Какие бывают каналы по способу передачи сигнала. Шпаргалка: Каналы связи. Каналы связи характеризуются


КАНАЛЫ СВЯЗИ


1. Классификация ихарактеристики канала связи

Каналсвязи –это совокупность средств, предназначенных для передачи сигналов (сообщений).

Для анализаинформационных процессов в канале связи можно использовать его обобщеннуюсхему, приведенную на рис. 1.


На рис. 1приняты следующие обозначения: X, Y, Z, W – сигналы, сообщения; f –помеха;ЛС – линия связи; ИИ, ПИ – источник и приемник информации;П – преобразователи (кодирование, модуляция, декодирование, демодуляция).

Существуютразличные типы каналов, которые можно классифицировать по различным признакам:

1. По типу линий связи: проводные; кабельные;оптико-волоконные;

линииэлектропередачи; радиоканалы и т.д.

2. Похарактеру сигналов: непрерывные; дискретные; дискретно-непрерывные(сигналы на входе системы дискретные, а на выходе непрерывные, и наоборот).

3. Попомехозащищенности: каналы без помех; с помехами.

Каналысвязи характеризуются:

1. Емкостьканала определяется как произведениевремени использованияканала Tк, ширины спектра частот, пропускаемых каналоми динамического диапазона., которыйхарактеризует способность канала передавать различные уровни сигналов


Vк= Tк Fк Dк. (1)

Условиесогласования сигнала с каналом:

Vc £ Vk; T c £ Tk; F c £ Fk; Vc £ Vk; Dc £ Dk.

2.Скоростьпередачи информации – среднее количество информации, передаваемое вединицу времени.

3. Пропускная способностьканала связи – наибольшая теоретически достижимая скорость передачи информациипри условии, что погрешность не превосходит заданной величины.

4. Избыточность– обеспечивает достоверность передаваемой информации (R = 0¸1).

Одной иззадач теории информации является определение зависимости скорости передачиинформации и пропускной способности канала связи от параметров канала ихарактеристик сигналов и помех.

Канал связи образно можно сравнивать сдорогами. Узкие дороги – малая пропускная способность, но дешево. Широкиедороги – хорошая пропускная способность, но дорого. Пропускная способностьопределяется самым «узким» местом.

Скоростьпередачи данных в значительной мере зависит от передающей среды в каналахсвязи, в качестве которых используются различные типы линий связи.

Проводные:

1. Проводные – витая пара (что частично подавляет электромагнитное излучение другихисточников). Скорость передачи до 1 Мбит/с. Используется в телефонных сетях идля передачи данных.

2. Коаксиальныйкабель. Скорость передачи 10–100 Мбит/с – используется в локальных сетях,кабельном телевидении и т.д.

3.Оптико-волоконная. Скорость передачи 1 Гбит/с.

В средах 1–3 затухание в дБ линейнозависит от расстояния, т.е. мощность падает по экспоненте. Поэтому черезопределенное расстояние необходимо ставить регенераторы (усилители).

Радиолинии:

1. Радиоканал. Скорость передачи 100–400Кбит/с. Использует радиочастоты до 1000 МГц. До 30 МГц за счет отражения отионосферы возможно распространение электромагнитных волн за пределы прямойвидимости. Но этот диапазон сильно зашумлен (например, любительской радиосвязью).От 30 до 1000 МГц – ионосфера прозрачна и необходима прямая видимость. Антенныустанавливаются на высоте (иногда устанавливаются регенераторы). Используются врадио и телевидении.

2. Микроволновые линии. Скорости передачи до 1Гбит/с. Используют радиочастоты выше 1000 МГц. При этом необходима прямая видимостьи остронаправленные параболические антенны. Расстояние между регенераторами 10–200 км.Используются для телефонной связи, телевидения и передачи данных.

3. Спутниковаясвязь . Используются микроволновые частоты, а спутник служит регенератором(причем для многих станций). Характеристики те же, что у микроволновых линий.



2. Пропускнаяспособность дискретного канала связи

Дискретныйканал представляет собой совокупность средств, предназначенных для передачидискретных сигналов .

Пропускнаяспособность канала связи – наибольшая теоретически достижимая скоростьпередачи информации при условии, что погрешность не превосходит заданнойвеличины.Скорость передачи информации – среднее количествоинформации, передаваемое в единицу времени. Определим выражения для расчетаскорости передачи информации и пропускной способности дискретного канала связи.

При передачекаждого символа в среднем по каналу связи проходит количество информации,определяемое по формуле

I(Y, X) = I (X, Y) = H(X) – H (X/Y) = H(Y) – H (Y/X) , (2)

где: I (Y,X) – взаимная информация, т.е.количество информации, содержащееся вY относительно X ;H(X) – энтропия источника сообщений; H(X/Y) – условная энтропия, определяющая потерю информации на один символ,связанную с наличием помех и искажений.

При передачесообщения XT длительности T, состоящего из n элементарных символов, среднее количество передаваемой информации с учетомсимметрии взаимного количества информации равно:

I(YT , XT)= H(XT) – H(XT/YT) = H(YT) –H(YT/XT) = n . (4)

Скоростьпередачи информации зависит от статистических свойств источника, методакодирования и свойств канала.

Пропускнаяспособность дискретного канала связи

Максимально-возможноезначение, т.е. максимум функционала ищется на всем множестве функцийраспределения вероятности p(x) .

Пропускнаяспособность зависит от технических характеристик канала (быстродействияаппаратуры, вида модуляции, уровня помех и искажений и т.д.). Единицами измеренияпропускной способности канала являются: , , , .

