемене мест слагаемых сумма не меняется. Таким образом, если вместо простого элемента а

В этой теме будут рассмотрены такие операции, как сложение и вычитание матриц, умножение матрицы на число, умножение матрицы на матрицу, транспонирование матрицы. Все обозначения, которые используются на данной странице, взяты из предыдущей темы .

Сложение и вычитание матриц.

Суммой $A+B$ матриц $A_{m\times n}=(a_{ij})$ и $B_{m\times n}=(b_{ij})$ называется матрица $C_{m\times n}=(c_{ij})$, где $c_{ij}=a_{ij}+b_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Аналогичное определение вводят и для разности матриц:

Разностью $A-B$ матриц $A_{m\times n}=(a_{ij})$ и $B_{m\times n}=(b_{ij})$ называется матрица $C_{m\times n}=(c_{ij})$, где $c_{ij}=a_{ij}-b_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Пояснение к записи $i=\overline{1,m}$: показать\скрыть

Запись "$i=\overline{1,m}$" означает, что параметр $i$ изменяется от 1 до m. Например, запись $i=\overline{1,5}$ говорит о том, что параметр $i$ принимает значения 1, 2, 3, 4, 5.

Стоит обратить внимание, что операции сложения и вычитания определены только для матриц одинакового размера. Вообще, сложение и вычитание матриц - операции, ясные интуитивно, ибо означают они, по сути, всего лишь суммирование или вычитание соответствующих элементов.

Пример №1

Заданы три матрицы:

$$ A=\left(\begin{array} {ccc} -1 & -2 & 1 \\ 5 & 9 & -8 \end{array} \right)\;\; B=\left(\begin{array} {ccc} 10 & -25 & 98 \\ 3 & 0 & -14 \end{array} \right); \;\; F=\left(\begin{array} {cc} 1 & 0 \\ -5 & 4 \end{array} \right). $$

Можно ли найти матрицу $A+F$? Найти матрицы $C$ и $D$, если $C=A+B$ и $D=A-B$.

Матрица $A$ содержит 2 строки и 3 столбца (иными словами - размер матрицы $A$ равен $2\times 3$), а матрица $F$ содержит 2 строки и 2 столбца. Размеры матрицы $A$ и $F$ не совпадают, поэтому сложить их мы не можем, т.е. операция $A+F$ для данных матриц не определена.

Размеры матриц $A$ и $B$ совпадают, т.е. данные матрицы содержат равное количество строк и столбцов, поэтому к ним применима операция сложения.

$$ C=A+B=\left(\begin{array} {ccc} -1 & -2 & 1 \\ 5 & 9 & -8 \end{array} \right)+ \left(\begin{array} {ccc} 10 & -25 & 98 \\ 3 & 0 & -14 \end{array} \right)=\\= \left(\begin{array} {ccc} -1+10 & -2+(-25) & 1+98 \\ 5+3 & 9+0 & -8+(-14) \end{array} \right)= \left(\begin{array} {ccc} 9 & -27 & 99 \\ 8 & 9 & -22 \end{array} \right) $$

Найдем матрицу $D=A-B$:

$$ D=A-B=\left(\begin{array} {ccc} -1 & -2 & 1 \\ 5 & 9 & -8 \end{array} \right)- \left(\begin{array} {ccc} 10 & -25 & 98 \\ 3 & 0 & -14 \end{array} \right)=\\= \left(\begin{array} {ccc} -1-10 & -2-(-25) & 1-98 \\ 5-3 & 9-0 & -8-(-14) \end{array} \right)= \left(\begin{array} {ccc} -11 & 23 & -97 \\ 2 & 9 & 6 \end{array} \right) $$

Ответ : $C=\left(\begin{array} {ccc} 9 & -27 & 99 \\ 8 & 9 & -22 \end{array} \right)$, $D=\left(\begin{array} {ccc} -11 & 23 & -97 \\ 2 & 9 & 6 \end{array} \right)$.

Умножение матрицы на число.

Произведением матрицы $A_{m\times n}=(a_{ij})$ на число $\alpha$ называется матрица $B_{m\times n}=(b_{ij})$, где $b_{ij}=\alpha\cdot a_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Попросту говоря, умножить матрицу на некое число - означает умножить каждый элемент заданной матрицы на это число.

