Измерение электрических величин при эксплуатации. Технические средства и методы измерения электрических величин. Измерения силы токов и напряжений

ЛЕКЦИЯ № 1

Тема: ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ И ИЗМЕРЕНИЯ ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН

1. Общие сведения об электроизмерительных приборах

Электроизмерительные приборы предназначены для измерения различных величин и параметров электрической цепи: напряжения, силы тока, мощности, частоты, сопротивления, индуктивности, емкости и других.

На схемах электроизмерительные приборы изображаются условными графическими обозначениями в соответствии с ГОСТ 2.729-68. На рис.1.1 приведены общие обозначения показывающих и регистрирующих приборов.

Рис. 1.1 Условные графические обозначения электроизмерительных приборов.

Для указания назначения электроизмерительного прибора в его общее обозначение вписывают конкретизирующее условное обозначение, установленное в стандартах, или буквенное обозначение единиц измерения прибора согласно ГОСТ в соответствии с табл.1.1.

Таблица 1.1

Наименование

единицы измерения

Условное обозначение

Наименование

единицы измерения

Условное обозначение

Миллиампер

Микроампер

Милливольт

Киловатт

Коэффициент мощности

2. Электромеханические измерительные приборы

По принципу действия электромеханические приборы подразделяются на приборы магнитоэлектрической, электромагнитной, ферродинамической, индукционной, электростатической систем. Условные обозначения систем приведены в табл. 1.2. Наибольшее распространение получили приборы первых трех типов: магнитоэлектрические, электромагнитные, электродинамические.


Таблица 1.2

Тип прибора

Условное обозначение

Род измеряемого тока

Достоинства

Недостатки

электрический

Постоянный

Высокая точность, равномерность шкалы

Неустойчив к перегрузкам

магнитный

Переменный

постоянный

Простота устройства, к перегрузкам устойчив

Низкая точность, чувствителен к помехам

динамический

Переменный

постоянный

Высокая точность

Низкая чувствительность,

чувствителен к помехам

Индукционный

Переменный

Высокая надежность, к перегрузкам устойчив

Низкая точность

3. Области применения электромеханических приборов

Магнитоэлектрические приборы: щитовые и лабораторные амперметры и вольтметры; нулевые индикаторы при измерениях в мостовых и компенсационных цепях.

В промышленных установках переменного тока низкой частоты большинство амперметров и вольтметров - приборы электромагнитной системы. Лабораторные приборы класса 0,5 и точнее могут изготовляться для измерения постоянного и переменного токов и напряжения.

Электродинамические механизмы используются в лабораторных и образцовых, приборах для измерения постоянных и переменных токов, напряжений и мощностей.

Индукционные приборы на базе индукционных механизмов используют главным образом в качестве одно - и трехфазных счетчиков энергии переменного тока. По точности счетчики подразделяются на классы 1,0; 2,0; 2,5. Счетчик СО (счетчик однофазный) используют для учета активной энергии (ватт-часов) в однофазных цепях. Для измерения активной энергии в трехфазных цепях применяют двухэлементные индуктивные счетчики, счетный механизм которых учитывает киловатт-часы. Для учета реактивной энергии служат специальные индуктивные счетчики, имеющие некоторые изменения в устройстве обмоток или в схеме включения.

Активные и реактивные счетчики устанавливают на всех предприятиях для расчета с энергоснабжающими организациями за используемую электроэнергию.

Принцип выбора измерительных приборов

1.Определяют расчетом цепи максимальные значения тока, напряжения и мощности в цепи. Часто значения измеряемых величин известны заранее, например, напряжение сети или аккумуляторной батареи .

2. В зависимости от рода измеряемой величины, постоянного или переменного тока, выбирают систему прибора. Для технических измерений постоянного и переменного тока выбирают соответственно магнитоэлектрическую и электромагнитную системы. При лабораторных и точных измерениях для определения постоянных токов и напряжений применяют магнитоэлектрическую систему, а для переменного тока и напряжения - электродинамическую систему.

3. Выбирают предел измерения прибора таким образом, чтобы
измеряемая величина находилась в последней, третьей части шкалы
прибора.

4. В зависимости от требуемой точности измерения выбирают класс
точности прибора.

4. Способы включения приборов в цепь

Амперметры включают в цепь последовательно с нагрузкой, вольтметры - параллельно, ваттметры и счетчики, как имеющие две обмотки (токовую и напряжения), включают последовательно – параллельно (Рис. 1.2.).

DIV_ADBLOCK111">


https://pandia.ru/text/78/613/images/image016_8.gif" width="393" height="313 src=">

Рис. 1.3. Способы расширения пределов измерения приборов.

Цена деления многопредельных амперметров, вольтметров, ваттметров определяется по формуле:

П" в старшем разряде) и изменить полярность входного сигнала при мигании знака "-" в старшем разряде.

Погрешность измерения мультиметра ВР-11 А.

Постоянное напряжение: ±(0,5% Ux +4 зн.).