2.1 Дискретныйканал связи без помех

Если помехи вканале связи отсутствуют, то входные и выходные сигналы канала связаныоднозначной, функциональной зависимостью.

При этомусловная энтропия равна нулю, а безусловные энтропии источника и приемникаравны, т.е. среднее количество информации в принятом символе относительнопереданного равно


I(X, Y) = H(X) = H(Y); H (X/Y) = 0.

Если ХТ – количество символов за время T , то скорость передачи информации длядискретного канала связи без помех равна

где V = 1//> – средняя скоростьпередачи одного символа.

Пропускнаяспособность для дискретного канала связи без помех

Т.к. максимальная энтропия соответствуетдля равновероятных символов, то пропускная способность для равномерногораспределения и статистической независимости передаваемых символов равна:

Перваятеорема Шеннона для канала:Если поток информации, вырабатываемыйисточником, достаточно близок к пропускной способности канала связи, т.е.

/> , где /> - сколь угодно малаявеличина,

товсегда можно найти такой способ кодирования, который обеспечит передачу всехсообщений источника, причем скорость передачи информации будет весьма близкой кпропускной способности канала.

Теорема неотвечает на вопрос, каким образом осуществлять кодирование.

Пример 1. Источник вырабатывает 3сообщения с вероятностями:

p 1 = 0,1; p 2 = 0,2 и p 3 = 0,7.

Сообщениянезависимы и передаются равномерным двоичным кодом (m = 2 ) с длительностьюсимволов, равной 1 мс. Определить скорость передачи информации по каналу связибез помех.

Решение: Энтропия источника равна

/> [бит/с].

Для передачи 3 сообщений равномерным кодомнеобходимо два разряда, при этом длительность кодовой комбинации равна 2t.

Средняяскорость передачи сигнала

V =1/2 t= 500 .

Скоростьпередачи информации

C = vH = 500 × 1,16 = 580 [бит/с].

2.2 Дискретныйканал связи с помехами

Мы будемрассматривать дискретные каналы связи без памяти.

Каналомбез памяти называется канал, в котором на каждый передаваемый символсигнала, помехи воздействуют, не зависимо от того, какие сигналы передавалисьранее. То есть помехи не создают дополнительные коррелятивные связи междусимволами. Название «без памяти» означает, что при очередной передаче канал какбы не помнит результатов предыдущих передач.

При наличиипомехи среднее количество информации в принятом символе сообщении Y , относительнопереданного – X равно:

/> .

Для символасообщения XT длительностиT , состоящегоиз n элементарных символовсреднее количество информации в принятом символе сообщении – YT относительно переданного– XT равно:

I(YT,XT) = H(XT) – H(XT/YT) = H(YT) –H(YT/XT) = n = 2320 бит/с

Пропускная способность непрерывного канала спомехами определяется по формуле


=2322бит/с.

Докажем, чтоинформационная емкость непрерывного канала без памяти с аддитивным гауссовымшумом при ограничении на пиковую мощность не больше информационной емкоститакого же канала при той же величине ограничения на среднюю мощность.

Математическоеожидание для симметричного равномерного распределения/>

Среднийквадрат для симметричного равномерного распределения

Дисперсия длясимметричного равномерного распределения/>

При этом, дляравномерно-распределенного процесса />.

Дифференциальнаяэнтропия сигнала с равномерным распределением


Разностьдифференциальных энтропий нормального и равномерно распределенного процесса независит от величины дисперсии

/> = 0,3 бит/отсч.

Такимобразом, пропускная способность и емкость канала связи для процесса снормальным распределением выше, чем для равномерного.

Определимемкость (объем) канала связи

Vk = TkCk = 10 × 60 × 2322 = 1,3932 Мбит.

Определимколичество информации, которое может быть передано за 10 минут работы канала

/>10× 60× 2322=1,3932 Мбит.


Задачи

1. В каналсвязи передаются сообщения, составленные из алфавита x 1, x 2 и x 3 с вероятностями p (x 1 )=0,2; p (x 2) =0,3 и p (x 3 )=0,5 .

Канальнаяматрица имеет вид:

/> при этом />.

Вычислить:

1. Энтропию источника информации H (X ) и приемника H (Y ) .

2. Общую иусловную энтропию H (Y / X ).

3. Потериинформации в канале при передаче к символов (к = 100 ).

4.Количествопринятой информации при передаче к символов.

5. Скоростьпередачи информации, если время передачи одного символаt = 0,01 мс .

2. По каналусвязи передаются символы алфавита x 1 , x 2 , x 3 и x 4 с вероятностями />. Определить количествоинформации принятой при передаче 300 символов, если влияние помех описываетсяканальной матрицей:

3. Определитьпотери информации в канале связи при передаче равновероятных символов алфавита,если канальная матрица имеет вид


Определитьскорость передачи информации, если время передачи одного символа t = 0,001 сек.

4.Определитьпотери информации при передаче 1000 символов алфавита источникаx 1 , x 2 и x 3 с вероятностями p /> =0,2; p /> =0,1 и p (/>)=0,7 , если влияние помех вканале описывается канальной матрицей:

5. Определитьколичество принятой информации при передаче 600 символов, если вероятностипоявления символов на выходе источника X равны: /> а влияние помех при передачеописывается канальной матрицей:

6. В каналсвязи передаются сообщения, состоящие из символов алфавита />, при этом вероятностипоявления символов алфавита равны: />

Канал связиописан следующей канальной матрицей:


Определитьскорость передачи информации, если время передачи одного символа /> мс .