Пример №2

Задана матрица: $ A=\left(\begin{array} {ccc} -1 & -2 & 7 \\ 4 & 9 & 0 \end{array} \right)$. Найти матрицы $3\cdot A$, $-5\cdot A$ и $-A$.

$$ 3\cdot A=3\cdot \left(\begin{array} {ccc} -1 & -2 & 7 \\ 4 & 9 & 0 \end{array} \right) =\left(\begin{array} {ccc} 3\cdot(-1) & 3\cdot(-2) & 3\cdot 7 \\ 3\cdot 4 & 3\cdot 9 & 3\cdot 0 \end{array} \right)= \left(\begin{array} {ccc} -3 & -6 & 21 \\ 12& 27 & 0 \end{array} \right).\\ -5\cdot A=-5\cdot \left(\begin{array} {ccc} -1 & -2 & 7 \\ 4 & 9 & 0 \end{array} \right) =\left(\begin{array} {ccc} -5\cdot(-1) & -5\cdot(-2) & -5\cdot 7 \\ -5\cdot 4 & -5\cdot 9 & -5\cdot 0 \end{array} \right)= \left(\begin{array} {ccc} 5 & 10 & -35 \\ -20 & -45 & 0 \end{array} \right). $$

Запись $-A$ есть сокращенная запись для $-1\cdot A$. Т.е., чтобы найти $-A$ нужно все элементы матрицы $A$ умножить на (-1). По сути, это означает, что знак всех элементов матрицы $A$ изменится на противоположный:

$$ -A=-1\cdot A=-1\cdot \left(\begin{array} {ccc} -1 & -2 & 7 \\ 4 & 9 & 0 \end{array} \right)= \left(\begin{array} {ccc} 1 & 2 & -7 \\ -4 & -9 & 0 \end{array} \right) $$

Ответ : $3\cdot A=\left(\begin{array} {ccc} -3 & -6 & 21 \\ 12& 27 & 0 \end{array} \right);\; -5\cdot A=\left(\begin{array} {ccc} 5 & 10 & -35 \\ -20 & -45 & 0 \end{array} \right);\; -A=\left(\begin{array} {ccc} 1 & 2 & -7 \\ -4 & -9 & 0 \end{array} \right)$.

Произведение двух матриц.

Определение этой операции громоздко и, на первый взгляд, непонятно. Поэтому сначала укажу общее определение, а потом подробно разберем, что оно означает и как с ним работать.

Произведением матрицы $A_{m\times n}=(a_{ij})$ на матрицу $B_{n\times k}=(b_{ij})$ называется матрица $C_{m\times k}=(c_{ij})$, для которой каждый элемент $c_{ij}$ равен сумме произведений соответствующих элементов i-й строки матрицы $A$ на элементы j-го столбца матрицы $B$: $$c_{ij}=\sum\limits_{p=1}^{n}a_{ip}b_{pj}, \;\; i=\overline{1,m}, j=\overline{1,n}.$$

Пошагово умножение матриц разберем на примере. Однако сразу стоит обратить внимание, что перемножать можно не все матрицы. Если мы хотим умножить матрицу $A$ на матрицу $B$, то сперва нужно убедиться, что количество столбцов матрицы $A$ равно количеству строк матрицы $B$ (такие матрицы часто называют согласованными ). Например, матрицу $A_{5\times 4}$ (матрица содержит 5 строк и 4 столбца), нельзя умножать на матрицу $F_{9\times 8}$ (9 строк и 8 столбцов), так как количество столбцов матрицы $A$ не равно количеству строк матрицы $F$, т.е. $4\neq 9$. А вот умножить матрицу $A_{5\times 4}$ на матрицу $B_{4\times 9}$ можно, так как количество столбцов матрицы $A$ равно количеству строк матрицы $B$. При этом результатом умножения матриц $A_{5\times 4}$ и $B_{4\times 9}$ будет матрица $C_{5\times 9}$, содержащая 5 строк и 9 столбцов:

Пример №3

Заданы матрицы: $ A=\left(\begin{array} {cccc} -1 & 2 & -3 & 0 \\ 5 & 4 & -2 & 1 \\ -8 & 11 & -10 & -5 \end{array} \right)$ и $ B=\left(\begin{array} {cc} -9 & 3 \\ 6 & 20 \\ 7 & 0 \\ 12 & -4 \end{array} \right)$. Найти матрицу $C=A\cdot B$.

