Ip шифрование. Анатомия IPsec. Проверяем на прочность легендарный протокол

Рисунок 1 - Пример работы IPsec

Краткая историческая справка появления протокола

Первоначально сеть Интернет была создана как безопасная среда передачи данных между военными. Так как с ней работал только определённый круг лиц, людей образованных и имеющих представления о политике безопасности, то явной нужды построения защищённых протоколов не было. Безопасность организовывалась на уровне физической изоляции объектов от посторонних лиц, и это было оправдано, когда к сети имело доступ ограниченное число машин. Однако, когда Интернет стал публичным и начал активно развиваться и разрастаться, такая потребность появилась.

В 1994 году Совет по архитектуре Интернет (IAB) выпустил отчет "Безопасность архитектуры Интернет". В этом документе описывались основные области применения дополнительных средств безопасности в сети Интернет, а именно защита от несанкционированного мониторинга, подмены пакетов и управления потоками данных. В числе первоочередных и наиболее важных защитных мер указывалась необходимость разработки концепции и основных механизмов обеспечения целостности и конфиденциальности потоков данных. Поскольку изменение базовых протоколов семейства TCP/IP вызвало бы полную перестройку сети Интернет, была поставлена задача обеспечения безопасности информационного обмена в открытых телекоммуникационных сетях на базе существующих протоколов. Таким образом, начала создаваться спецификация Secure IP, дополнительная по отношению к протоколам IPv4 и IPv6 . В 1995 году рабочая группа опубликовала RFC-1825 - RFC-1827 с первым рабочим внедрением протокола.

Особенности

Специфика IPsec состоит в том, что он реализуется на сетевом уровне, дополняя его таким образом, чтобы для последующих уровней все происходило незаметно. Основная сложность состоит в том, что в процессе установления соединения двум участникам защищенного канала необходимо согласовать довольно большое количество различных параметров. А именно - они должны аутентифицировать друг друга, сгенерировать и обменяться ключами (причем через недоверенную среду), а также договориться, с помощью каких протоколов шифровать данные.

Именно по этой причине IPsec и состоит из стека протоколов, обязанность которых лежит в том, чтобы обеспечить установление защищенного соединения, его работу и управление им. Весь процесс установления соединения включает две фазы: первая фаза применяется для того, чтобы обеспечить безопасный обмен ISAKMP-сообщений уже во второй фазе. ISAKMP (Internet Security Association and Key Management Protocol) - это протокол, который служит для согласования и обновления политик безопасности (SA) между участниками VPN-соединения. В этих политиках как раз и указано, с помощью какого протокола шифровать (AES или 3DES) и с помощью чего аутентифицировать (SHA или MD5).

Основные понятия

AES (Advanced Encryption Standard) , также известный как Rijndael - симметричный алгоритм блочного шифрования (размер блока 128 бит, ключ 128/192/256 бит), принятый в качестве стандарта шифрования правительством США по результатам конкурса AES. По состоянию на 2009 год AES является одним из самых распространённых алгоритмов симметричного шифрования.

DES (Data Encryption Standard) - симметричный алгоритм шифрования, разработанный фирмой IBM и утвержденный правительством США в 1977 году как официальный стандарт (FIPS 46-3). DES имеет блоки по 64 бита и 16 цикловую структуру сети Фейстеля, для шифрования использует ключ с длиной 56 бит. Алгоритм использует комбинацию нелинейных (S-блоки) и линейных (перестановки E, IP, IP-1) преобразований.

3DES (Triple Data Encryption Standard) - симметричный блочный шифр, созданный Уитфилдом Диффи, Мартином Хеллманом и Уолтом Тачманном в 1978 году на основе алгоритма DES, с целью устранения главного недостатка последнего - малой длины ключа (56 бит), который может быть взломан методом полного перебора ключа. Скорость работы 3DES в 3 раза ниже, чем у DES, но криптостойкость намного выше - время, требуемое для криптоанализа 3DES, может быть в миллиард раз больше, чем время, нужное для вскрытия DES. 3DES используется чаще, чем DES, который легко ломается при помощи сегодняшних технологий (в 1998 году организация Electronic Frontier Foundation, используя специальный компьютер DES Cracker, вскрыла DES за 3 дня). 3DES является простым способом устранения недостатков DES. Алгоритм 3DES построен на основе DES, поэтому для его реализации возможно использовать программы, созданные для DES.