Переменное напряжение: ±(0,5% Ux + 10 зн.),

где Ux - показание прибора;

зн. - единица младшего разряда.

Достоинства электронных приборов: высокое входное сопротивление, что позволяет проводить измерения без влияния на цепь; широкий диапазон измерений, высокая чувствительность, широкий частотный диапазон, высокая точность измерений.

6. Погрешности измерений и измерительных приборов

Качество средств и результатов измерений принято характеризовать указанием их погрешностей. Разновидностей погрешностей около 30. Определения им даны в литературе по измерениям. Следует иметь в виду, что погрешности средств измерений и погрешности результатов измерений - понятия не идентичные. Исторически часть наименований разновидности погрешностей закрепилась за погрешностями средств измерений, другая за погрешностями результатов измерений, а некоторые применяются по отношению и к тем, и к другим.

Способы представления погрешности следующие.

В зависимости от решаемых задач используются несколько способов представления погрешности, чаще всего используются абсолютная, относительная и приведенная.

Абсолютная погрешность измеряется в тех же единицах что и измеряемая величина. Характеризует величину возможного отклонения истинного значения измеряемой величины от измеренного.

Относительная погрешность – отношение абсолютной погрешности к значению величины. Если мы хотим определить погрешность на всем интервале измерений, мы должны найти максимальное значение отношения на интервале. Измеряется в безразмерных единицах.


Класс точности – относительная погрешность, выраженная в процентах. Обычно значения класса точности выбираются из ряда: 0,1; 0,5: 1,0; 1,5; 2,0; 2,5 и т. д.

Понятия абсолютной и относительной погрешностей применяют и к измерениям, и к средствам измерения, а приведенная погрешность оценивает только точность средств измерения.

Абсолютная погрешность измерения - это разность между измеренным значением х и ее истинным значением хи:

Обычно истинное значение измеряемой величины неизвестно, и вместо него в (1.1) подставляют значение величины, измеряемой более точным прибором, т. е. имеющим меньшую погрешность, чем прибор, дающий значение х. Абсолютная погрешность выражается в единицах измеряемой величины. Формулой (1.1) пользуются при поверке измерительных приборов.

Относительная погрешность https://pandia.ru/text/78/613/images/image020_7.gif" width="99" height="45"> (1.2)

По относительной погрешности измерения проводят оценку точности измерения.

Приведенная погрешность измерительного прибора определяется как отношение абсолютной погрешности к нормирующему значению xn и выражается в процентах:

(1.3)

Нормирующее значение обычно принимают равным верхнему пределу рабочей части шкалы, у которой нулевая отметка находится на краю шкалы.

Приведенная погрешность определяет точность измерительного прибора, не зависит от измеряемой величины и имеет единственное значение для данного прибора. Из (1..gif" width="15" height="19 src="> тем больше, чем меньше измеряемая величина х по отношению к пределу измерения прибора хN.

Многие измерительные приборы различаются по классам точности. Класс точности прибора G - обобщенная характеристика, которая характеризует точность прибора, но не является непосредственной характеристикой точности измерения, выполняемого с помощью данного прибора.

Класс точности прибора численно равен наибольшей допустимой приведенной основной погрешности, вычисленной в процентах. Для амперметров и вольтметров установлены следующие классы точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0; 5,0. Эти числа наносятся на шкалу прибора. Например, класс 1 характеризует гарантированные границы погрешности в процентах (± 1%, например, от конечного значения 100 В, т. е. ±1В) в нормальных условиях эксплуатации.

По международной классификации приборы с классом точности 0,5 и точнее считаются точными или образцовыми, а приборы с классом точности 1,0 и грубее - рабочими. Все приборы подлежат периодической поверке на соответствие метрологических характеристик, в том числе и класса точности, их паспортным значениям. При этом образцовый прибор должен быть точнее поверяемого через класс, а именно: поверка прибора с классом точности 4,0 проводится прибором с классом точности 1,5, а поверка прибора с классом точности 1,0 проводится прибором с классом точности 0,2.

Поскольку на шкале прибора приводится и класс точности прибора G, и предел измерения XN, то абсолютная погрешность прибора определяется из формулы (1.3):

https://pandia.ru/text/78/613/images/image019_7.gif" width="15 height=19" height="19"> с классом точности прибора G выражается формулой:

откуда следует, что относительная погрешность измерения равна классу точности прибора только при измерении предельной величины на шкале, т. е. когда х = XN. С уменьшением измеряемой величины относительная погрешность возрастает. Во сколько раз XN > х, во столька раз > G. Поэтому рекомендуется выбирать пределы измерения показывающего прибора так, чтобы отсчитывать показания в пределах последней трети шкалы, ближе к ее концу.

7. Представление результата измерений при однократных измерениях

Результат измерения состоит из оценки измеряемой величины и погрешности измерения, характеризующей точность измерения. По ГОСТ 8.011-72 результат измерения представляют в форме:

где А - результат измерения;

Абсолютная погрешность прибора;

Р - вероятность, при статистической обработке данных.