Для начала сразу определим размер матрицы $C$. Так как матрица $A$ имеет размер $3\times 4$, а матрица $B$ имеет размер $4\times 2$, то размер матрицы $C$ таков: $3\times 2$:

Итак, в результате произведения матриц $A$ и $B$ мы должны получить матрицу $C$, состоящую из трёх строк и двух столбцов: $ C=\left(\begin{array} {cc} c_{11} & c_{12} \\ c_{21} & c_{22} \\ c_{31} & c_{32} \end{array} \right)$. Если обозначения элементов вызывают вопросы, то можно глянуть предыдущую тему: "Матрицы. Виды матриц. Основные термины" , в начале которой поясняется обозначение элементов матрицы. Наша цель: найти значения всех элементов матрицы $C$.

Начнем с элемента $c_{11}$. Чтобы получить элемент $c_{11}$ нужно найти сумму произведений элементов первой строки матрицы $A$ и первого столбца матрицы $B$:

Чтобы найти сам элемент $c_{11}$ нужно перемножить элементы первой строки матрицы $A$ на соответствующие элементы первого столбца матрицы $B$, т.е. первый элемент на первый, второй на второй, третий на третий, четвертый на четвертый. Полученные результаты суммируем:

$$ c_{11}=-1\cdot (-9)+2\cdot 6+(-3)\cdot 7 + 0\cdot 12=0. $$

Продолжим решение и найдем $c_{12}$. Для этого придётся перемножить элементы первой строки матрицы $A$ и второго столбца матрицы $B$:

Аналогично предыдущему, имеем:

$$ c_{12}=-1\cdot 3+2\cdot 20+(-3)\cdot 0 + 0\cdot (-4)=37. $$

Все элементы первой строки матрицы $C$ найдены. Переходим ко второй строке, которую начинает элемент $c_{21}$. Чтобы его найти придётся перемножить элементы второй строки матрицы $A$ и первого столбца матрицы $B$:

$$ c_{21}=5\cdot (-9)+4\cdot 6+(-2)\cdot 7 + 1\cdot 12=-23. $$

Следующий элемент $c_{22}$ находим, перемножая элементы второй строки матрицы $A$ на соответствующие элементы второго столбца матрицы $B$:

$$ c_{22}=5\cdot 3+4\cdot 20+(-2)\cdot 0 + 1\cdot (-4)=91. $$

Чтобы найти $c_{31}$ перемножим элементы третьей строки матрицы $A$ на элементы первого столбца матрицы $B$:

$$ c_{31}=-8\cdot (-9)+11\cdot 6+(-10)\cdot 7 + (-5)\cdot 12=8. $$

И, наконец, для нахождения элемента $c_{32}$ придется перемножить элементы третьей строки матрицы $A$ на соответствующие элементы второго столбца матрицы $B$:

$$ c_{32}=-8\cdot 3+11\cdot 20+(-10)\cdot 0 + (-5)\cdot (-4)=216. $$

Все элементы матрицы $C$ найдены, осталось лишь записать, что $C=\left(\begin{array} {cc} 0 & 37 \\ -23 & 91 \\ 8 & 216 \end{array} \right)$. Или, если уж писать полностью:

$$ C=A\cdot B =\left(\begin{array} {cccc} -1 & 2 & -3 & 0 \\ 5 & 4 & -2 & 1 \\ -8 & 11 & -10 & -5 \end{array} \right)\cdot \left(\begin{array} {cc} -9 & 3 \\ 6 & 20 \\ 7 & 0 \\ 12 & -4 \end{array} \right)=\left(\begin{array} {cc} 0 & 37 \\ -23 & 91 \\ 8 & 216 \end{array} \right). $$

Ответ : $C=\left(\begin{array} {cc} 0 & 37 \\ -23 & 91 \\ 8 & 216 \end{array} \right)$.