RSA (Ron Rivest, Adi Shamir, and Leonard Adleman Algorithm) - криптографический алгоритм с открытым ключом. RSA стал первым алгоритмом такого типа, пригодным и для шифрования, и для цифровой подписи. Алгоритм используется в большом числе криптографических приложений.

Certificate - цифровой или бумажный документ, подтверждающий соответствие между открытым ключом и информацией, идентифицирующей владельца ключа. Содержит информацию о владельце ключа, сведения об открытом ключе, его назначении и области применения, название центра сертификации и т. д.

PKI (Public Key Infrastructure, Инфраструктура открытых ключей) - технология аутентификации с помощью открытых ключей. Это комплексная система, которая связывает открытые ключи с личностью пользователя посредством удостоверяющего центра (УЦ).

CRL (Certificate Revocation list) - список отозванных сертификатов.

Стандарты

Архитектура IPSec

Построение защищённого канала связи может быть реализовано на разных уровнях модели OSI. Так, например, популярный SSL-протокол работает на уровне представления, а PPTP - на сеансовом. IP Security - это комплект протоколов, касающихся вопросов шифрования, аутентификации и обеспечения защиты при транспортировке IP-пакетов; в его состав сейчас входят почти 20 предложений по стандартам и 18 RFC.

Спецификация IP Security (известная сегодня как IPsec) разрабатывается Рабочей группой IP Security Protocol IETF. Первоначально IPsec включал в себя 3 алгоритмо-независимые базовые спецификации, опубликованные в качестве RFC -документов "Архитектура безопасности IP", "Аутентифицирующий заголовок (AH)", "Инкапсуляция зашифрованных данных (ESP)" (RFC1825, 1826 и 1827). Необходимо заметить, что в ноябре 1998 года Рабочая группа IP Security Protocol предложила новые версии этих спецификаций, имеющие в настоящее время статус предварительных стандартов, это RFC2401 - RFC2412. Отметим, что RFC1825-27 на протяжении уже нескольких лет считаются устаревшими и реально не используются. Кроме этого, существуют несколько алгоритмо-зависимых спецификаций, использующих протоколы MD5 , SHA, DES . Рабочая группа IP Security Protocol разрабатывает также и протоколы управления ключевой информацией. В задачу этой группы входит разработка Internet Key Management Protocol (IKMP), протокола управления ключами прикладного уровня, не зависящего от используемых протоколов обеспечения безопасности. В настоящее время рассматриваются концепции управления ключами с использованием спецификации Internet Security Association and Key Management Protocol (ISAKMP) и протокола Oakley Key Determination Protocol. Спецификация ISAKMP описывает механизмы согласования атрибутов используемых протоколов, в то время как протокол Oakley позволяет устанавливать сессионные ключи на компьютеры сети Интернет. Ранее рассматривались также возможности использования механизмов управления ключами протокола SKIP, однако сейчас такие возможности реально практически нигде не используются. Создаваемые стандарты управления ключевой информацией, возможно, будут поддерживать Центры распределения ключей, аналогичные используемым в системе Kerberos. Протоколами ключевого управления для IPSec на основе Kerberos сейчас занимается относительно новая рабочая группа KINK (Kerberized Internet Negotiation of Keys). Гарантии целостности и конфиденциальности данных в спецификации IPsec обеспечиваются за счет использования механизмов аутентификации и шифрования соответственно. Последние, в свою очередь, основаны на предварительном согласовании сторонами информационного обмена т.н. "контекста безопасности" – применяемых криптографических алгоритмов, алгоритмов управления ключевой информацией и их параметров. Спецификация IPsec предусматривает возможность поддержки сторонами информационного обмена различных протоколов и параметров аутентификации и шифрования пакетов данных, а также различных схем распределения ключей. При этом результатом согласования контекста безопасности является установление индекса параметров безопасности (SPI), представляющего собой указатель на определенный элемент внутренней структуры стороны информационного обмена, описывающей возможные наборы параметров безопасности. По сути, IPSec, который станет составной частью IPv6 , работает на третьем уровне, т. е. на сетевом уровне. В результате передаваемые IP-пакеты будут защищены прозрачным для сетевых приложений и инфраструктуры образом. В отличие от SSL (Secure Socket Layer), который работает на четвертом (т. е. транспортном) уровне и теснее связан с более высокими уровнями модели OSI, IPSec призван обеспечить низкоуровневую защиту. К IP-данным, готовым к передаче по виртуальной частной сети, IPSec добавляет заголовок для идентификации защищенных пакетов. Перед передачей по Internet эти пакеты инкапсулируются в другие IP-пакеты. IPSec поддерживает несколько типов шифрования, в том числе Data Encryption Standard и Message Digest 5. Чтобы установить защищенное соединение, оба участника сеанса должны иметь возможность быстро согласовать параметры защиты, такие как алгоритмы аутентификации и ключи. IPSec поддерживает два типа схем управления ключами, с помощью которых участники могут согласовать параметры сеанса. Эта двойная поддержка в свое время вызвала определенные трения в IETF Working Group. С текущей версией IP, IPv4, могут быть использованы или Internet Secure Association Key Management Protocol (ISAKMP), или Simple Key Management for Internet Protocol. С новой версией IP, IPv6, придется использовать ISAKMP, известный сейчас как IKE, хотя не исключается возможность использования SKIP. Однако, следует иметь в виду, что SKIP уже давно не рассматривается как кандидат управления ключами, и был исключён из списка возможных кандидатов ещё в 1997 г. IPsec является набором стандартов Интернет и своего рода «надстройкой» над IP-протоколом. Его ядро составляют три протокола:

  • Authentication Header (АН) обеспечивает целостность передаваемых данных, аутентификацию источника информации и функцию по предотвращению повторной передачи пакетов
  • Encapsulating Security Payload (ESP) обеспечивает конфиденциальность (шифрование) передаваемой информации, ограничение потока конфиденциального трафика. Кроме этого, он может исполнять функции AH: обеспечить целостность передаваемых данных, аутентификацию источника информации и функцию по предотвращению повторной передачи пакетов. При применении ESP в обязательном порядке должен указываться набор услуг по обеспечению безопасности: каждая из его функций может включаться опционально.
  • Internet Security Association and Key Management Protocol (ISAKMP) - протокол, используемый для первичной настройки соединения, взаимной аутентификации конечными узлами друг друга и обмена секретными ключами. Протокол предусматривает использование различных механизмов обмена ключами, включая задание фиксированных ключей, использование таких протоколов, как Internet Key Exchange, Kerberized Internet Negotiation of Keys (RFC 4430) или записей DNS типа IPSECKEY (RFC 4025).

Также одним из ключевых понятий является Security Association (SA). По сути, SA является набором параметров, характеризующим соединение. Например, используемые алгоритм шифрования и хэш-функция, секретные ключи, номер пакета и др.

Заголовок AH

Аутентифицирующий заголовок (AH) является обычным опциональным заголовком и, как правило, располагается между основным заголовком пакета IP и полем данных. Наличие AH никак не влияет на процесс передачи информации транспортного и более высокого уровней. Основным и единственным назначением AH является обеспечение защиты от атак, связанных с несанкционированным изменением содержимого пакета, и в том числе от подмены исходного адреса сетевого уровня. Протоколы более высокого уровня должны быть модифицированы в целях осуществления проверки аутентичности полученных данных. Формат AH достаточно прост и состоит из 96-битового заголовка и данных переменной длины, состоящих из 32-битовых слов. Названия полей достаточно ясно отражают их содержимое: Next Header указывает на следующий заголовок, Payload Len представляет длину пакета, SPI является указателем на контекст безопасности и Sequence Number Field содержит последовательный номер пакета. Последовательный номер пакета был введен в AH в 1997 году в ходе процесса пересмотра спецификации IPsec. Значение этого поля формируется отправителем и служит для защиты от атак, связанных с повторным использованием данных процесса аутентификации. Поскольку сеть Интернет не гарантирует порядок доставки пакетов, получатель должен хранить информацию о максимальном последовательном номере пакета, прошедшего успешную аутентификацию, и о получении некоторого числа пакетов, содержащих предыдущие последовательные номера (обычно это число равно 64). В отличие от алгоритмов вычисления контрольной суммы, применяемых в протоколах передачи информации по коммутируемым линиям связи или по каналам локальных сетей и ориентированных на исправление случайных ошибок среды передачи, механизмы обеспечения целостности данных в открытых телекоммуникационных сетях должны иметь средства защиты от внесения целенаправленных изменений. Одним из таких механизмов является специальное применение алгоритма MD5: в процессе формирования AH последовательно вычисляется хэш-функция от объединения самого пакета и некоторого предварительно согласованного ключа, а затем от объединения полученного результата и преобразованного ключа. Данный механизм применяется по умолчанию в целях обеспечения всех реализаций IPv6, по крайней мере, одним общим алгоритмом, не подверженным экспортным ограничениям.

