Какие блоки образуют структуру процессора intel 386. Просмотр DJVU файлов

Кажется, что может быть проще – установить приложение из AppStore на Айфон! Однако и по ходу этой процедуры у пользователей возникают затруднения, связанные чаще всего с качеством мобильного покрытия. При злополучной E даже загрузка простенькой утилиты весом в 10 Мб превращается в мучение – что уж и говорить о профессиональных программах вроде iMovie . Если качество мобильного покрытия оставляет желать лучшего, iPhone лишь предпримет жалкие попытки скачать приложение, после которых сообщит, что загрузка невозможна.

Описанная проблема очень актуальна для людей, которые проживают на окраинах своих городов. К счастью, менять оператора, чтобы получить возможность устанавливать приложения на iPhone, в этом случае не нужно – лучше воспользоваться мощностями стационарного (проводного) интернета.

Есть несколько способов скачать приложение на iPhone, и первым нужно рассмотреть самый простой, но требующий стабильного 3G/4G-соединения – загрузку напрямую с «яблочного» устройства. От пользователя требуется выполнить такие действия:

Шаг 1 . Зайдите в магазин AppStore – для этого нужно кликнуть на синюю иконку с литерой А.

Шаг 2 . В поисковик «вбейте» название того приложения, которое вас интересует. Затем нажмите кнопку «Найти » («Search ») в правом нижнем углу.

Вы также можете искать популярные приложения в подборках и топ-чартах от Apple. Для этого вам следует воспользоваться соответствующими вкладками в нижней панели.

Шаг 3 . После того как iPhone найдёт в магазине интересующее вас приложение и предложит его, нажмите кнопку «Загрузить » (для бесплатного софта) или кнопку с ценником (если программа стоит денег).

Затем кликните на «Установить » («Install »).

Шаг 4 . Введите пароль от Apple ID . Если учётной записи Apple у вас ещё нет, её придётся завести. Наш сайт рассказывает и о том, как создать учётную запись на iPhone .

Отличие iOS от Android заключается в том, что при загрузке программ владелец iPhone будет вынужден всякий раз вводить пароль от Apple ID. В случае с Android этого не требуется.

Если пароль введён верно, на месте кнопки «Установить » появляется круговой индикатор загрузки .

Кроме того, вы можете судить, как далеко продвинулся процесс скачивания, по иконке на одном из рабочих столов.

Шаг 5 . Дожидайтесь завершения загрузки. Установка программ на iPhone происходит автоматически.

Чем более современной является операционная система, установленная на вашем iPhone, тем выше ваши шансы на загрузку приложения. Каждая из программ в AppStore предъявляет требования к версии iOS. Например, популярное приложение Periscope скачать на гаджет с 7-ой «операционкой» невозможно, потому как этот софт требует минимум iOS 8.0.

О том, что вам следует «обновиться», вы узнаете из подобного сообщения:

Как скачать приложения на Айфон через iTunes?

Второй способ загрузки приложений – отличное решение для пользователей, чей мобильный интернет оставляет желать лучшего. Необходимо задействовать программу iTunes на ПК и уже посредством неё перенести приложения на «яблочный» гаджет. Следуйте такой инструкции:

Шаг 1 . Запустите Айтюнс и перейдите в раздел «Программы ».

Шаг 2 . Выберите вкладку «AppStore ».

Шаг 3 . В строке поисковика пропишите название приложения, которое желаете скачать. Затем нажмите Enter .

На экране ПК появятся результаты по запросу в два ряда: «Приложения для iPhone » и «Приложения для iPad ». В нашем случае необходима программа для iPhone, поэтому ищем в первом ряду.

Шаг 4 . Отыскав необходимое приложение, нажмите кнопку «Загрузить », расположенную под иконкой.

Шаг 5 . Введите пароль от Apple ID – как говорилось выше, это обязательная процедура. Затем кликните «Купить ».

При тех скоростях, которые предлагает современный проводной интернет, загрузка большинства программ происходит всего за несколько секунд. Перейдите во вкладку «Медиатека » — если приложение присутствует в перечне, значит, загрузка прошла успешно.

Все скачанные приложения хранятся в памяти компьютера в папке, которую можно найти по пути C:Usersимя пользователя MusiciTunesiTunes MediaMobile Applications. Формат приложений для iPhone — .ipa .

Шаг 6 . Подключите iPhone к ПК, перейдите в меню управления устройством, нажав на кнопку с изображением смартфона.

Шаг 7 . Запустите процесс синхронизации мобильного устройства и iTunes .

Как только процесс завершится, вы найдёте приложение на одном из рабочих столов iPhone. Если же его там не будет, значит, копирование программы не произошло по причине недостаточной версии ОС.

Как перенести программы с устройства Apple на ПК и зачем это нужно?

Переносить приложения можно не только с ПК на мобильное устройство, но и в обратном направлении. Для чего это нужно делать? Всё очень просто: если программа хранится на компьютере, вы при необходимости скачаете её на iPhone даже в отсутствие интернета . Скопировав утилиту на ПК, вы можете стереть её из памяти мобильного устройства, чтобы она не занимала память.