Кстати сказать, зачастую нет резона расписывать подробно нахождение каждого элемента матрицы-результата. Для матриц, размер которых невелик, можно поступать и так:

Стоит также обратить внимание, что умножение матриц некоммутативно. Это означает, что в общем случае $A\cdot B\neq B\cdot A$. Лишь для некоторых типов матриц, которые именуют перестановочными (или коммутирующими), верно равенство $A\cdot B=B\cdot A$. Именно исходя из некоммутативности умножения, требуется указывать как именно мы домножаем выражение на ту или иную матрицу: справа или слева. Например, фраза "домножим обе части равенства $3E-F=Y$ на матрицу $A$ справа" означает, что требуется получить такое равенство: $(3E-F)\cdot A=Y\cdot A$.

Транспонированной по отношению к матрице $A_{m\times n}=(a_{ij})$ называется матрица $A_{n\times m}^{T}=(a_{ij}^{T})$, для элементов которой $a_{ij}^{T}=a_{ji}$.

Попросту говоря, для того, чтобы получить транспонированную матрицу $A^T$, нужно в исходной матрице $A$ заменить столбцы соответствующими строками по такому принципу: была первая строка - станет первый столбец; была вторая строка - станет второй столбец; была третья строка - станет третий столбец и так далее. Например, найдем транспонированную матрицу к матрице $A_{3\times 5}$:

Соответственно, если исходная матрица имела размер $3\times 5$, то транспонированная матрица имеет размер $5\times 3$.

Некоторые свойства операций над матрицами.

Здесь предполагается, что $\alpha$, $\beta$ - некоторые числа, а $A$, $B$, $C$ - матрицы. Для первых четырех свойств я указал названия, остальные можно назвать по аналогии с первыми четырьмя.

  1. $A+B=B+A$ (коммутативность сложения)
  2. $A+(B+C)=(A+B)+C$ (ассоциативность сложения)
  3. $(\alpha+\beta)\cdot A=\alpha A+\beta A$ (дистрибутивность умножения на матрицу относительно сложения чисел)
  4. $\alpha\cdot(A+B)=\alpha A+\alpha B$ (дистрибутивность умножения на число относительно сложения матриц)
  5. $A(BC)=(AB)C$
  6. $(\alpha\beta)A=\alpha(\beta A)$
  7. $A\cdot (B+C)=AB+AC$, $(B+C)\cdot A=BA+CA$.
  8. $A\cdot E=A$, $E\cdot A=A$, где $E$ - единичная матрица соответствующего порядка.
  9. $A\cdot O=O$, $O\cdot A=O$, где $O$ - нулевая матрица соответствующего размера.
  10. $\left(A^T \right)^T=A$
  11. $(A+B)^T=A^T+B^T$
  12. $(AB)^T=B^T\cdot A^T$
  13. $\left(\alpha A \right)^T=\alpha A^T$

В следующей части будет рассмотрена операция возведения матрицы в целую неотрицательную степень, а также решены примеры, в которых потребуется выполнение нескольких операций над матрицами.

В данной теме рассмотрим понятие матрицы, а также виды матриц. Так как в данной теме немало терминов, то я добавлю краткое содержание, чтобы ориентироваться в материале было проще.

Определение матрицы и её элемента. Обозначения.

Матрица - это таблица из $m$ строк и $n$ столбцов. Элементами матрицы могут быть объекты совершенно разнообразной природы: числа, переменные или, к примеру, иные матрицы. Например, матрица $\left(\begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right)$ содержит 3 строки и 2 столбца; элементами её являются целые числа. Матрица $\left(\begin{array} {cccc} a & a^9+2 & 9 & \sin x \\ -9 & 3t^2-4 & u-t & 8\end{array} \right)$ содержит 2 строки и 4 столбца.

Разные способы записи матриц: показать\скрыть

Матрица может быть записана не только в круглых, но и в квадратных или двойных прямых скобках. Т.е., указанные ниже записи означают одну и ту же матрицу:

$$ \left(\begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right);\;\; \left[ \begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right]; \;\; \left \Vert \begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right \Vert $$

Произведение $m\times n$ называют размером матрицы . Например, если матрица содержит 5 строк и 3 столбца, то говорят о матрице размера $5\times 3$. Матрица $\left(\begin{array}{cc} 5 & 3\\0 & -87\\8 & 0\end{array}\right)$ имеет размер $3 \times 2$.