Заголовок ESP

В случае использования инкапсуляции зашифрованных данных заголовок ESP является последним в ряду опциональных заголовков, "видимых" в пакете. Поскольку основной целью ESP является обеспечение конфиденциальности данных, разные виды информации могут требовать применения существенно различных алгоритмов шифрования. Следовательно, формат ESP может претерпевать значительные изменения в зависимости от используемых криптографических алгоритмов. Тем не менее, можно выделить следующие обязательные поля: SPI, указывающее на контекст безопасности и Sequence Number Field, содержащее последовательный номер пакета. Поле "ESP Authentication Data" (контрольная сумма), не является обязательным в заголовке ESP. Получатель пакета ESP расшифровывает ESP заголовок и использует параметры и данные применяемого алгоритма шифрования для декодирования информации транспортного уровня. Различают два режима применения ESP и AH (а также их комбинации) - транспортный и туннельный.

AH и ESP

Security Associations

Security Association (SA) - это соединение, которое предоставляет службы обеспечения безопасности трафика, который передаётся через него. Два компьютера на каждой стороне SA хранят режим, протокол, алгоритмы и ключи, используемые в SA. Каждый SA используется только в одном направлении. Для двунаправленной связи требуется два SA. Каждый SA реализует один режим и протокол; таким образом, если для одного пакета необходимо использовать два протокола (как например AH и ESP), то требуется два SA. Для начала обмена данными между двумя сторонами необходимо установить соединение, которое носит название SA (Security Association). Концепция SA фундаментальна для IPsec, собственно, является его сутью. Она описывает, как стороны будут использовать сервисы для обеспечения защищённого общения. Соединение SA является симплексным (однонаправленным), поэтому для взаимодействия сторон необходимо установить два соединения. Стоит также отметить, что стандарты IPsec позволяют конечным точкам защищённого канала использовать как одно SA для передачи трафика всех взаимодействующих через этот канал хостов, так и создавать для этой цели произвольное число безопасных ассоциаций, например, по одной на каждое TCP-соединение. Это дает возможность выбирать нужную степень детализации защиты. Установка соединения начинается со взаимной аутентификации сторон. Далее происходит выбор параметров (будет ли осуществляться аутентификация, шифрование, проверка целостности данных) и необходимого протокола (AH или ESP) передачи данных. После этого выбирается конкретные алгоритмы (например, шифрования, хэш-функция) из нескольких возможных схем, некоторые из которых определены стандартом (для шифрования - DES , для хэш-функций - MD5 либо SHA-1), другие добавляются производителями продуктов, использующих IPsec (например Triple DES , Blowfish, CAST).

Security Associations Database

Все SA хранятся в базе данных SAD (Security Associations Database) IPsec-модуля. Каждое SA имеет уникальный маркер, состоящий из трёх элементов:

  • индекса параметров безопасности (Security Parameters Index, SPI)
  • IP-адреса назначения
  • идентификатора протокола безопасности (ESP или AH)

IPsec-модуль, имея эти три параметра, может отыскать в SAD запись о конкретном SA. В список компонентов SA входят:

Последовательный номер

32-битовое значение, которое используется для формирования поля Sequence Number в заголовках АН и ESP.

Переполнение счетчика порядкового номера

Флаг, который сигнализирует о переполнении счетчика последовательного номера.