Перенос программ с Айфона на компьютер делается так:

Шаг 1 . Запустите Айтюнс и выберите вкладку «Файл ».

Шаг 2 . Отыщите раздел «Устройства » и кликните на пункт «Переместить покупки с iPhone » в открывшемся меню.

Начнётся синхронизация, по завершении которой все программы окажутся сохранёнными на жёстком диске компьютера.

Как загрузить приложения на iPhone через сторонние файловые менеджеры?

Скопировать приложения на iPhone можно не только через iTunes , но и с помощью сторонних файловых менеджеров, которые имеют ряд преимуществ перед официальным медиакомбайном:

  • Не требуют джейлбрейка и подключения к интернету.
  • Не производят синхронизацию.
  • Обеспечивают высокую скорость обмен данными.

Традиционно в пример приводятся две утилиты: iFunBox и iTools . Мы рассмотрим, как перенести приложения, на примере первой – скачать её можно :

Шаг 1 . Скачайте нужную программу из AppStore на ПК и запустите iFunBox .

Шаг 2 . Подключите смартфон к компьютеру по USB-кабелю и убедитесь, что утилита распознала устройство. В верхней панели должны значиться название «яблочного» гаджета и его модификация.

Шаг 3 . Нажмите на кнопку «Установить приложение » и через проводник отыщите на жёстком диске ПК программу, которую нужно перенести.

Затем нажмите «Открыть ». Так вы запустите процесс передачи данных, ход которого можно отслеживать с помощью индикатора в нижней части окна утилиты.

По завершении процесса вы увидите отчёт, в котором будет значиться, сколько приложений установлены успешно.

Обратите внимание, что разработчики iFunBox не рекомендуют загружать через свою программу приложения, вес которых превышает 1 Гб. Велик риск, что подобное приложение будет вылетать сразу после начальной заставки.

Как скачать и установить твик на Айфон с джейлбрейком?

Обладателям взломанных iPhone следует знать, что твики в отличие от приложений из AppStore имеют формат не ipa , а deb . Скачивать твики следует в магазине Cydia – «подпольной» альтернативе AppStore.

Изображение: ijailbreak.com

Как же действовать при необходимости загрузить твик?

Шаг 1 . Добавьте репозитарий, из которого вы намереваетесь скачать приложение. Делается это через кнопку «Sources ».

Изображение: tiamweb.com

Обратите внимание, что в перечне справа предлагаются самые популярные репозитарии – в частности, BigBoss и ModMyi . Чтобы добавить в список другой, нажмите «Edit », затем «Add ».

Шаг 2 . Внесите в поисковую строку название твика, который вас интересует, и дождитесь результатов поиска.

Шаг 3 . Отыскав нужный твик, нажмите на него. Откроется страница, представляющая приложение – здесь следует кликнуть на кнопку «Install ».

Изображение: icydiaos.com

Остаётся лишь дождаться завершения загрузки. Как видно, единственное различие между процедурами скачивания твиков и официальных приложений заключается в необходимости добавлять репозитарии при использовании Cydia .

iFunBox и iTools тоже можно применять для загрузки твиков на iPhone. Ещё одно любопытное приложение, способное выполнить функции посредника – iFile . При наличии такой утилиты на мобильном устройстве даже не обязательно иметь под рукой компьютер. Можно скачать deb -пакет через любой браузер на iPhone – iFile позаботится о том, чтобы превратить такой набор документов в приложение.

Заключение

Пользователи iPhone постоянно жалуются на нехватку памяти, но при этом продолжают устанавливать приложения, важность которых, мягко говоря, сомнительна. Решить проблему с памятью на самом деле просто: рекомендуется перенести все программы, которые хранятся на смартфоне «на чёрный день» и не используются регулярно, на ПК. Для жёсткого диска компьютера место, которое занимают приложения для iPhone – «капля в море». Самому же мобильному устройству «дышаться» будет гораздо легче.

Спустя три года после выхода Intel 80286 свет увидел его последователь - кристалл с индексом 80386. «Триста восемьдесят шестой» стал первым 32-разрядным процессором американской компании. Несмотря на то, что Intel 80386 всё ещё основывался на х86-архитектуре и сохранял обратную совместимость с «интеловскими» процессорами 8086 и 80286, он претерпел множество изменений. По некоторым оценкам, архитектура x86 не получала таких значительных изменений, как в случае с «камнем» 80386, еще долгие годы. Поэтому о них стоит рассказать подробнее.