7.Поканалу связи передаются сигналы x 1 , x 2 и x 3 с вероятностями p /> =0,2; p /> =0,1 и p (/>)=0,7. Влияние помех в каналеописывается канальной матрицей:

Определитьобщую условную энтропию и долю потерь информации, которая приходится на сигнал x 1 (частную условнуюэнтропию).

8. По каналусвязи передаются символы алфавита x 1 , x 2 , x 3 и x 4 с вероятностями />.

Помехи вканале заданы канальной матрицей

Определитьпропускную способность канала связи, если время передачи одного символа t = 0,01 сек.

Определитьколичество принятой информации при передаче 500 символов, если вероятностипоявления символов на входе приемника Y равны: />, а влияние помех припередаче описывается канальной матрицей:




Списоклитературы

1 Гринченко А.Г. Теорияинформации и кодирование: Учебн. пособие. – Харьков: ХПУ, 2000.

2 Куприянов М.С., Матюшкин Б.Д.– Цифровая обработка сигналов: процессоры, алгоритмы, средства проектирования. –СПб: Политехника, 1999.

3 Хемминг Р.В. Цифровыефильтры: Пер. с англ. / Под ред. А.М. Трахтмана. – М.: Сов. радио, 1980.

4 Сиберт У.М. Цепи,сигналы, системы: В 2-х ч. / Пер. с англ. – М.: Мир, 1988.

5 Скляр Б. Цифровая связь.Теоретические основы и практическое применение: Пер. с англ. – М.: Издательскийдом «Вильямс», 2003. – 1104 с.

6 Kalinin, V.I. Microwave & TelecommunicationTechnology, 2007. CriMiCo 2007. 17th International Crimean ConferenceVolume,Issue, 10–14 Sept. 2007 Page(s):233 – 234

7 ФеерК. Беспроводная цифровая связь. Методы модуляции и расширения спектра. Пер. с англ. –М.: Радио и связь, 2000.

8 Игнатов В.А. Теория информации ипередачи сигналов: Учебник для вузов. – 2-е изд., перераб. и доп. – М.: Радио исвязь, 1991;

Основной функцией информационной системы является хранение информации и ее перенос в пространстве. Совокупность технических средств для передачи сообщений от источника к потребителю называется системой связи. Этими средствами являются передающее устройство, линия связи и приемное устройство. Иногда в понятие система связи включаются источник и потребитель сообщений.

Структурная схема простейшей системы связи представлена на рисунке 2. Здесь исходным пунктом является источник сообщения. Источник может вырабатывать непрерывное или дискретное сообщения. Источником сообщений и получателем в одних системах связи может быть человек, в других - различного рода устройства (автомат, вычислительная машина и т. п.). Передача сообщений на расстояние осуществляется с помощью какого-либо материального носителя (бумага, магнитная лента и т.п.) или физического процесса (звуковых или электромагнитных волн, тока и.т.п.).

Источник информации или сообщения - это физический объект, система или явление, формирующие передаваемое сообщение.

Сообщение - это значение или изменение некоторой физической величины, отражающие состояние объекта (системы или явления). Как правило, первичные сообщения - речь, музыка, изображения, измерения параметров окружающей среды и т.д., представляют собой функции времени - f (t) или других аргументов - f (x, y, z) неэлектрической природы (акустическое давление, температура, распределение яркости на некоторой плоскости и т.п.).

Рис.2. Структурная схема системы связи.

Каждое i - ое сообщение источника есть произвольная последовательность элементов алфавита
(
,
, ...,) длиной
m , где верхний индекс у элементов есть номер последовательности, а нижний индекс означает только место буквы в сообщении, но не ее вид.

При m = 1 сообщением является одна буква, то есть такое сообщение есть элементарное сообщение . В общем случае при m > 1 одна и та же буква может появиться в сообщении несколько раз. Общим свойством элементарного сообщения является его неделимость на более мелкие сообщения.

Конечное множество сообщений X c заданным на нем распределением вероятностей p ( x ) называется дискретным ансамблем сообщений и обозначается { X , p ( x )}.

Устройство, преобразующее сообщение в сигнал, называют передающим устройством, а устройство, преобразующее принятый сигнал в сообщение, - приемным устройством.

С помощью преобразователя в передающем устройстве сообщение а , которое может иметь любую физическую природу (изображение, звуковое колебание и т.п.), преобразуется в первичный электрический сигнал b (t ). В телефонии, например, эта операция сводится к превращению звукового давления в пропорционально изменяющийся электрический ток микрофона. В телеграфии сначала производится кодирование, в результате которого последовательность элементов сообщения (букв) заменяется последовательностью кодовых символов (0, 1 или точка, тире), которая затем с помощью телеграфного аппарата преобразуется в последовательность электрических импульсов постоянного тока.

В передатчике первичный сигнал b (t ) (обычно низкочастотный) превращается во вторичный (высокочастотный) сигнал u (t ), пригодный для передачи по используемому каналу. Это осуществляется посредством модуляции.

Преобразование сообщения в сигнал должно быть обратимым. В этом случае по выходному сигналу можно, в принципе, восстановить входной первичный сигнал, т. е. получить всю информацию, содержащуюся в переданном сообщении. В противном случае часть информации будет потеряна при передаче, даже если сигнал доходит до приемного устройства без искажений.

Физический процесс, отображающий (несущий) передаваемое сообщение, называется сигналом.

Сигнал – это материально-энергетическая форма представления информации. Другими словами, сигнал – это переносчик информации, один или несколько параметров которого, изменяясь, отображают сообщение.