Окно для подавления атак воспроизведения

Используется для определения повторной передачи пакетов. Если значение в поле Sequence Number не попадает в заданный диапазон, то пакет уничтожается.

Информация AH

используемый алгоритм аутентификации, необходимые ключи, время жизни ключей и другие параметры.

Информация ESP

алгоритмы шифрования и аутентификации, необходимые ключи, параметры инициализации (например, IV), время жизни ключей и другие параметры

Режим работы IPsec

туннельный или транспортный

Время жизни SA

Задано в секундах или байтах информации, проходящих через туннель. Определяет длительность существования SA, при достижении этого значения текущее SA должно завершиться, при необходимости продолжить соединение, устанавливается новое SA.

Authentication Header

AH используется для аутентификации отправителя информации, для обеспечения целостности данных и опционально может использоваться для защиты от повторной передачи данных. Аутентификация осуществляется за счет вычисления хэш-функции IP пакета (поля, которые могут меняться в процессе передачи пакета (например, TTL) исключаются). Вычисленная хэш-функция добавляется к заголовку пакета AH и отправляется получателю пакета. Заголовок AH содержит поле Integrity Check Value, которое вычисляется по алгоритмам MD5 или SHA-1. На практике чаще используется HMAC (Hash Message Authentication Code), так он при вычислении хэш-функции использует заранее известный участникам секретный ключ. В свою очередь HMAC использует для вычисления хэш-функции алгоритмы MD5 или SHA-1. В зависимости от используемого алгоритма HMAC будет называться соответственно HMAC-MD5 или HMAC-SHA-1.

"Authentication Header format"
Offsets Octet 16 0 1 2 3
Octet 16 Bit 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 0 Next Header Payload Len Reserved
4 32 Security Parameters Index (SPI)
8 64 Sequence Number
C 96 Integrity Check Value (ICV)
... ...

Тип следующего заголовка (8 bits)

Тип заголовка протокола, идущего после заголовка AH. По этому полю приёмный IP-sec модуль узнает о защищаемом протоколе верхнего уровня. Значения этого поля для разных протоколов можно посмотреть в RFC 1700 .

Длина содержимого (8 bits)

Это поле определяет общий размер АН-заголовка в 32-битовых словах, минус 2. Несмотря на это, при использовании IPv6 длина заголовка должна быть кратна 8 байтам.

Зарезервировано (16 bits)

Зарезервировано. Заполняется нулями.

Индекс параметров системы безопасности (32 bits)

Индекс параметров безопасности. Значение этого поля вместе с IP-адресом получателя и протоколом безопасности (АН-протокол), однозначно определяет защищённое виртуальное соединение (SA) для данного пакета. Диапазон значений SPI 1…255 зарезервирован IANA.

Порядковый номер (32 bits)

Последовательный номер. Служит для защиты от повторной передачи. Поле содержит монотонно возрастающее значение параметра. Несмотря на то, что получатель может отказаться от услуги по защите от повторной передачи пакетов, оно является обязательным и всегда присутствует в AH-заголовке. Передающий IPsec-модуль всегда использует это поле, но получатель может его и не обрабатывать.

Данные аутентификации

Цифровая подпись. Служит для аутентификации и проверки целостности пакета. Должна быть дополнена до размера, кратного 8-байтам для IPv6, и 4-байтам для IPv4. Протокол AH используется для аутентификации, то есть для подтверждения того, что мы связываемся именно с тем, с кем предполагаем, и что данные, которые мы получаем, не искажены при передаче.