При этом А и https://pandia.ru/text/78/613/images/image023_5.gif" width="15" height="17"> не должна иметь более двух значащих цифр.

Методы измерения токов и напряжений зависят от величины и вида этих электрических величин.

Для определения малых постоянных токов можно использовать как прямые, так и косвенные измерения. В первом случае ток можно измерять зеркальными гальванометрами и стрелочными магнитоэлектрическими приборами. Наименьший ток, который можно измерить зеркальным гальванометром, равен приблизительно 10" п А, а стрелочный магнитоэлектрический прибор позволяет измерить величину 10 6 А.

Косвенно неизвестный ток определяют по падению напряжения на высокоомном резисторе или по заряду, накопленному конденсатором. В качестве приборов используются баллистические гальванометры с минимально измеряемым током 10‘ 12 А и электрометры с минимально измеряемым током 10 17 А.

Электрометрами называют приборы высокой чувствительности по напряжению с входным сопротивлением до 10 15 Ом. Механизм электрометра представляет собой разновидность механизма электростатического прибора, который имеет один подвижный и несколько неподвижных электродов, находящихся под разными потенциалами.

Квадрантный электрометр представлен на рис. 2.1.

Рис. 2.1.

Устройство имеет подвижную часть 1 с зеркалом 2, которая закреплена на подвесе 3 и расположена внутри четырех неподвижных электродов 4, называемых квадрантами. Измеряемое напряжение Их включается между подвижной частью и общей точкой, а на квадранты от вспомогательных источников подаются постоянные напряжения U, значения которых равны, но противоположны по знаку. Отклонение подвижной части в этом случае равно

где С - емкость между подвижным электродом и двумя соединенными между собой квадрантами, М- удельный противодействующий момент, зависящий от конструкции подвеса. Отклонение подвижной части, а следовательно, и чувствительность электрометра пропорциональны вспомогательному напряжению U, значение которого обычно выбирают в пределах до 200 В. Чувствительность квадрантных электрометров при вспомогательном напряжении 200 В достигает 10 4 мм/В.

К средним токам и напряжениям условно можно отнести токи в диапазоне от 10 мА до 100 А и напряжения от 10 мВ до

600 В. Для измерения средних постоянных токов можно использовать прямые и косвенные измерения. Для измерения напряжений используют только прямые измерения.

При прямых измерениях ток и напряжение можно измерять приборами магнитоэлектрической, электромагнитной, электродинамической и ферродинамической систем, а также электронными и цифровыми приборами Напряжение можно измерять приборами электростатической системы и потенциометрами постоянного тока.

Наиболее точные приборы магнитоэлектрической системы, предназначенные для измерения средних токов и напряжений, имеют класс точности 0,1.

В тех случаях, когда необходимо измерить напряжение или ток с высокой точностью, используют потенциометры постоянного тока, цифровые вольтметры и амперметры. Класс точности наиболее точных потенциометров 0,001, цифровых вольтметров - 0,002, а цифровых амперметров - 0,02. Измерение тока при помощи потенциометра проводят косвенным путем, при этом искомый ток определяют по падению напряжения на образцовом резисторе. Преимуществом потенциометров и цифровых приборов является малое потребление мощности.

Измерение больших токов и напряжений проводят с помощью аттенюаторов. Шунтирование магнитоэлектрических приборов дает возможность измерять постоянные токи до нескольких тысяч ампер. Обычно для измерения больших токов часто используют несколько шунтов, соединенных параллельно. Несколько одинаковых шунтов подключают в разрыв шины, а проводники от потенциальных зажимов всех шунтов подводят к одному и тому же прибору.

Электростатические вольтметры позволяют измерять напряжения до 300 кВ. Для определения более высоких значений напряжения используют измерительные трансформаторы.

Для оценки переменных токов и напряжений используют понятия действующего или среднеквадратического значения, амплитудного или максимального значения и средневыпрям- ленного значения.

Действующее, амплитудное и средневыпрямленное значения связаны между собой через коэффициент формы кривой и коэффициент амплитуды.

Коэффициент формы сигнала равен

где U a - действующее значение сигнала, U cp - средневыпрямленное значение сигнала.

Коэффициент амплитуды сигнала определяется как

где - амплитудное значение сигнала.

Значения этих коэффициентов зависят от формы кривой напряжения или тока. Для синусоиды = 1,11 и к а = л/2 = 1,41. Отсюда, измерив одно из трех указанных выше значений измеряемой величины, можно определить остальные.

При несинусоидальном сигнале чем ближе он будет к прямоугольной форме, тем ближе к единице будут коэффициенты кф и к и. Для узкой и острой формы кривой измеряемой величины эти коэффициенты будут иметь большее значение.