Цепь “информация – сообщение – сигнал” – это пример процесса обработки, необходимой там, где находится источник информации. На стороне потребителя информации осуществляется обработка в обратном порядке: “сигнал – сообщение – информация”.

Любое преобразование сообщения в определенный сигнал путем установления между ними однозначного соответствия называют в широком смысле кодированием.

Кодирование может включать в себя процессы преобразования и дискретизации непрерывных сообщений (аналого-цифровое преобразование), модуляцию (манипуляцию в цифровых системах связи) и непосредственно кодирование в узком смысле слова. Обратная операция называется декодированием.

Линией связи называется среда, используемая для передачи сигналов от передатчика приемнику.

В системах электрической связи - это кабель или волновод, в системах радиосвязи - область пространства, в котором распространяются электромагнитные волны от передатчика к приемнику. При передаче сигнал может искажаться и на него могут накладываться помехи n (t ).

Приемное устройство обрабатывает принятое колебание z (t )=u (t )+n (t ), представляющее собой сумму пришедшего искаженного сигнала u (t ) и помехи n (t ), и восстанавливает по нему сообщение , которое с некоторой погрешностью отражает переданное сообщение a . Другими словами, приемник должен на основе анализа колебания z (t ) определить, какое из возможных сообщений передавалось. Поэтому приемное устройство является одним из наиболее ответственных и сложных элементов системы связи.

Каналом связи называется совокупность средств, обеспечивающих передачу сигнала от некоторой точки А системы до точки В (рис. 3).

Точки А и В могут быть выбраны произвольно, лишь бы между ними проходил сигнал. Часть системы связи, расположенная до точки А , является источником сигнала для этого канала.

Рис. 3. Канал связи.

Канал как источник помех, оказывает на передаваемый сигнал некоторое влияние. Задачами приемника является выделение из зашумленного сигнала переданного сообщения и отправка его потребителю.

Классифицируют каналы связи по различным признакам, в том числе по математическому описанию (непрерывные и дискретные каналы, непрерывного и дискретного времени).

Если сигналы, поступающие на вход канала и принимаемые с его выхода, являются дискретными по состояниям, то канал называется дискретным. Если же эти сигналы являются непрерывными, то канал называется непрерывным. Встречаются также дискретно-непрерывные и непрерывно-дискретные каналы, на вход которых поступают дискретные сигналы, а с выхода снимаются непрерывные, или наоборот. Из сказанного видно, что канал может быть дискретным или непрерывным независимо от характера передаваемых сообщений. Более того, в одной и той же системе связи можно выделить как дискретный, так и непрерывный каналы. Все зависит от того, каким образом выбраны точки А и В входа и выхода канала.

В данном пособии будем рассматривать дискретный канал связи .

Если вредным действием помех в канале можно пренебречь, то для анализа используется модель в виде идеализированного канала, называемого каналом без помех . В идеальном канале каждому сообщению на входе однозначно соответствует определенное соотношение на выходе и наоборот. Когда требования к достоверности велики и пренебрежение неоднозначностью связи между сообщениями x и y недопустимо, используется более сложная модель – канал с помехами.

Простейший класс моделей каналов образуют дискретные каналы без памяти; они определяются следующим образом. Входом является последовательность букв (элементов) из конечного алфавита, пусть
,
выходом – последовательность букв того же самого или другого алфавита, скажем
. Наконец, каждая буква выходной последовательности зависит статистически только от буквы, стоящей на соответствующей позиции во входной последовательности, и определяется заданной условной вероятностью
, определенной для всех буквалфавита на входе и всех буквна выходе. Примером может служить двоичный симметричный канал (рис.4), который представляет собой дискретный канал без памяти с двоичными последовательностями на входе и выходе, в котором каждый символ последовательности на входе с некоторой вероятностью 1-q воспроизводится на выходе канала правильно и с вероятностью q изменяется шумом на противоположный символ. В общем случае, в дискретном канале без памяти переходные вероятности исчерпывают собой все известные сведения о том, как сигнал на входе, взаимодействуя с шумом, образует сигнал на выходе.

Рис. 4. Двоичный симметричный канал.

Намного более широкий класс каналов – каналов с памятью, образуют каналы, в которых сигналами на входе являются последовательности букв из конечных алфавитов, но в которых каждая буква на выходе может статистически зависеть не только от соответствующей буквы входной последовательности.

Для того чтобы передавать различную информацию, изначально должна быть создана среда ее распространения, которая представляет собой совокупность линий, или же каналов передачи данных со специализированным приемо-передающим оборудованием. Линии, или же каналы связи, представляют собой связующее звено в любой современной системе передачи данных, и с точки зрения организации подразделяются на два основных типа - это линии и каналы.

Линия связи представляет собой множество кабелей или же проводов, при помощи которых объединяются пункты связи между собой, а абоненты объединяются с ближайшими узлами. При этом каналы связи могут быть созданы самым разным образом в зависимости от особенностей определенного объекта и схемы.

Какими они могут быть?

Они могут представлять собой физические проводные каналы, которые основываются на использовании специализированных кабелей, а также могут быть волновыми. Волновые каналы связи формируются для организации в определенной среде всевозможных видов радиосвязи с использованием антенн, а также выделенной полосы частот. При этом как оптические, так и электрические каналы связи также подразделяются на два основных типа - это проводные и беспроводные. В связи с этим оптический и электрический сигнал может передаваться через провода, эфир, а также множество других способов.