Обычно матрицы обозначаются большими буквами латинского алфавита: $A$, $B$, $C$ и так далее. Например, $B=\left(\begin{array} {ccc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right)$. Нумерация строк идёт сверху вниз; столбцов - слева направо. Например, первая строка матрицы $B$ содержит элементы 5 и 3, а второй столбец содержит элементы 3, -87, 0.

Элементы матриц обычно обозначаются маленькими буквами. Например, элементы матрицы $A$ обозначаются $a_{ij}$. Двойной индекс $ij$ содержит информацию о положении элемента в матрице. Число $i$ - это номер строки, а число $j$ - номер столбца, на пересечении которых находится элемент $a_{ij}$. Например, на пересечении второй строки и пятого столбца матрицы $A=\left(\begin{array} {cccccc} 51 & 37 & -9 & 0 & 9 & 97 \\ 1 & 2 & 3 & 41 & 59 & 6 \\ -17 & -15 & -13 & -11 & -8 & -5 \\ 52 & 31 & -4 & -1 & 17 & 90 \end{array} \right)$ расположен элемент $a_{25}=59$:

Точно так же на пересечении первой строки и первого столбца имеем элемент $a_{11}=51$; на пересечении третьей строки и второго столбца - элемент $a_{32}=-15$ и так далее. Замечу, что запись $a_{32}$ читается как "а три два", но не "а тридцать два".

Для сокращённого обозначения матрицы $A$, размер которой равен $m\times n$, используется запись $A_{m\times n}$. Можно записать и несколько более развёрнуто:

$$ A_{m\times n}=(a_{ij}) $$

где запись $(a_{ij})$ означает обозначение элементов матрицы $A$. В полностью развёрнутом виде матрицу $A_{m\times n}=(a_{ij})$ можно записать так:

$$ A_{m\times n}=\left(\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \end{array} \right) $$

Введём еще один термин - равные матрицы .

Две матрицы одинакового размера $A_{m\times n}=(a_{ij})$ и $B_{m\times n}=(b_{ij})$ называются равными , если их соответствующие элементы равны, т.е. $a_{ij}=b_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Пояснение к записи $i=\overline{1,m}$: показать\скрыть

Запись "$i=\overline{1,m}$" означает, что параметр $i$ изменяется от 1 до m. Например, запись $i=\overline{1,5}$ говорит о том, что параметр $i$ принимает значения 1, 2, 3, 4, 5.

Итак, для равенства матриц требуется выполнение двух условий: совпадение размеров и равенство соответствующих элементов. Например, матрица $A=\left(\begin{array}{cc} 5 & 3\\0 & -87\\8 & 0\end{array}\right)$ не равна матрице $B=\left(\begin{array}{cc} 8 & -9\\0 & -87 \end{array}\right)$, поскольку матрица $A$ имеет размер $3\times 2$, а размер матрицы $B$ составляет $2\times 2$. Также матрица $A$ не равна матрице $C=\left(\begin{array}{cc} 5 & 3\\98 & -87\\8 & 0\end{array}\right)$, поскольку $a_{21}\neq c_{21}$ (т.е. $0\neq 98$). А вот для матрицы $F=\left(\begin{array}{cc} 5 & 3\\0 & -87\\8 & 0\end{array}\right)$ можно смело записать $A=F$ поскольку и размеры, и соответствующие элементы матриц $A$ и $F$ совпадают.

Пример №1

Определить размер матрицы $A=\left(\begin{array} {ccc} -1 & -2 & 1 \\ 5 & 9 & -8 \\ -6 & 8 & 23 \\ 11 & -12 & -5 \\ 4 & 0 & -10 \\ \end{array} \right)$. Указать, чему равны элементы $a_{12}$, $a_{33}$, $a_{43}$.

Данная матрица содержит 5 строк и 3 столбца, поэтому размер её $5\times 3$. Для этой матрицы можно использовать также обозначение $A_{5\times 3}$.