Как мы уже сказали, процессор i386 сохранил обратную совместимость со своими предшественниками 8086 и 80286. То есть он умеет выполнять абсолютно все программы, написанные под предыдущие процессоры, причем делает это эффективнее. Большей производительности удалось достичь за счет более высоких тактовых частот, а также меньшего количества тактов синхронизации при выполнении программ. Так, например, умножение двух 16-разрядных чисел выполнялось за 9-22 тактов. Для сравнения: процессор 80286 выполнял эту операцию за 21 такт, а кристалл 8086 - за 118-133 такта. Преимущество i386 было налицо! Кроме этого, свою роль сыграл увеличенный буфер предвыборки команд, объем которого составлял 16 байт.

Процессор Intel i386

Конечно, главным нововведением i386 было то, что процессор стал 32-разрядным. Вся архитектура x86 была расширена до 32 бит. Регистры стали 32-битными, и, само собой, процессор получил поддержку набора 32-разрядных инструкций. Что немаловажно, был значительно доработан защищенный режим работы, который впервые появился в 80286. Принцип работы защищенного режима остался прежним, но режим получил три важных нововведения: снятие ограничения на размер сегмента, страничный режим адресации (Page Addressing) и режим виртуального 8086 (Virtual 8086 Mode). В защищенном режиме i386 использовал такую же архитектуру с сегментами памяти, как и в предыдущих решениях Intel. Однако, если раньше максимальный объем сегмента памяти составлял 64 Кбайт, что уже на протяжении долгого времени не устраивало программистов, то теперь он увеличился до 4 Гбайт. Это значительно облегчило разработку 32-разрядных приложений, которые могли выполняться без переключений между различными сегментами памяти. Также в i386 стало возможно быстрое переключение между реальным и защищенным режимами без имитирования перезагрузки процессора. Что касается режима виртуального 8086, то он не представляет собой ничего особенного.

Интересно, что при создании «триста восемьдесят шестого» была допущена довольно большая ошибка. Так, процессор некорректно выполнял операцию умножения 32-разрядных чисел. Однако на момент выпуска чипа еще не существовало 32-битных операционных систем и приложений, поэтому ошибку обнаружили лишь спустя 18 месяцев - в апреле 1987 года. Все выпущенные, но не проданные процессоры Intel перемаркировала с пометкой «только для 16-битных операций». Все же выпущенные после обнаружения ошибки «камни» были маркированы двойным символом «сигма» (ΣΣ).

Процессор i386 был выпущен в множестве различных версий, которые отличались производительностью, форм-факторами, энергопотреблением и другими характеристиками. i386 производился с помощью технологии CHMOS III, которая сочетала в себе быстродействие технологии HMOS и низкое энергопотребление технологии CMOS. При этом использовался 1,5-мкм техпроцесс, а количество транзисторов составляло 275 тысяч штук.

Процессор i386DX (слева)

Первый i386 был представлен 13 октября 1985 года и имел тактовую частоту 16 МГц. Впоследствии данная модификация «камня» получила приставку DX - модель стала именоваться 386DX сразу после запуска более дешевого 386SX в июне 1988 года. Приставка DX расшифровывалась как Double-word eXternal, что подчеркивало поддержку процессором 32-битной внешней шины данных. Тактовая частота 386DX с годами увеличивалась. Так, в 1987 году частота была повышена до 20 МГц, в 1988 году - до 25 МГц. А в 1990 году в продажу поступила модификация с частотой 33 МГц. При всем при этом энергопотребление процессора оставалось на довольно низком уровне - даже ниже, чем у «восемьдесят шестого». 386DX выпускался в нескольких корпусах: например, в PQFP-132 и в керамическом PGA-132.

Главным недостатком 386DX являлась его высокая стоимость. В Intel хотели увеличить количество продаж нового поколения процессоров, и поэтому вскоре свет увидел «урезанный» кристалл 386SX. Чип был выпущен в 1988 году и в итоге стал самым популярным в линейке i386. По своей архитектуре он был полным аналогом версии DX, за исключением шин данных и адресов. Так, вместо 32-битной внешней шины данных использовалась 16-битная. Разрядность внешней адресной шины составляла 24 бит. При этом сам процессор оставался полностью 32-разрядным. Урезание внешней шины данных привело к тому, что обмен информации с 386SX осуществлялся на вдвое меньшей скорости, чем в случае с 386DX. Это снизило производительность кристалла примерно на 25%.

Процессор i386SX

Первые 386SX имели частоту 16 МГц, которая затем повышалась до 20, 25 и 33 МГц соответственно. Версия SX предназначалась для настольных компьютеров начального уровня и портативных систем. На деле же процессор «прописался» в огромном количестве домашних и офисных систем.

Кроме модификаций SX и DX, был представлен один из первых энергоэффективных процессоров 386SL, предназначенный в первую очередь для лэптопов. «Камень» имел частоту 20 или 25 МГц и (в отличие от 386SX) содержал множество встроенных контроллеров: например, контроллер оперативной памяти, контроллер шины и контроллер внешней кэш-памяти, объем которой варьировался от 16 до 64 Кбайт. К тому же 386SL поддерживал различные «спящие» режимы, а также режимы системного управления (System Management Mode).