В телефонной сети после того как будет набран номер, канал образуется на то время, пока будет присутствовать соединение, к примеру, между двумя абонентами, а также пока будет поддерживаться сеанс голосовой связи. Проводные каналы связи формируются посредством использования специализированного оборудования уплотнения, при помощи которого можно в течение длительного или же короткого времени передавать через линии связи информацию, которая подается из огромнейшего количества различных источников. Такие линии включают в себя одну или же одновременно несколько пар кабелей и предоставляют возможность передачи данных на достаточно большое расстояние. Вне зависимости от того, какие виды каналов связи рассматриваются, в радиосвязи они представляют собой среду передачи данных, которая организуется для какого-то определенного или же одновременно нескольких сеансов связи. Если речь идет именно о нескольких сеансах, то в таком случае может применяться так называемое частотное распределение.

Какие есть виды?

Точно так же, как и в современных средствах связи, существуют различные виды каналов связи:

  • Цифровые.
  • Аналоговые.
  • Аналогово-цифровые.

Цифровые

Данный вариант является на порядок более дорогостоящим по сравнению с аналоговыми. При помощи таких каналов достигается предельно высокое качество транслирования данных, а также появляется возможность внедрения различных механизмов, с помощью которых достигается абсолютная целостность каналов, высокая степень защищенности информации, а также использование целого ряда других сервисов. Для того чтобы обеспечить передачу аналоговой информации через технические каналы связи цифрового типа, эта информация первоначально преобразуется в цифровую.

В конце 80-х годов прошлого века появилась специализированная цифровая сеть с интеграцией услуг, более известная сегодня многим как ISDN. Предполагается, что такая сеть с течением времени сможет превратиться в глобальную цифровую магистраль, которая обеспечивает соединение офисных и домашних компьютеров, обеспечивая им достаточно большую скорость транслирования данных. Основные каналы связи данного типа могут быть:

  • Факс.
  • Телефон.
  • Устройства передачи данных.
  • Специализированное оборудование для проведения телеконференций.
  • И множество других.

В качестве конкуренции таким средствам могут выступать современные технологии, которые сегодня активно используются в сетях кабельного телевидения.

Другие разновидности

В зависимости от того, какая обеспечивается скорость передачи каналов связи, они подразделяются на:

  • Низкоскоростные. В данную категорию входят всевозможные телеграфные линии, которые отличаются чрезвычайно низкой (почти отсутствующей по нынешним меркам) скоростью передачи данных, которая достигает максимум 200 бит/с.
  • Среднескоростные. Здесь присутствуют аналоговые телефонные линии, обеспечивающие скорость передачи до 56000 бит/с.
  • Высокоскоростные или же, как их еще называют, широкополосные. Передача данных по каналам связи данного типа осуществляется на скорости более 56000 бит/с.

В зависимости от того, какие предусматриваются возможности организации направлений передачи данных, каналы связи могут подразделяться на следующие типы:

  • Симплексные. Организация каналов связи данного типа обеспечивает возможность транслирования данных только в каком-то определенном направлении.
  • Полудуплексные. Используя такие каналы, данные могут передаваться как в прямом, так и в обратном направлениях.
  • Дуплексные или же полнодуплексные. Используя такие каналы обратной связи, данные могут одновременно транслироваться в прямом и обратном направлениях.

Проводные

Проводные каналы связи включают в себя массу параллельных или же скрученных медных проводов, волоконно-оптических линий связи, а также специализированных коаксиальных кабелей. Если рассматривать, какие каналы связи используют кабеля, стоит выделить несколько основных:

  • Витая пара. Обеспечивает возможность передачи информации на скорости до 1 Мбит/с.
  • Коаксиальные кабели. К этой группе относятся кабели формата TV, включая как тонкий, так и толстый. В данном случае скорость передачи данных уже достигает 15 Мбит/с.
  • Оптоволоконные кабели. Наиболее современный и производительный вариант. Каналы связи передачи информации данного типа предусматривают скорость около 400 Мбит/с, что значительно превышает все остальные технологии.

Витая пара

Представляет собой изолированные проводники, которые между собой попарно свиваются для того, чтобы значительно снизить наводки между парами и проводниками. Стоит отметить, что на сегодняшний день существует семь категорий витых пар:

  • Первая и вторая применяются для того, чтобы обеспечить низкоскоростную передачу данных, причем первая представляет собой стандартный, хорошо известный всем телефонный провод.
  • Третья, четвертая и пятая категории используются для обеспечения скоростей передачи до 16, 25 и 155 Мбит/с, при этом разные категории предусматривают различную частоту.
  • Шестая и седьмая категории являются наиболее производительными. Речь идет о возможности передачи данных на скорости до 100 Гбит/с, что представляет собой самые производительные характеристики каналов связи.

Наиболее распространенной на сегодняшний день является третья категория. Ориентируясь на различные перспективные решения, касающиеся необходимости постоянно развивать пропускную способность сети, наиболее оптимальным будет использовать сети связи (каналы связи) пятой категории, которые обеспечивают скорость транслирования данных через стандартные телефонные линии.

Коаксиальный кабель

Специализированный медный проводник заключается внутрь цилиндрической экранирующей защитной оболочки, которая вьется из достаточно тонких жилок, а также является полностью изолированной от проводника при помощи диэлектрика. От стандартного телевизионного кабеля такой отличается тем, что в нем присутствует волновое сопротивление. Через такие информационные каналы связи данные могут передаваться на скорости до 300 Мбит/с.