Элемент $a_{12}$ находится на пересечении первой строки и второго столбца, поэтому $a_{12}=-2$. Элемент $a_{33}$ находится на пересечении третьей строки и третьего столбца, поэтому $a_{33}=23$. Элемент $a_{43}$ находится на пересечении четвертой строки и третьего столбца, поэтому $a_{43}=-5$.

Ответ : $a_{12}=-2$, $a_{33}=23$, $a_{43}=-5$.

Виды матриц в зависимости от их размера. Главная и побочная диагонали. След матрицы.

Пусть задана некая матрица $A_{m\times n}$. Если $m=1$ (матрица состоит из одной строки), то заданную матрицу называют матрица-строка . Если же $n=1$ (матрица состоит из одного столбца), то такую матрицу называют матрица-столбец . Например, $\left(\begin{array} {ccccc} -1 & -2 & 0 & -9 & 8 \end{array} \right)$ - матрица-строка, а $\left(\begin{array} {c} -1 \\ 5 \\ 6 \end{array} \right)$ - матрица-столбец.

Если для матрицы $A_{m\times n}$ верно условие $m\neq n$ (т.е. количество строк не равно количеству столбцов), то часто говорят, что $A$ - прямоугольная матрица. Например, матрица $\left(\begin{array} {cccc} -1 & -2 & 0 & 9 \\ 5 & 9 & 5 & 1 \end{array} \right)$ имеет размер $2\times 4$, т.е. содержит 2 строки и 4 столбца. Так как количество строк не равно количеству столбцов, то эта матрица является прямоугольной.

Если для матрицы $A_{m\times n}$ верно условие $m=n$ (т.е. количество строк равно количеству столбцов), то говорят, что $A$ - квадратная матрица порядка $n$. Например, $\left(\begin{array} {cc} -1 & -2 \\ 5 & 9 \end{array} \right)$ - квадратная матрица второго порядка; $\left(\begin{array} {ccc} -1 & -2 & 9 \\ 5 & 9 & 8 \\ 1 & 0 & 4 \end{array} \right)$ - квадратная матрица третьего порядка. В общем виде квадратную матрицу $A_{n\times n}$ можно записать так:

$$ A_{n\times n}=\left(\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{array} \right) $$

Говорят, что элементы $a_{11}$, $a_{22}$, $\ldots$, $a_{nn}$ находятся на главной диагонали матрицы $A_{n\times n}$. Эти элементы называются главными диагональными элементами (или просто диагональными элементами). Элементы $a_{1n}$, $a_{2 \; n-1}$, $\ldots$, $a_{n1}$ находятся на побочной (второстепенной) диагонали ; их называют побочными диагональными элементами . Например, для матрицы $C=\left(\begin{array}{cccc}2&-2&9&1\\5&9&8& 0\\1& 0 & 4 & -7 \\ -4 & -9 & 5 & 6\end{array}\right)$ имеем:

Элементы $c_{11}=2$, $c_{22}=9$, $c_{33}=4$, $c_{44}=6$ являются главными диагональными элементами; элементы $c_{14}=1$, $c_{23}=8$, $c_{32}=0$, $c_{41}=-4$ - побочные диагональные элементы.

Сумма главных диагональных элементов называется следом матрицы и обозначается $\Tr A$ (или $\Sp A$):

$$ \Tr A=a_{11}+a_{22}+\ldots+a_{nn} $$

Например, для матрицы $C=\left(\begin{array} {cccc} 2 & -2 & 9 & 1\\5 & 9 & 8 & 0\\1 & 0 & 4 & -7\\-4 & -9 & 5 & 6 \end{array}\right)$ имеем:

$$ \Tr C=2+9+4+6=21. $$

Понятие диагональных элементов используется также и для неквадратных матриц. Например, для матрицы $B=\left(\begin{array} {ccccc} 2 & -2 & 9 & 1 & 7 \\ 5 & -9 & 8 & 0 & -6 \\ 1 & 0 & 4 & -7 & -6 \end{array} \right)$ главными диагональными элементами будут $b_{11}=2$, $b_{22}=-9$, $b_{33}=4$.