Компьютер Compaq Deskpro 386

Первым компьютером, использующим процессор i386, стал Compaq Deskpro 386. На то время Compaq стала первой «сторонней» компанией в истории, которая внесла существенные изменения в платформу PC. До того момента новые компьютеры первой всегда выпускала IBM. Она могла оказаться первой и на этот раз, но у IBM был долгосрочный контракт на использование 286-х процессоров, и в компании предпочли уделить 16-битной платформе еще некоторое время. Как показала история, этот шаг стал довольно большой ошибкой. Deskpro 386 отлично продавались, поэтому к моменту запуска первых компьютеров IBM на базе 386-го процессора компания уже утратила свои лидирующие позиции. В итоге Compaq сумела немного «перекроить» весь рынок десктопов. Так, возросла конкуренция, а влияние IBM было уже не столь существенным.

Энди Гроув - бывший CEO компании Intel

Как и раньше, вскоре на рынке появились клоны i386. Их производством занимались несколько компаний: AMD, Cyrix и IBM. Однако политика самой Intel в отношении клонов изменилась. CEO компании Энди Гроув принял решение не выдавать лицензии на производство модификаций i386 сторонним компаниям, однако впоследствии они все-таки появились. Первой клоны выпустила AMD в марте 1991 года. Процессоры были готовы задолго до этой даты, но в Intel были уверены, что лицензия на производство «дубликатов», предоставленная AMD, распространялась только на процессоры 80286 и более ранние, поэтому дело дошло до суда. Судебные тяжбы продолжались довольно долгое время, но в итоге AMD выиграла дело, и семейство процессоров AMD Am386 таки увидело свет. В линейку входили клоны как процессоров 386DX, так и 386SX. Топовая модель - Am386DX - получила тактовую частоту 40 МГц, то есть на 7 МГц больше, чем у самой производительной модификации Intel! Производительность такого процессора находилась на уровне уже выпущенного к тому времени кристалла следующего поколения от Intel - i486. При этом стоимость решения AMD была намного ниже, чем моделей Intel. Благодаря выгодному сочетанию цены и скорости процессор нашел применение во многих настольных системах.

Процессор AMD Am386DX

Что касается клона 386SX - модели Am386SX, - то она была не столько обычной копией, сколько переработанной версией «интеловского» кристалла. Так, чип производился по более тонкому 0,8-мкм техпроцессу и использовал статическое ядро, которое позволило добиться энергоэффективной работы процессора. В среднем Am386SX был на 35% экономичнее, нежели оригинальный 386SX. И даже экономичнее, чем разработанный специально для портативных устройств процессор 386SL. При этом тактовые частоты Am386SX были, как правило, выше, чем у 386SX (максимальная тактовая частота составляла 40 МГц).

Кстати, несмотря на то, что Am386SX является клоном «интеловского» чипа, он считается первой самостоятельной разработкой AMD. Да и после запуска линейки Am386 AMD по праву стали считать одним из конкурентов Intel.

Процессор AMD Am386SX

Свое применение в лэптопах и недорогих настольных системах получили клоны i386, произведенные компанией Cyrix. Линейка «камней» состояла из двух моделей: 486SLC и 486DLC. Несмотря на индекс в названии, процессоры были копиями 386SX и 386DX соответственно. Тем не менее нужно отметить, что решения Cyrix получили поддержку набора инструкций i486. Интересной архитектурной особенностью линейки стало наличие кэш-памяти первого уровня объемом 1-8 Кбайт. Что касается тактовой частоты процессоров, то ее максимальный показатель составлял 40 МГц, как и в случае с AMD Am386. При этом энергопотребление Cx486 находилось на очень низком уровне. Процессоры не смогли составить достойной конкуренции линейке AMD. С течением времени Intel снижала цены на свою продукцию, и i486 удалось окончательно вытеснить кристаллы Cyrix.

Процессор Cyrix 486DLC

Не осталась в стороне от производства клонов и компания IBM. В 1991 году она представила процессоры 386SLC и 386DLC, которые были клонами 386SX и 386DX, соответственно. Они использовались в настольных компьютерах IBM PS/2 и PS/ValuePoint, а также в лэптопе IBM ThinkPad.

Лэптоп IBM ThinkPad

Помимо вышеперечисленных моделей, Intel выпустила процессоры для встраиваемых систем: 80376 и 386EX. Первый кристалл увидел свет в январе 1989 года. От 386SX он отличался отсутствием поддержки реального режима работы («камень» работал только в защищенном режиме) и процесса замещения страниц в блоке управления памятью. Тактовая частота 376-го составляла 16/20 МГц.

Через 5 лет на смену 80376 пришел 386EX. Процессор поддерживал 26-битную адресацию памяти, имел статическое ядро, которое обеспечивало высокую энергоэффективность, и множество периферийных устройств: например, счетчики, таймеры и контроллер прерываний. В основном 386EX использовался в компьютерных системах различных орбитальных спутников, а также в проекте NASA под названием FlightLinux.