Данный формат кабелей подразделяется на тонкий, который имеет толщину 5 мм, а также толстый - 10 мм. В современных ЛВС зачастую принято использовать тонкий кабель, так как он отличается предельной простотой в прокладывании и монтаже. Предельно высокая стоимость при непростой прокладке достаточно сильно ограничивают возможности использования таких кабелей в современных сетях передачи информации.

Сети кабельного телевидения

Такие сети основываются на применении специализированного коаксиального кабеля, аналоговый сигнал через который может транслироваться на расстояние до нескольких десятков километров. Типичная сеть кабельного телевидения отличается древовидной структурой, в которой основной узел получает сигналы со специализированного спутника или же через ВОЛС. На сегодняшний день активно используются такие сети, в которых используется волоконно-оптический кабель, при помощи которого обеспечивается возможность обслуживания больших территорий, а также транслирование более объемных данных, сохраняя при этом предельно высокое качество сигналов при отсутствии повторителей.

При симметричной архитектуре обратный и прямой сигналы транслируются при помощи единственного кабеля в разных диапазонах частот, и при этом с разными скоростями. Соответственно, обратный сигнал медленнее прямого. В любом случае, используя такие сети, можно обеспечить скорость передачи данных в несколько сотен раз больше по сравнению со стандартными телефонными линиями, в связи с чем последние уже давным-давно перестали использовать.

В организациях, в которых устанавливаются собственные кабельные сети, наиболее часто используются симметричные схемы, так как в данном случае как прямая, так и обратная передача данных осуществляется на одной скорости, которая составляет приблизительно 10 Мбит/с.

Особенности использования проводов

Количество проводов, которые могут использоваться для объединения домашних компьютеров и различной электроники, увеличивается с каждым годом. Согласно статистике, полученной в процессе исследований профессиональными специалистами, в 150-метровой квартире прокладывается приблизительно 3 км различных кабелей.

В 90-е годы прошлого века британская компания UnitedUtilities предложила довольно интересное решение данной проблемы при помощи собственной разработки под названием DigitalPowerLine, более известной сегодня по сокращению DPL. Компания предложила использовать стандартные силовые электросети в качестве среды для обеспечения высокоскоростного транслирования данных, осуществляя передачу пакетов информации или же голоса через обыкновенные электрические сети, напряжение которых составляло 120 или 220 В.

Наиболее успешной с этой точки зрения является израильская компания под названием Main.net, которая первой выпустила технологию PLC (PowerlineCommunications). При помощи данной технологии передача голоса или же данных осуществлялась со скоростью до 10 Мбит/с, при этом поток информации распределялся на несколько низкоскоростных, которые передавались на отдельных частотах, и в конечном итоге вновь объединялись в единый сигнал.

Использование технологии PLC на сегодняшний день является актуальным только в условиях транслирования данных на небольшой скорости, в связи с чем используется в домашней автоматике, различных бытовых устройствах и другом оборудовании. При помощи такой технологии достигается возможность выхода в интернет на скорости около 1 Мбит/с для тех приложений, которым требуется высокая скорость соединения.

При небольшом расстоянии между зданием и промежуточной приемопередающей точкой, которой служит трансформаторная подстанция, скорость транслирования данных может достигать 4.5 Мбит/с. Использование данной технологии активно осуществляется при формировании локальной сети в каком-нибудь жилом доме или же небольшом офисе, так как минимальная скорость передачи обеспечивает возможность покрытия расстояния до 300 метров. При помощи этой технологии обеспечивается возможность реализации различных услуг, связанных с дистанционным мониторингом, охраной объектов, а также управлением режимами объектов и их ресурсами, что входит в элементы интеллектуального дома.

Оптоволоконный кабель

Данный кабель составляется из специализированного кварцевого сердечника, диаметр которого составляет всего лишь 10 микронов. Этот сердечник окружается уникальной отражающей защитной оболочкой, внешний диаметр которой составляет около 200 микрон. Передача данных осуществляется посредством трансформации электрических сигналов в световые, используя, к примеру, какой-нибудь светодиод. Кодирование данных осуществляется посредством изменения интенсивности светового потока.

Осуществляя передачу данных, луч, который отражается от стенок волокна, в котором итоге поступает на приемный конец, имея при этом минимальное затухание. При помощи такого кабеля достигается предельно высокая степень защиты от воздействия со стороны каких-либо внешних электромагнитных полей, а также достигается достаточно высокая скорость передачи данных, которая может достигать 1000 Мбит/с.

Используя оптоволоконный кабель, есть возможность одновременной организации работы сразу нескольких сотен тысяч телефонных, видеотелефонных, а также телевизионных каналов. Если говорить о других преимуществах, присущих таким кабелям, стоит отметить следующие:

  • Предельно высокая сложность несанкционированного подключения.
  • Максимально высокая степень защиты от каких-либо возгораний.
  • Достаточно высокая скорость передачи данных.

Однако если говорить о том, какие недостатки имеют такие системы, стоит выделить то, что они являются довольно дорогостоящими и обуславливают необходимость в трансформации световых лазеров в электрические и наоборот. Использование таких кабелей в преимущественном большинстве случаев осуществляется в процессе прокладки магистральных линий связи, а уникальные свойства кабеля сделали его еще и достаточно распространенным среди провайдеров, обеспечивающих организацию сети интернет.

Коммутация

Помимо всего прочего, каналы связи могут быть коммутируемыми или же некоммутируемыми. Первые создаются только на определенное время, пока нужно передавать данные, в то время как некоммутируемые выделяются абоненту на конкретный промежуток времени, и не имеют никакой зависимости от того, в течение какого времени осуществлялась передача данных.