Приборы электродинамической, ферродинамической, электромагнитной, электростатической и термоэлектрической систем реагируют на действующее значение измеряемой величины. Приборы выпрямительной системы реагируют на средневыпрямленное значение измеряемой величины. Приборы электронной системы, как аналоговые, так и цифровые, в зависимости от типа измерительного преобразователя переменного напряжения в постоянное, могут реагировать на действующее, средневыпрямленное или амплитудное значение измеряемой величины.

Вольтметры и амперметры всех систем обычно градуируют в действующих значениях при синусоидальной форме кривой тока. При несинусоидальной форме кривой у приборов, реагирующих на средневыпрямленное или амплитудное значение тока или напряжения, будет возникать дополнительная погрешность, так как коэффициенты кф и к а при несинусоидальной форме кривой отличаются от соответствующих значений для синусоиды.

Методы и средства измерений, испытаний и Контроля

Приобретение наследства

Для приобретения наследства наследник должен его принять. Принятие наследства может быть осуществлено несколькими спо­собами. Во-первых, посредством подачи письменного заявления о при­нятии наследства нотариусу по месту открытия наследства либо заяв­ления о выдаче свидетельства на право наследования.Во-вторых, наследник признается принявшим наследство, если он совершил действия, об этом свидетельствующие, в частности: вступил во владение или управление наследственным имуществом; принял меры по сохранению наследственного имущества; произвел за свой счет расходы на содержание этого имущества; оплатил за свой счет долги наследодателя или получил от его долж­ников причитавшиеся ему денежные средства.

Наследство может быть принято в течение шести месяцев со дня открытия наследства. Наследство может быть принято и по ис­течении шестимесячного срока, если на это согласны все остальные наследники и они выразили свое согласие в письменной форме, заве­рив документ у нотариуса.Еще один случай удлинения срока - на­следственная трансмиссия. Если наследник умер, не успев принять наследство, то право принятия наследства переходит наследнику этого наследника. Наслед­ник может отказаться от всего или части наследства, он может указать лиц, в пользу которых отказывается от наследства, а может не указы­вать. Отказ может быть адресован только наследникам по закону, но любой очере­ди. ГК РФ устанавливает некоторые преимущественные права насле­дования для ряда наследников:наследник, который имел вместе с наследодателем в общей соб­ственности недвижимую вещь, имеет преимущественное перед други­ми наследниками право на получение этой вещи в счет своей имуще­ственной доли;наследник, который постоянно пользовался недвижимой вещью, имеет преимущественное право получить ее; наследник, совместно проживавший с наследодателем на день от­крытия наследства, имеет преимущественное право на получение в счет своей доли предметов обычной домашней обстановки. Наследник пая в любом потребительском кооперативе имеет право стать членом этого кооператива либо полу­чить пай в денежной форме.


Лекция 1

основная

1. Марков, Н.Н. Конструкция, расчет и эксплуатация контрольно-измерительных инструментов и приборов: учеб. для техникумов / Н.Н. Марков, Г.М. Ганевский. - М.: Машиностроение, 1993. – 416 с.

2. Белкин, И.М. Средства линейно-угловых измерений / И.М. Белкин. – М.: Машиностроение, 1987. – 368 с.


дополнительная

3. Сорочкин, Б.М. Средства для линейных измерений / Б.М. Сорочкин, Ю.З. Тененбаум, А.П. Курочкин, Ю.Д. Виноградов. – Л.: Машиностроение. Ленигр. отд-ние, 1978. – 264 с.

4. Куликовский, К.Л. Методы и средства измерений: учеб. пособие для вузов / К.Л. Куликовский, В.Я. Купер. – М.: Энергоатомиздат, 1986. – 448 с.

5. Тартаковский, Д.Ф. Метрология, стандартизация и технические средства измерений: учеб. для вузов / Д.Ф. Тартаковский, А.С. Ястребов. – М.: Высш. шк., 2001. – 205 с.

Измерение, испытание и контроль являются составными частями обеспечения качества продукции.

Измерение - процесс сравнения физической величины с некоторым ее значением, принятым за единицу. Единицы физических величин устанавливаются соответствующими документами (ГОСТ Р).

Вместе с термином «измерение», а иногда вместо него используют термин «контроль», например, говорят «средства измерения и контроля».

Контроль - разновидность измерения, при которой в результате процесса сравнения (измерения) устанавливают соответствие объекта измерения (контроля) заданным предельным значениям физических величин.

Результаты контроля, выдаются не в виде значения физической величины, а в виде информация о годности или негодности контролируемого объекта или параметра.

По результатам контроля часто предпринимаются действия по управлению процессом производства, а также проводится разделение контролируемых объектов на размерные группы в пределах определенных значений или разделение контролируемых деталей на группы годности (годные и брак). Термин «контроль» чаще всего применяют при использовании калибров и автоматических средств измерения.

Очень часты случаи, когда измерение производят с целью контроля, находят значение измеряемого размера, затем сравнивают с допускаемыми наибольшими и наименьшими значениями и определяют годность или негодность детали.