Intel i486

При разработке процессоров следующего (читай - четвертого) поколения инженеры Intel столкнулись с серьезными проблемами. Предыдущее поколение интегральных схем достигло потолка производительности, а размещать еще большее количество транзисторов на той же площади не позволяли используемые в то время технологии. Разработчикам ничего не оставалось, кроме как переработать существующую архитектуру, а точнее, дополнить ее. Так, процессоры i486 впервые обзавелись такими компонентами, как кэш-память, конвейер, встроенный сопроцессор и коэффициент умножения (множитель). Благодаря им новое поколение CPU стало быстрее своих предшественников. Но обо всем по порядку.

«Что такое кэш-память?» - наши читатели прекрасно знают ответ на этот вопрос. Она располагается «между» процессором и оперативной памятью и хранит копии самых часто используемых данных из основной памяти. Время доступа к ней намного меньше, чем к основной памяти. Поэтому, когда необходимые данные содержатся в кэш-памяти, среднее время доступа к памяти значительно уменьшается. Процессор i486 получил кэш-память объемом 8 Кбайт. Первые 486-е процессоры работали с кэшем по принципу сквозной записи (Write Through), то есть данные всегда записывались в основную память, даже если они уже присутствовали в кэше. Затем «камни» научились работать с кэшем с помощью функции обратной записи (Write Back). При использовании этого принципа (при наличии их копии в кэше) записывались только в кэш-память, запись в оперативную память не производилась. Процессоры i486 также работали с так называемым внешним кэшем, который располагался на материнской плате. Его объем на то время составлял от 256 Кбайт до 512 Кбайт.

Один из процессоров семейства i486

Наличие кэш-памяти 1-го уровня значительно усложнило сам чип. Процессор i486 содержал почти 1,2 млн транзисторов. Около половины из них приходилось именно на кэш-память. Сложность чипа стала причиной его высокого энергопотребления и тепловыделения. Так, в системах, использовавших i486, впервые стало применяться активное охлаждение. Вдобавок к этому сложность процессора стала причиной увеличения брака при производстве. Следовательно, из-за этого повысилась и себестоимость устройства.

Также в процессорах i486 появились вычислительные конвейеры, суть работы которых заключается в разделении обработки компьютерной инструкции на последовательность независимых стадий с сохранением результатов в конце каждой стадии. Что-то подобное было реализовано еще в Zilog Z8000. Конвейер i486 состоял из пяти ступеней: выборка, декодирование, декодирование адресов операндов, выполнение команды, запись результата выполнения инструкции. Появление конвейеров не только увеличило быстродействие, но и в какой-то степени упростило процессорную архитектуру. Также стоит отметить, что появление конвейеров благоприятно сказалось на разгонном потенциале CPU.

Что касается сопроцессора (FPU, Floating-Point Unit, модуль операций с плавающей запятой), то он представлял собой модуль, помогающий выполнять математические операции над вещественными числами. В i486 он был встроен в сам чип. Однако не все кристаллы четвертого поколения имели интегрированный FPU.

Коэффициенты умножения появились отнюдь не в первых процессорах i486. Модели 486SX и 486DX обходились без него и работали на частоте системной шины. Поддержка множителя появилась лишь в кристалле 486DX2. При частоте системной шины 33 МГц тактовая частота самого процессора составляла 66 МГц. То есть множитель равнялся двум. В 486DX4 коэффициент умножения был увеличен до трех. Вместе с введением множителей появился оверклокинг.

Процессор i486DX

Как и в случае с третьим поколением, изначально Intel вывела на рынок только две модели: 486SX и 486DX. Как мы уже говорили, единственным различием между этими процессорами стало отсутствие встроенного FPU. В остальном кристаллы были полностью идентичны. Кстати, из-за большого процента брака при производстве некоторые модели 486SX представляли собой 486DX с неисправным сопроцессором. Таким образом Intel пыталась сократить издержки производства. Чипы производились по 1-мкм техпроцессу, а чуть позже и по 0,8-мкм технормам. Тактовая частота обеих моделей варьировалась от 25 до 50 МГц. Максимальное энергопотребление достигало отметки в 5 Вт.

Процессор Intel i486SX

Несмотря на то, что Intel все активнее защищала свои разработки патентами, на рынке появилось немало клонов i486. Производством копий занимались AMD, Cyrix, IBM, Texas Instruments и другие.

Основу линейки клонов AMD Am486 составляли модели Am486SX и Am486DX. Процессоры производились по более тонкому 0,7-мкм техпроцессу, а затем в соответствии с 0,5-мкм и 0,35-мкм технологическими нормами. Технически Am486SX и Am486DX были полными аналогами кристаллов Intel. Процессоры, не использовавшие множители, имели частоты от 25 до 40 МГц, а «камни» с коэффициентом умножения работали на тактовой частоте от 66 до 100 МГц.