WiMAX

Такие линии, в отличие от традиционных технологий радиодоступа, могут функционировать также на отраженном сигнале, который не находится в прямой видимости той или иной базовой станции. Мнение экспертов сегодня однозначно сходится в том, что такие мобильные сети раскрывают для пользователей огромные перспективы по сравнению с фиксированным WiMAX, который является предназначенным для корпоративных заказчиков. В этом случае информация может транслироваться на достаточно большое расстояние (до 50 км), при этом характеристики каналов связи данного типа включают в себя скорость до 70 Мбит/с.

Спутниковые

Спутниковые системы предусматривают использование специализированных антенн СВЧ-диапазона частот, которые используются для приема радиосигналов от каких-либо наземных станций, и потом ретранслируют полученные сигналы обратно на другие наземные станции. Стоит отметить, что такие сети предусматривают использование трех основных видов спутников, располагающихся на средних или низких, а также геостационарных орбитах. В преимущественном большинстве случаев принято запускать спутники группами, так как, разносясь друг от друга, с их помощью обеспечивается охват всей поверхности нашей планеты.

Для организации передачи данных необходимо использовать линии и каналы связи , которые осуществляют коммуникацию между компьютерами, телефонами, телеграфами и другими средствами связи.

Передаваемая информация находится в физической среде, которая может состоять из различных типов кабелей и проводов, а также окружающего пространства.

Чем отличаются каналы связи от линий связи

Несмотря на то, что оба понятия часто отождествляются, они имеют некоторые различия, о которых нужно знать для построения корректной информационной коммуникации. По каналам связь передается в одну сторону или в две, если обмен происходит между приемником и передатчиком. Линии связи, в свою очередь, образовываются от соединения нескольких каналов, также в них может быть только один канал.

Существуют такие линии связи:

  • Проводные;

  • Кабельные;

  • Беспроводные.

Рассмотрим детальнее каждый тип линий и узнаем об их возможностях, достоинствах и недостатках.

Проводные (воздушные) линии связи

Эти линии могут использоваться для передачи телеграфного, телефонного или компьютерного сигнала. Они состоят из проводов, через которые и осуществляется обмен данными. Этот тип связи подходит для передачи цифровых и аналоговых сигналов, потому его популярность достаточно высокая.

К недостаткам такого подключения относится сравнительно невысокая скорость передачи сигнала и низкая степень защищенности от помех. Также возможно банальное самовольное подключение недобросовестных абонентов, что ведет к снижению качества передачи данных и финансовым потерям компаний-вещателей.

Кабельные линии связи

Структура кабеля может быть разной, но в основном все они состоят из групп проводников, которые обработаны надежной изоляцией.

Для обмена данными в компьютерных сетях используются такие типы кабелей:

  • Витая пара – состоит из двух проводов, изготовленных из меди, которые свиты друг с другом и покрыты неэкранированной или экранированной оболочкой. Такой способ соединения проводников помогает повысить помехоустойчивость, возможно, что в один кабель заключается сразу несколько витых пар проводов. Такое подключение самое дешевое и доступное, монтаж кабелей достаточно простой, что и приводит к несанкционированному подключению к сетям все тех же недобросовестных абонентов.

  • Коаксиальный кабель – состоит из центрального проводника, роль которого исполняет медный провод, и проводящего экрана, чаще всего в его качестве используется алюминиевая фольга или медная оплетка. Между основным проводником и экраном располагается изолирующий материал, внешняя часть экрана также покрыта изоляцией. Этот метод подключения более затратный и трудоемкий, потому несанкционированных подключений меньше. Для таких линий характерна хорошая защищенность от помех и высокая скорость передачи информации.

  • Оптоволоконный кабель – похож по своему строению с коаксиальным, но вместо медного проводника в этом кабеле используется тонкое стекловолокно, роль внутренней изоляции выполняет пластиковая или стеклянная оболочка, которая не позволяет свету выходить, она образовывает полное внутренне отражение. Примечательно, что через волокно сигналы могут проходить исключительно в одну сторону, именно по этой причине в кабелях они расположены попарно. Монтаж таких линий связи очень трудоемкий, сам кабель достаточно чувствительный к повреждениям, но при этом он обеспечивает высочайшую скорость передачи сигнала до 3 Гбит/с. При условии использования оптоволоконного кабеля на стороне передачи должен использоваться преобразователь электрического сигнала в световой, а на стороне приема – преобразователь светового сигнала в электрический.

Беспроводные каналы связи

Линии и каналы связи могут быть построены на работе беспроводных наземных или спутниковых радиоканалов. Радиорелейные каналы – это группа станций-ретрансляторов, которые располагаются в определенном порядке на определенном отдалении друг от друга. Они используются в сфере сотовой связи и для передачи других видов сигналов в рамках одного города или региона.

Спутниковая связь обеспечивается спутниками, которые располагаются на земной орбите и являются ретрансляторами. Сигнал от наземной передающей станции идет к спутнику, а от спутника он передается на наземную принимающую станцию.

Такой метод коммуникации позволяет обеспечивать связью жителей самых отдаленных частей планеты, поскольку спутники чаще всего запускаются не по одному, а группами. Все ретрансляторы располагаются на орбите в некотором отдалении друг от друга, потому вместе они могут охватить почти весь земной шар.

Примеры линий и каналов связи на выставке

Узнать, какие линии и каналы связи используют современные компании, можно на специализированной выставке, которая состоится в ЦВК «Экспоцентр».