Средство измерений - техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (а пределах установленной погрешности) в течение известного интервала времени. Данное определение вскрывает суть средства измерений, заключающуюся в способности хранить (или воспроизводить) единицу физической величины, а также в неизменности размера хранимой единицы. Эти факторы и обусловливают возможность выполнения измерения.

По назначению средства измерений разделяют на меры, измерительные преобразователи, измерительные приборы, измерительные установки и измерительные системы.

Мера — средство измерений, предназначенное для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров, значения которых выражены в установленных единицах и известны с необходимой точностью.

Различают следующие разновидности мер:

● однозначная мера — мера воспроизводит физическую величину, одного размера;

многозначная мера — мера воспроизводит физическую величину разных размеров;

набор мер — комплект мер разного размера одной и той же физической величины;

● магазин мер ~ набор мер, конструктивно объединенных в единое устройство, в котором имеются приспособления для их соединения в различных комбинациях. Например, магазин электрических сопротивлений обеспечивает ряд дискретных значений сопротивлений.

Некоторые меры воспроизводят одновременно значения двух физических величин. Мера необходима при методе сравнения для выполнения сравнения с ней измеряемой величины и получения ее значения.

Измерительный преобразователь — техническое средство с нормированными метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации или передачи. Принцип его действия основан на различных физических явлениях. Измерительный преобразователь преобразует любые физические величины (электрические, неэлектрические, магнитные) в электрический сигнал.

По характеру преобразования различают аналоговые, аналого-цифровые преобразователи (АЦП), преобразующие непрерывную величину в числовой эквивалент, цифроаналоговые преобразователи (ЦАП), выполняющие обратное преобразование.

По месту в измерительной цепи преобразователи разделяют на первичный, на который непосредственно воздействует измеряемая физическая величина; промежуточный, включенный в измерительную цепь после первичного; преобразователи, предназначенные для масштабного преобразования, т.е. для изменения значения величины в некоторое число раз; передающие, обратные для включения в цепь обратной связи и др.

К измерительным преобразователям можно отнести преобразователи переменного напряжения в постоянное, измерительные трансформаторы напряжения и тока, делители тока, напряжения, усилители, компараторы, термопару и др. Измерительные преобразователи входят в состав какого-либо измерительного прибора, измерительной установки, измерительной системы или применяются вместе с каким-либо средством измерений.

Измерительный прибор (ИП) — средство измерений, предназначенное для получения значений измеряемой физической величины в установленном диапазоне. Приборы бывают показывающие и регистрирующие, цифровые и аналоговые.

Измерительная установка — совокупность функционально объединенных мер, измерительных преобразователей, измерительных приборов и других устройств. Предназначена для измерений одной или нескольких физических величин и расположена в одном месте, например, установка для измерения характеристик транзистора, установка для измерения мощности в трехфазных цепях и др,

Измерительная система — совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого объекта с целью измерений одной или нескольких физических величин, свойственных этому объекту, и выработки сигналов в разных целях.

В зависимости от назначения измерительные системы разделяют на измерительные информационные, контролирующие, технической диагностики и др. Широкое распространение имеют микропроцессорные измерительные системы — управляющие вычислительные системы с микропроцессором (МП) в качестве узла обработки информации. В общем случае в состав МП входят: арифметическо-логическое устройство, блок внутренних регистров для временного хранения данных и команд, устройство управления, внутренние магистрали шин, шины ввода - вывода данных для подключения внешних устройств.

«Ни одной точной науки,

ни одной прикладной науки

без измерений.

Новые средства измерений

знаменуют собой настоящий прогресс».

/акад. Якаби Б. С./

Лекция 1

1. Введение и задачи курса.

2. Общие сведения об измерениях и измерительной аппаратуре:

а) основные понятия и определения;

б) системы единиц, основные единицы системы СИ;

в) виды средств эл. измерений;

г) меры электрических величин;

д) классификация электрических измерительных приборов;

е) основные характеристики и параметры электрических измерительных приборов.

Введение

Познание окружающей нас действительности, изучения закономерностей явлений природы, развитие науки и техники неразрывно связано с измерениями.

«Наука начинается... с тех пор, как начинают измерять; точная наука немыслима без меры». - писал Д. И. Менделеев.

Измерение, т. е. определение числового значения той или иной величины, играет исключительную роль в народном хозяйстве. Нет такой области науки и техники, нет такой отрасли промышленности или сельского хозяйства, где одним из решающих факторов не было бы измерение как таковое.

Научно-технический прогресс является центральной экономической и важной политической задачей нашей страны. Стержнем научно-технического прогресса является повышение производительности труда путем автоматизации производства, автоматизации управления и ускорения научных исследований с целью быстрейшего внедрения их производства.

Главная задача 10-ой пятилетки состоит в последовательном осуществлении курса КПСС на подъем материального и культурного уровня жизни народа на основе динамичного и пропорционального развития общественного производства и повышения его эффективности, ускорения научно-технического прогресса, роста производительности труда, всемирного улучшения качества работы во всех звеньев народного хозяйства.

Для решения этих задач предусматривается в промышленности...