В 1995 году AMD представила самый быстрый i486-совместимый процессор под названием Am5x86. Кристалл производился по 350-нм техпроцессу и имел 1,6 млн транзисторов. Объем кэш-памяти 1-го уровня был увеличен до 16 Кбайт, а коэффициент умножения был равен 4. Процессор работал с шиной с частотой 33 МГц, то есть тактовая частота самого кристалла составляла 133 МГц. По производительности Am5x86 был сопоставим с процессором Pentium с частотой 75 МГц. Am5x86 был топовым решением AMD до выхода новых процессоров поколения K5.

Процессор-клон от компании AMD

Клоны i486, производимые другими компаниями, ничем особенным не отличались. Они архитектурно повторяли оригинал и, естественно, имели такую же производительность.

Motorola 68020, 68030, 68040

В 1984 году, за несколько месяцев до появления i386, Motorola выпустила свой первый полностью 32-битный чип 68020. Процессор производился по 2-мкм техпроцессу и насчитывал 190 000 транзисторов. Его тактовая частота составляла от 12 до 33 МГц. В сравнении с предшественником 68010 новый процессор получил множество улучшений. Прежде всего, нужно отметить, что «двадцатый» работал с полноценными 32-битными внешними шинами данных и адресов, а также поддерживал новые инструкции и режимы адресации. При этом время выполнения некоторых инструкций было сокращено. Также 68020 стал первым процессором в линейке Motorola 68k со встроенной кэш-памятью первого уровня. Правда, ее объем составлял всего 256 байт. Увы, 68020 не имел встроенного FPU, хотя интерфейс кристалла обеспечивал поддержку до 8 сопроцессоров. Что касается производительности, то при частоте 33 МГц результат составил 5,36 млн инструкций в секунду.

Главной областью применения процессора вновь стали компьютеры Apple: Macintosh II и Macintosh LC. Помимо этого, Motorola 68020 также «прописался» в системах Sun 3, Hewlett-Packard 8711, Sinclair QL и Alpha Microsystems AM-2000.

Компьютер Macintosh LC

Одновременно Motorola представила «урезанный» вариант процессора под названием 68EC020. Так, кристалл обладал 24-битной адресной шиной и поэтому умел адресовать лишь до 16 Мбайт памяти. Kodak и Apple применяли его в своих принтерах, а Commodore - в компьютерах Amiga 1200 и игровых консолях CD32.

В 1987 году в продаже появился следующий процессор компании Motorola - 68030. Он был полностью 32-разрядным. Шина данных в 68030 стала динамической, она могла функционировать в 8-, 16- и 32-битных режимах. Также появился синхронный режим работы шины данных и адресной шины, что увеличило скорость передачи данных. Производительность процессора возросла и за счет дополнительных 256 байт кэш-памяти первого уровня, сокращения времени доступа к кэшу инструкций и добавления блока управления памятью. Как и в случае с моделью 68020, «тридцатый» не имел встроенного сопроцессора. Что касается технических характеристик, то они во многом совпадали с таковыми у предшественника. Тактовая частота процессора варьировалась от 16 МГц до 50 МГц. Во втором случае производительность «камня» составляла порядка 18 миллионов инструкций в секунду.

Процессор Motorola 68030

68030 применялся всё в тех же компьютерах Apple Macintosh II и Commodore Amiga, а также в системах Next Cube, Sun 3/80, Atari TT и Atari Falcon. Была выпущена и урезанная версия процессора под названием 68EC030.

Процессор Motorola 68040, который стал доступен в 1990 году, привнес намного больше архитектурных изменений, нежели его предшественники. Так, впервые появился встроенный сопроцессор. В «сороковом» сохранилась поддержка блока управления памятью, который появился в предыдущем поколении «камней». Объем кэша-памяти инструкций и кэш-памяти данных был увеличен до 4 Кбайт каждый. Принцип работы процессора основывался на вычислительных конвейерах, которые состояли из шести стадий.

С появлением встроенного сопроцессора и увеличением объема кэш-памяти чип значительно усложнился. При одинаковой частоте производительность модели 68040 превышала скорость CPU прошлых поколений более чем в четыре раза. При этом кристалл сильно грелся, причем разработчики так и не смогли решить эту проблему. Отсюда тактовая частота процессора никогда не превышала отметки 40 МГц, хотя у самой Motorola были планы по запуску 50-мегагерцовой версии.

В 1982 году компания Intel представила микропроцессор 80286, который стал первым чипом семейства x86, получившим полностью раздельные шины адреса и данных, а также защищённый режим и встроенные возможности управления памятью. Таким образом, благодаря этому процессору IBM-совместимые системы впервые получили возможность запуска сложных операционных систем с поддержкой многозадачности и защиты памяти.

Однако у 80286 было несколько проблем. Во-первых, единственным способом переключиться из защищённого режима обратно в реальный режим была перезагрузка компьютера. Во-вторых, DOS-программы могли выполняться в защищённом режиме только при выполнении большого количества условий, которые в реальных приложениях нарушались почти всегда. И если изначально предполагалось, что операционные системы OS/2 (совместная разработка IBM и Microsoft) и FlexOS 286 (разработанная компанией Digital Research) смогут одновременно запускать несколько DOS-приложений, то описанные выше ограничения поставили на этих планах крест. То же самое относилось и к Windows. Именно поэтому Билл Гейтс в своё время назвал 80286 «безмозглым процессором».