Выставка будет посвящена новинкам в сфере ИТ. На мероприятии будут представлены последние технические решения для обеспечения коммуникации.

Характеристики

Используют следующие характеристики канала

Помехоустойчивость

Помехозащищённость A = 10 lg ⁡ P m i n s i g n a l P n o i s e {\displaystyle A=10\lg {P_{min~signal} \over P_{noise}}} . Где P m i n s i g n a l P n o i s e {\displaystyle {P_{min~signal} \over P_{noise}}} - минимальное отношение сигнал/шум ;

Объём канала

Объём канала V {\displaystyle V} определяется по формуле: V k = Δ F k ⋅ T k ⋅ D k {\displaystyle V_{k}=\Delta F_{k}\cdot T_{k}\cdot D_{k}} ,

где T k {\displaystyle T_{k}} - время, в течение которого канал занят передаваемым сигналом;

Для передачи сигнала по каналу без искажений объём канала V k {\displaystyle V_{k}} должен быть больше либо равен объёму сигнала V s {\displaystyle V_{s}} , то есть . Простейший случай вписывания объёма сигнала в объём канала - это достижение выполнения неравенств Δ F k ⩾ Δ F s {\displaystyle \Delta F_{k}\geqslant ~\Delta F_{s}} , T k ⩾ T s {\displaystyle T_{k}\geqslant ~T_{s}} > и Δ D k ⩾ Δ D s {\displaystyle \Delta D_{k}\geqslant ~\Delta D_{s}} . Тем не менее, V k ⩾ V s {\displaystyle V_{k}\geqslant ~V_{s}} может выполняться и в других случаях, что даёт возможность добиться требуемых характеристик канала изменением других параметров. Например, с уменьшением диапазона частот можно увеличить полосу пропускания.

Классификация

Существует множество видов каналов связи, среди которых наиболее часто выделяют каналы проводной связи (воздушные, кабельные, световодные и др.) и каналы радиосвязи (тропосферные, спутниковые и др.). Такие каналы в свою очередь принято квалифицировать на основе характеристик входного и выходного сигналов, а также по изменению характеристик сигналов в зависимости от таких явлений, происходящих в канале, как замирания и затухание сигналов.

По типу среды распространения каналы связи делятся на проводные , акустические , оптические , инфракрасные и радиоканалы .

Каналы связи также классифицируют на

  • непрерывные (на входе и выходе канала - непрерывные сигналы),
  • дискретные или цифровые (на входе и выходе канала - дискретные сигналы),
  • непрерывно-дискретные (на входе канала - непрерывные сигналы, а на выходе - дискретные сигналы),
  • дискретно-непрерывные (на входе канала - дискретные сигналы, а на выходе - непрерывные сигналы).

Каналы могут быть линейными и нелинейными, временными и пространственно-временными . Возможна классификация каналов связи по диапазону частот.

Модели канала связи

Канал связи описывается математической моделью , задание которой сводится к определению математических моделей выходного и входного и S 1 {\displaystyle S_{1}} , а также установлению связи между ними, характеризующейся оператором L {\displaystyle L} , то есть

S 2 = L (S 1) {\displaystyle S_{2}=L(S_{1})} .

Модели непрерывных каналов

Модели непрерывных каналов можно классифицировать на модель канала с аддитивным гауссовским шумом, модель канала с неопределенной фазой сигнала и аддитивным шумом и модель канала с межсимвольной интерференцией и аддитивным шумом.

Модель идеального канала

Модель идеального канала используется тогда, когда можно пренебречь наличием помех. При использовании этой модели выходной сигнал S 2 {\displaystyle S_{2}} является детерминированным, то есть

S 2 (t) = γ S 1 (t − τ) {\displaystyle S_{2}(t)=\gamma ~S_{1}(t-\tau)}

где γ - константа, определяющая коэффициент передачи, τ - постоянная задержка.

Модель канала с неопределённой фазой сигнала и аддитивным шумом

Модель канала с неопределённой фазой сигнала и аддитивным шумом отличается от модели идеального канала тем, что τ {\displaystyle \tau } является случайной величиной . Например, если входной сигнал является узкополосным , то сигнал S 2 (t) {\displaystyle S_{2}(t)} на выходе канала с неопределённой фазой сигнала и аддитивным шумом определяется следующим образом:

S 2 (t) = γ (c o s (θ) u (t) − s i n (θ) H (u (t)) + n (t) {\displaystyle S_{2}(t)=\gamma (cos(\theta)u(t)-sin(\theta)H(u(t))+n(t)} ,

где учтено, что входной сигнал S 1 (t) {\displaystyle S_{1}(t)} может быть представлен в виде:

S 1 (t) = c o s (θ) u (t) − s i n (θ) H (u (t)) {\displaystyle S_{1}(t)=cos(\theta)u(t)-sin(\theta)H(u(t))} ,

где H () {\displaystyle H()} - преобразование Гильберта , θ {\displaystyle \theta } - случайная фаза, распределение которой считается обычно равномерным на интервале

Модель канала с межсимвольной интерференцией и аддитивным шумом

Модель канала с межсимвольной интерференцией и аддитивным шумом учитывает появление рассеяния сигнала во времени из-за нелинейности фазо-частотной характеристики канала и ограниченности его полосы пропускания, то есть например, при передаче дискретных сообщений через канал на значение выходного сигнала будут влиять отклики канала не только на переданный символ, но и на более ранние или более поздние символы. В радиоканалах на возникновение межсимвольной интерференции влияет многолучёвое распространение радиоволн.