Расширить выпуск прогрессивных, экономичных видов машин, оборудования и примеров для всех отраслей народного хозяйства.

Увеличить выпуск приборов и средств автоматизации в 1,6-1,7 раза, средств вычислительной техники в 1,8 раза.

Развивать производство... устройств регистрации и передачи информации для автоматизированных систем управления технологическими процессами и оптимального управления в отраслях народного хозяйства.

Расширить производство приборов для нужд сельского хозяйства.

Изучение явлений природы, отыскание законов, которым эти явления подчинены, и вообще всякие научные изыскания всегда связаны с измерениями, так как такие исследования сводятся в конечном итоге к определению количественных соотношений, через которые вскрываются и качественные стороны изучаемых явлений и предметов.

Совершенствование техники измерений, проявляющееся в повышение точности измерений и в создании новых методов и приборов, способствует определенным новым достижениям в науке.

Новые открытия в науке в свою очередь приводят к совершенствованию техники измерений, а также к созданию новых приборов.

Современная информационно-измерительная техника располагает совокупностью средств измерения около двухсот различных физических величин электрических, магнитных, тепловых, механических, световых, акустических и др.

Огромное количество различных величин в процессе измерения преобразуется в величины электрические как наиболее удобные для передачи, усиления сравнения, точного измерения.

Поэтому в развитии современной информационно-измерительной технике преобладающие значение приобретает развитие средств измерений электрических величин.

Уровень развития электроизмерительной техники в значительной степени определяет состояние технического прогресса во всех отраслях народного хозяйства. 29.04.1745г. был представлен академиком Рихмоном общему собранию Петебуржской академии «Указатель электрической искры » - первый электроизмерительный прибор.

В настоящее время без качественной эл. измерительной техники невозможно проведение научных исследований на современном уровне, а также невозможно реализация потенциала современного парка ЭВМ, разработка и внедрение систем автоматизированного контроля и управления – основного средства технического прогресса и повышения производительности труда.

Электроизмерительные приборы и устройства широко применяются в промышленности при научных исследованиях, в космонавтике, на транспорте в системах связи и навигации, в геологоразведке, в гидрометеорологии и во многих других областях трудовой деятельности человека.

Это объясняется преимуществами, присущими электрическим измерениям, основными из которых являются:

1. Широкий диапазон измеряемых величин, характеризуемый 18-го разрядами (например, по напряжению от 10-14 до 106 В, по току от 10-9 до 106 А, по сопротивлению от 10-6 до 10-14 Ом);

2. Высокая чувствительность (например, по току 1*1012 мм/А, по напряжению 1·106 мм/В).

3. Высокая точность. Погрешность современных показывающих приборов доведена до 0,05%, а приборов сравнения – до 0,001%.

4. Возможность получать значение измеряемой величины не только в данный момент, но и записывать изменение ее во времени.

5. Осуществимость измерений на расстоянии (телеизмерения).

6. Возможность измерять неэлектрические величины электрическими методами.

7. Осуществимость автоматизации получения и обработки результатов измерения.

8. Возможность производить измерения без нарушения хода технологического процесса.

9. Возможность измерения как медленно так и быстро изменяющихся величин.

Выполнение величественных планов развития народного хозяйства 10-ой пятилетке, осуществление грандиозных строительств, ставят перед всеми отраслями советской промышленности новые задачи. Такие задачи стоят и перед электротехникой – в частности, и перед электроизмерительной техникой.

Увеличение выработки эл. энергии в стране к 1980 году до 1340-1380 млрд. кВт*ч, осуществление плана комплексной механизации и автоматизации производства потребуют создания качественно новых электроизмерительных приборов и устройств, замены устаревших приборов современными, основанными на новых принципах измерениях.

В настоящее время электроизмерительная техника интенсивно развивается в следующих направлениях:

а) повышение точности и быстродействия, расширение частичного диапазона, улучшение конструкции многообразных эл. измерительных приборов;

б) расширение номенклатуры и улучшение характеристик разнообразных измерительных преобразователей, широко применяемых при измерениях электрических и неэлектрических величин, а также в системах автоматического управления;

в) разработка и выпуск различных специализированных эл. измерительных установок, предназначенных для проверки эл. измерительных приборов, испытания ферромагнитных материалов и других целей;

г) выпуск и совершенствование ИИС, предназначенных для автоматического получения, передачи, обработки и представления в той или иной форме и в значениях измеряемых или контролируемых физических величин (ИИС – информационно-измерительной системы);

д) совершенствование и создание новых государственных эталонов единиц эл. величин, что обеспечивает повышение уровня точности эл. измерений.

Особую роль должны сыграть эл. измерения в электрификации с/х. Возрастающая с каждым годом автоматизация производственных процессов в животноводстве и полеводстве, внедрение эл. энергии в биологические процессы на базе общей электрификации с/х неразрывно связаны с развитием эл. измерительной техники.