В 1985 году Intel представила процессор 80386, который стал первым 32-битным процессором семейства x86. Помимо расширения разрядности, в 80386 появился страничный доступ к памяти (что сделало возможным реализацию операционных систем с поддержкой виртуальной памяти). В защищённом режиме процессор эмулирует плоскую модель доступа к памяти, за счёт чего для приложений вся память (как физическая, так виртуальная) выглядит как единое адресное пространство. Ещё одним нововведением 80386 стал режим виртуального 8086 - по сути, один из ранних вариантов аппаратной виртуализации. В этом режиме эмуляция процессора 8086 работает как задача в защищённом режиме. Соответственно, пользователь может запускать программы, предназначенные для реального режима, параллельно с приложениями, работающими в защищённом режиме. Именно этот факт позволил Microsoft реализовать многозадачность для DOS-приложений в оболочке Windows 3.x и операционных системах Windows 95/98/ME.

Первые версии 80386 содержали 275000 транзисторов, то есть были практически на порядок более сложными, чем 8086. Планировалось, что изначально тактовая частота процессора составит минимум 16 МГц, однако из-за сложности чипа выход годных экземпляров, способных работать на такой частоте, был невысоким, поэтому нижний порог был снижен до 12 МГц. Впоследствии были выпущены процессоры 80386 с тактовой частотой 16, 20, 25 и 33 МГц.

Выход на рынок

Несмотря на передовые технические характеристики, процессор 80386 был прохладно воспринят IBM, которая на тот момент оставалась лидером рынка ПК. Компьютер с 32-разрядным процессором, способный адресовать до 4 ГБ оперативной памяти и запускать сразу много приложений в многозадачном режиме, был слишком похож на гораздо более дорогие мейнфреймы и миникомпьютеры IBM. Именно поэтому компания решила попросту игнорировать новинку и ограничиться процессором 286 для своих PC.

Но, как это часто бывает, природа не терпит пустоты, поэтому жёлтую майку лидера-инноватора решила примерить молодая и амбициозная компания Compaq. Выпущенный в октябре 1985 года Compaq Desqpro 386 стал самым быстрым персональным компьютером в мире на тот момент, хитом продаж и любимцем всех обозревателей. И хотя для массового пользователя эпоха 32-битных вычислений не наступила вплоть до выхода Windows 95, требовательные приложения (особенно игры) очень быстро начали использовать усовершенствованный защищённый режим процессора. Появился даже целый класс системных утилит - «расширителей DOS» (DOS Extenders), которые позволяли создавать DOS-приложения, работающие в защищённом режиме. Самым популярным из них был DOS/4G (позже переименованный в DOS/4GW), использовавшийся большинством компьютерных игр.

Интересный факт: с выходом 80386 компания Intel решила отказаться от практики лицензирования своих процессоров сторонним производителям. Вместо этого производство 80386 было запущено одновременно на трёх фабриках, а Энди Гроув, который к тому моменту уже стал главным исполнительным директором Intel, сумел убедить покупателей, что этого достаточно для обеспечения бесперебойных поставок процессора. В результате Intel в одночасье превратилась из «одного из многих поставщиков процессоров» в ключевого игрока PC-индустрии. Одновременно с этим компания приняла решение отказаться от производства памяти и полностью переориентироваться на производство процессоров. Как показала практика, это было очень мудрое решение, поскольку во второй половине 1980-х выход на этот рынок японских полупроводниковых компаний и кризис перепроизводства привели к резкому падению цен на микросхемы памяти и финансовым проблемам производителей памяти.

Чип-долгожитель

У процессора 80386 была долгая и счастливая жизнь. В 1988 году была выпущена его удешевлённая версия 80386SX, которая отличалась от DX-версии разрядностью шины данных (16 бит против 32). Подобное упрощение позволило использовать с 80386SX наборы системной логики для процессора 80286, что было актуально для недорогих систем. Даже после выхода процессора 80486 (P4) топовые варианты 80386 (с тактовой частотой 33 МГц) часто использовались энтузиастами как более дешёвое и проверенное временем решение.

В середине девяностых 80386 был окончательно вытеснен из компьютеров более производительными чипами. Однако в качестве процессора для встроенных решений он выпускался вплоть до 2007 года и даже успел стать основой некоторых смартфонов, включая Blackberry 950 и Nokia 9000 Communicator.


Nokia 9000 Communicator на базе процессора Intel 80386EX

80386 интересен ещё и тем, что после него базовый набор команд процессоров Intel оставался практически неизменным в течение 18 лет - вплоть до появления 64-битных расширений для x86 в 2003 году.