Виды матриц в зависимости от значений их элементов.

Если все элементы матрицы $A_{m\times n}$ равны нулю, то такая матрица называется нулевой и обозначается обычно буквой $O$. Например, $\left(\begin{array} {cc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right)$, $\left(\begin{array} {ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)$ - нулевые матрицы.

Пусть матрица $A_{m\times n}$ имеет такой вид:

Тогда данную матрицу называют трапециевидной . Она может и не содержать нулевых строк, но уж если они есть, то располагаются в низу матрицы. В более общем виде трапециевидную матрицу можно записать так:

Повторюсь, наличие нулевых строк в конце не является обязательным. Т.е. формально можно выделить такие условия для трапециевидной матрицы:

  1. Все элементы, расположенные ниже главной диагонали, равны нулю.
  2. Все элементы от $a_{11}$ до $a_{rr}$, лежащие на главной диагонали, не равны нулю: $a_{11}\neq 0, \; a_{22}\neq 0, \ldots, a_{rr}\neq 0$.
  3. Либо все элементы последних $m-r$ строк равны нулю, либо $m=r$ (т.е. нулевых строк нету вообще).

Примеры трапециевидных матриц:

Перейдём к следующему определению. Матрицу $A_{m\times n}$ называют ступенчатой , если она удовлетворяет таким условиям:


Например, ступенчатыми матрицами будут:

Для сравнения, матрица $\left(\begin{array} {cccc} 2 & -2 & 0 & 1\\0 & 0 & 8 & 7\\0 & 0 & 4 & -7\\0 & 0 & 0 & 0 \end{array}\right)$ не является ступенчатой, поскольку у третьей строки нулевая часть такая же, как и у второй строки. Т.е., нарушается принцип "чем ниже строка - тем больше нулевая часть". Добавлю, что трапециевидная матрица есть частный случай ступенчатой матрицы.

Перейдём к следующему определению. Если все элементы квадратной матрицы, расположенные под главной диагональю, равны нулю, то такую матрицу называют верхней треугольной матрицей . Например, $\left(\begin{array} {cccc} 2 & -2 & 9 & 1 \\ 0 & 9 & 8 & 0 \\ 0 & 0 & 4 & -7 \\ 0 & 0 & 0 & 6 \end{array} \right)$ - верхняя треугольная матрица. Заметьте, что в определении верхней треугольной матрицы ничего не сказано про значения элементов, расположенных над главной диагональю или на главной диагонали. Они могут быть нулевыми или нет, - это несущественно. Например, $\left(\begin{array} {ccc} 0 & 0 & 9 \\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array} \right)$ - тоже верхняя треугольная матрица.

Если все элементы квадратной матрицы, расположенные над главной диагональю, равны нулю, то такую матрицу называют нижней треугольной матрицей . Например, $\left(\begin{array} {cccc} 3 & 0 & 0 & 0 \\ -5 & 1 & 0 & 0 \\ 8 & 2 & 1 & 0 \\ 5 & 4 & 0 & 6 \end{array} \right)$ - нижняя треугольная матрица. Заметьте, что в определении нижней треугольной матрицы ничего не сказано про значения элементов, расположенных под или на главной диагонали. Они могут быть нулевыми или нет, - это неважно. Например, $\left(\begin{array} {ccc} -5 & 0 & 0 \\ 0 & 0 & 0\\ 0 & 0 & 9 \end{array} \right)$ и $\left(\begin{array} {ccc} 0 & 0 & 0 \\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array} \right)$ - тоже нижние треугольные матрицы.

Квадратная матрица называется диагональной , если все элементы этой матрицы, не лежащие на главной диагонали, равны нулю. Пример: $\left(\begin{array} {cccc} 3 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 \end{array} \right)$. Элементы на главной диагонали могут быть любыми (равными нулю или нет), - это несущественно.

Диагональная матрица называется единичной , если все элементы этой матрицы, расположенные на главной диагонали, равны 1. Например, $\left(\begin{array} {cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$ - единичная матрица четвёртого порядка; $\left(\begin{array} {cc} 1 & 0 \\ 0 & 1 \end{array}\right)$ - единичная матрица второго порядка.