В связи с автоматизацией управления и регулирования, которые все меры будут внедрять в с/х производство, значительно усложняются требования к эл. измерительной технике. Наличающийся постепенный переход к технологии поточного производства ив животноводстве и полеводстве выдвигает новые требования к технологическим измерениям, обеспечивающим высокую надежность работы и качества продукции.

Решение указанных задач сегодня требует, чтобы инженер с/х производства хорошо ориентировался в обширном круге вопросов, обладал серьезной технической эрудицией.

В частности, от инженера-электрика требуется глубокое знание теории и практики эл. измерений.

2. Общие сведения об измерениях и измерительной аппаратуре.

а) основные понятия и определения.

Количественная оценка свойств различных объектов измерения (исследования) осуществляется путем измерения физических величин, характеризующих указанные свойства.

Измерением называется познавательный процесс, заключающийся в сравнении опытным путем измеряемой величины с некоторым ее значением, принятым за единицу.

В более широком смысле

Измерение – это процесс приема и преобразования информации об измеряемой величине для получения количественного результата ее сравнения с единицей измерения в форме, наиболее удобной для исследования.

Таким образом, измерение представляет собой процесс получения информации: после измерения мы узнаем о численном значении измеряемой величины, ее связях и соотношениях с другими величинами больше, чем мы знали до измерения.

Значит, измерение это экспериментальное сравнение измеряемой величины с другой однородной величиной, принятой и узаконенной в качестве единицы. Так как измерение представляет собой физический эксперимент, оно не может быть осуществлено умозрительно, абстрактно. Из этого следует, что для любого измерения необходимы узаконенная система единиц и технические средства ее осуществления.

Результатом измерения всегда является числовое значение измеряемой величины А, которое равно отношению измеряемой величины Аиз к единице измерения Х. Иными словами, числовое значение показывает, во сколько раз измеряемая величина больше или меньше единицы измерения.

Процесс измерения, следовательно, может быть записан так:

А= Аиз/Х, откуда Аиз= А·Х, т. е. «измеряемая величина Аиз составляет столько-то А единиц Х».

Последнее уравнение называется основным уравнением измерения.

б) система единиц. Основные единицы СИ.

Системой единиц называется совокупность основных и производных единиц измерения, охватывающих некоторую область измерений физических величин.

В СССР с 1 января 1963 года введен в действие ГОСТ 9867-61, которым рекомендуется применение СИ как предпочтительной во всех областях науки и технике, а также при преподавании.

Международная система единиц (СИ) построена на семи основных единицах двух дополнительных и 27 производных.

Основные единицы СИ.

Размер основных единиц устанавливается независимо от размеров других единиц.

Производные единицы – определяются уравнениями связи, выражающими математическую зависимость данной единицы от других единиц.

Наименование величины

Единица измерения

Сокращенное обозначение

русское

латинское

килограмм

Сила эл. тока

Термодинам.

температуры

Сила света

Количество

вещества

моль

Дополнительные единицы

1. Радиан – угол между двумя радиусами круга, вырезающими на его окружности дугу, длина которой равна радиусу (единицы линейного угла).

2. Стерадиан – телесный угол, величина которого расположена в центре сферы и который вырезает на поверхности сферы площадь, равную площади квадрата со стороной равной радиусу сферы (единицы телесного угла).

В измерительной практике очень часто пользуются кратными и дольными единицами. Они образуются путем умножения целых единиц на 10к, где к – целое число. При этом к наименованиям единиц прибавляют соответствующие приставки.

Дольность или кратность

Наименование приставки

Сокращенные обозначения (русское)

Дольность или кратность

Наименование

приставки

Сокращенное обозначение

(русское)

Виды средств электрических измерений.

Средствами электрических измерений называют технические средства, используемые при электрических измерениях и имеющие нормированные метрологические свойства.

Различают следующие виды средств электрических измерений:

2. Электрические измерительные приборы.

3. Измерительные преобразователи.

4. Электроизмерительные установки.

5. Измерительные информационные системы (ИИС).

Мерами называют средства измерений, предназначенные для воспроизведения физической величины заданного размера. (Вещественно воспроизведенная единица измерения).

Различают однозначные, многозначные меры и набор мер.

Однозначная мера воспроизводит физическую величину одного размера.

Многозначная мера воспроизводит ряд одноименных величин различного размера (конденсатор переменной емкости, вариометр индуктивности и др.).

Набор мер представляет собой специально подобранный комплект мер, применяемых не только по отдельности, но и в различных сочетаниях с целью воспроизведения ряда одноименных величин различного размера (магазин сопротивлений).

Электроизмерительными приборами называют средства электрических измерений, предназначенные для выработки сигналов измерительной информации, т. е. сигналов функционально связанных с измеряемыми физическими величинами, в форме, доступной для непосредственного восприятия наблюдателем.

Меры электрических величин.

В практике электрических измерений в качестве мер широко используют меры э. д.с., электрических сопротивлений, индуктивности, взаимоиндуктивности и емкости.