Intel 386

Процессор Intel 386, который, в отличие от более «бюджетного» варианта 386SX, впоследствии получил название 386DX, вначале работал с тактовой частотой в 16 МГц. Затем быстродействие было удвоено до 33 МГц, а число транзисторов – до 275000. Таким образом, 386 стал первым интеловским 32-разрядным процессором. Он мог использовать уже 4 ГБ памяти, а также переключаться между защищенным и реальным режимами. Также был добавлен виртуальный режим, который позволял исполнять приложения, не работающие в защищенном режиме.

Год выпуска: 1985 Тактовая частота: 16 МГц – 33 МГц

Знаете ли вы, что 386 стал первым массовым микропроцессором, производимым только одной компанией. Таким образом, производители ПК могли закупать процессор только у Intel. Такая маркетинговая политика в значительной степени способствовала успеху компании на рынке центральных процессоров.

Intel i486

К концу 80-х годов Intel успела выпустить еще один процессор – 486DX. Он стал первым процессором со встроенным математическим сопроцессором и первым, преодолевшим планку в 1 миллион транзисторов – число транзисторов в нем составило 1.2 млн. Подобно 386, 486DX мог адресовать до 4 ГБ памяти, имел встроенный кэш, оптимизированный набор команд и шину большей пропускной способности. Новый процессор нашел применение не только в ПК, но и в серверах.

Большинство игроков старой школы, скорее всего, сохранили в памяти самые теплые воспоминания о часах, проведенных за миссиями различных компьютерных игр на процессорах 486DX2-66. Но с новыми требованиями, предъявляемыми 3D-графикой, 486-й процессор справлялся уже с трудом.

Год выпуска: 1989 Тактовая частота: 25 МГц – 100 МГц

Знаете ли вы, что изначально 486-й процессор был запущен в производство в качестве модели i486DX, но впоследствии приобрел множество модификаций, включая i486SX, i486SL и i486DX2, ставшую наиболее популярной.

AMD Am386

AMD также не сидела сложа руки: нанеся Intel первый пробный удар в виде Am286, в 1991 году компания выводит на рынок новый процессор AM386, являющийся точной копией 386, но с тактовой частотой выше, чем у интеловского оригинала. Кроме того, впервые был предпринят такой маркетинговый ход, как использование логотипа «Windows Compatible», означавшего совместимый с ОС Windows продукт, который Нью-Йорк Таймс назвала «неприкрытым намерением завоевать доверие к клону интеловских микропроцессоров от AMD».

Intel приложила все усилия, чтобы воспрепятствовать продаже AMD новых процессоров, утверждая, что соглашение по x86 касалось только 80286 и предыдущих моделей. AMD выиграла процесс, и, хотя Intel уже выпустила в продажу следующий - 486 CPU, Am386 выдавал ту же производительность за существенно меньшую цену. Возмущение рынка продаж привело к укреплению позиций AMD в качестве реального конкурента Intel.

Год выпуска: 1991 Тактовая частота: 12 МГц – 40 МГц

Знаете ли вы, что Am386 был готов к выпуску еще до 1991 года, но AMD потратила массу времени на судебные разбирательства с Intel.

Cyrix Cx486

Cyrix начинал как производитель математических сопроцессоров для 286 и 386 систем в 1988 и 1992 годах, когда компания выпустила свои первые x86: 486SLC и 486DLC. Оба процессора были пин-совместимыми с 386SX/DX, предоставляя пользователям 386 платформы привлекательные возможности обновления.

Производимая Texas Instruments серия Cyrix 486 вышла без математического процессора, хотя добавление его было возможным. Серия Cx486 могла работать с первичной кэш-памятью от 1 КБ до 8 КБ и тактовой частотой до 100 МГц.

Год выпуска: 1992 Тактовая частота: 20 МГц – 100 МГц

Знаете ли вы, что из-за небольшой потребляемой мощности Cyrix Cx486 стал популярным процессором в лэптопах начала 90х.


На сегодняшний день ни один крупный поставщик, не объявил о поддержке процессоров Intel Xeon Platinum 9200. В этой статье мы поговорим о том, почему.

...

Для таких сервисов, как Microsoft Azure, сокращение хранимых данных на несколько процентов означает экономию миллионов долларов. Microsoft анонсировала проект Corsica на этой неделе как кульминацию разработки своего стандарта сжати...

В конце прошлого года Intel представил новый чипсет B365 Express, который призван занять место между B360 и H370, при этом местами новинка лучше B360, местами - хуже. Но самый важный момент заключается в том, ...

Уже более 10 лет Intel трубит о преимуществах кремниевой фотоники, которая разрабатывается уже две декады. Сама Intel давно придерживается концепции разукрупненных вычислительных и запоминающих устройств для ЦОД, объединённых через...

В предыдущем, 700-м поколении сетевых чипов, Intel делала ставку на простоту и доступность, поэтому 40-гигабитные процессоры семейства Fortville не имели большинства механизмов аппаратной разгрузки и позиционировались как решения...