Мера Э. Д.С. Образцовой мерой э. д.с. служит нормальный элемент, представляющий собой гальванический элемент, характеризующийся весьма стабильным значением, развиваемой им э. д.с. Э. Д.С. н. э. отличаются от 1 В, но она точно известна. Это достигается подбором составных частей элемента из строго определенных по химическому составу веществ, точной их дозировкой и строго однообразной конструкцией. При температуре 20оС э. д.с. насыщенного н. э. составляет 1.0185 – 1.0187 В, т. е. наиболее допустимое расхождение значений э. д.с. превосходит 200 мкВ. Н. Э. изготавливают двух типов: насыщенные и ненасыщенные, отличающиеся друг от друга конструкцией, электролитом и стабильностью развиваемой э. д.с. Ненасыщенные – имеют меньшее внутренние сопротивление (~300 Ом) и малый температурный коэффициент. При температуре от 10 до 40оС – не превышает 15 мкВ на 1оС. У насыщенных – температурный коэффициент в 4 раза больше э. д.с.

Н. Э. мало меняется во времени. Согласно ГОСТ 1954 – 64, допускается изменение э. д.с. насыщенного н. э. за год не более 50 – 100 мкВ.

В зависимости от точности определения э. д.с., ее стабильности н. э. подразделяются на классы.

Н. Э. не может быть использован как источник электрической энергии, его нельзя нагружать током, превышающим допустимые значения.

Меры электрического сопротивления выполняют в виде образцовых измерительных катушек сопротивления или измерительных магазинов сопротивления. Значение сопротивлений их 10±n Ом, где n – целое число.

Образцовые катушки снабжают двумя парами зажимов, два из которых называются токовыми и предназначены для включения образцовой катушки в цепь тока, два других называются потенциальными. Сопротивление между потенциальными зажимами равно сопротивлению образцовой катушки к потенциальным зажимам присоединяются провода, идущие к измерительной схеме.

К материалу, из которого изготавливаются катушки, предъявляются следующие требования:

1) возможно больше удельное сопротивление;

2) наименьшей температурный коэффициент и термо э. д.с. в паре с другими металлами;

3) устойчивость металла провода против окисления.

Этим требованиям лучше всего удовлетворяет манганин.

В зависимости от погрешности образцовых сопротивлений и других характеристик (изменение сопротивлений с течением времени, допустимой мощности и др.) образцовые сопротивления делятся на классы точности, для которых погрешности и другие характеристики нормируются соответствующими ГОСТ.

Меры индуктивности и взаимоиндуктивности.

Меры L и M выполняют в виде отельных катушек или магазинов. Образцовые катушки индуктивности и взаимной индуктивности обычно изготавливают в виде плоских катушек из изолированной тонкой проволоки, намотанной на каркас. Катушки должны обладать постоянство индуктивности, малым активным сопротивлением, независимостью индуктивности от величины тока и возможно малой зависимостью индуктивности от чистоты тока.

Для получения независимости L катушки от силы тока каркас катушки изготавливают из материала, М которого равна единицы и не зависит от магнитной индукции в нем (фарфор, мрамор, керамика, пластмассы, реже – дерево). Для обмоток выбирают многожильный провод (для уменьшения влияния частоты – уменьшают распределенную емкость).

Катушки взаимной индуктивности состоят из двух обмоток, жестко укрепленных на общем каркасе.

Мерами с переменными значениями L и М служат вариометры.

Меры емкости . Ими служат воздушные (не более 11000 пФ) или слюдяные конденсаторы постоянной и переменной емкости.

Образцовые меры емкости должны обладать постоянством емкости и малым ее температурным коэффициентом, весьма малыми потерями энергии в диэлектрике, независимостью емкости от частоты и формы кривой тока и высоким сопротивлением и прочностью изоляции.

Классификация мер и измерительных приборов.

Электрические измерительные приборы весьма разнообразны по принципу действия и конструктивному оформлению, вследствие различных требований, предъявляемых к ним.

Меры и измерительные приборы можно классифицировать по ряду признаков.

1. По функциональному признаку:

а) средства сбора, обработки и представления информации;

б) средства аттестации и проверки.

а) рабочие меры и измерительные приборы;

б) образцовые меры и измерительные приборы;

в) эталоны.

Эталон – это мера, воспроизводящая единицу измерения с наибольшей для данного исторического времени точностью.

2. По способу представления результатов измерения:

а) показывающие;

б) регистрирующие.

3. По методу измерения:

а) непосредственного отсчета;

б) сравнения.

4. По способу применения и по конструкции:

а) переносные;

б) стационарные.

5. По точности измерения:

а) измерительные;

б) индикаторы;

в) указатели.

6. По способу воспроизведения измеряемой величины:

а) аналоговые;

б) цифровые.

Аналоговые – электрические измерительные приборы, показания которых являются непрерывными функциями изменений измеряемой величины.

Цифровые – электрические измерительные приборы, автоматически вырабатывающие дискретные сигналы изменения информации, показания которых представлены в цифровой форме.