Обработка выходных IP-пакетов

Если передающий IPsec-модуль определяет, что пакет связан с SA, которое предполагает AH-обработку, то он начинает обработку. В зависимости от режима (транспортный или режим туннелирования) он по-разному вставляет AH-заголовок в IP-пакет. В транспортном режиме AH-заголовок располагается после заголовка протокола IP и перед заголовками протоколов верхнего уровня (Обычно, TCP или UDP). В режиме туннелирования весь исходный IP-пакет обрамляется сначала заголовком AH, затем заголовком IP-протокола. Такой заголовок называется внешним, а заголовок исходного IP-пакета- внутренним. После этого передающий IPsec-модуль должен сгенерировать последовательный номер и записать его в поле Sequence Number. При установлении SA последовательный номер устанавливается в 0, и перед отправкой каждого IPsec-пакета увеличивается на единицу. Кроме того, происходит проверка- не зациклился ли счетчик. Если он достиг своего максимального значения, то он снова устанавливается в 0. Если используется услуга по предотвращению повторной передачи, то при достижении счетчика своего максимального значения, передающий IPsec-модуль переустанавливает SA. Таким образом обеспечивается защита от повторной посылки пакета- приёмный IPsec-модуль будет проверять поле Sequence Number, и игнорировать повторно приходящие пакеты. Далее происходит вычисление контрольной суммы ICV. Надо заметить, что здесь контрольная сумма вычисляется с применением секретного ключа, без которого злоумышленник сможет заново вычислить хэш, но не зная ключа, не сможет сформировать правильную контрольную сумму. Конкретные алгоритмы, использующиеся для вычисления ICV, можно узнать из RFC 4305 . В настоящее время могут применяться, например, алгоритмы HMAC-SHA1-96 или AES-XCBC-MAC-96. Протокол АН вычисляет контрольную сумму (ICV) по следующим полям IPsec-пакета:

поля IP-заголовка, которые не были подвержены изменениям в процессе транслирования, или определены как наиболее важные АН-заголовок (Поля: «Next Header», "Payload Len, «Reserved», «SPI», «Sequence Number», «Integrity Check Value». Поле «Integrity Check Value» устанавливается в 0 при вычислении ICV данные протокола верхнего уровня Если поле может изменяться в процессе транспортировки, то его значение устанавливается в 0 перед вычислением ICV. Исключения составляют поля, которые могут изменяться, но значение которых можно предугадать при приёме. При вычислении ICV они не заполняются нулями. Примером изменяемого поля может служить поле контрольной суммы, примером изменяемого, но предопределенного может являться IP-адрес получателя. Более подробное описание того, какие поля как учитываются при вычислении ICV, можно найти в стандарте RFC 2402 .

Обработка входных IP-пакетов

После получения пакета, содержащего сообщение АН-протокола, приёмный IPsec-модуль ищет соответствующее защищённое виртуальное соединение (SA) SAD (Security Associations Database), используя IP-адрес получателя, протокол безопасности (АН) и индекс SPI. Если соответствующее SA не найдено, пакет уничтожается. Найденное защищённое виртуальное соединение (SA) указывает на то, используется ли услуга по предотвращению повторной передачи пакетов, то есть на необходимость проверки поля Sequence Number. Если услуга используется, то поле проверяется. При этом используется метод скользящего окна для ограничения буферной памяти, требуемый для работы протоколу. Приёмный IPsec-модуль формирует окно с шириной W (обычно W выбирается равным 32 или 64 пакетам). Левый край окна соответствует минимальному последовательному номеру (Sequence Number) N правильно принятого пакета. Пакет с полем Sequence Number, в котором содержится значение, начиная от N+1 и заканчивая N+W, принимается корректно. Если полученный пакет оказывается по левую границу окна- он уничтожается. Затем приёмный IPsec-модуль вычисляет ICV по соответствующим полям принятого пакета, используя алгоритм аутентификации, который он узнает из записи об SA, и сравнивает полученный результат со значением ICV, расположенным в поле «Integrity Check Value». Если вычисленное значение ICV совпало с принятым, то пришедший пакет считается действительным и принимается для дальнейшей IP-обработки. Если проверка дала отрицательный результат, то принятый пакет уничтожается.

Encapsulating Security Payload

ESP - протокол безопасности, который обеспечивает конфиденциальность и защиту данных. Возможно использование аутентификации (AH) и обнаружение повторных пересылок. ESP полностью инкапсулирует пакеты. ESP может применяться сам по себе, либо с использованием AH.

MTU

Максимальный размер пакета, который можно передать по виртуальному каналу без фрагментации. Каждый протокол (ESP/AH) должен иметь свой собственный SA для каждого направления, таким образом, связка AH+ESP требует для дуплексного канала наличия четырёх SA. Все эти данные располагаются в SAD.

Помимо базы данных SAD, реализации IPsec поддерживают базу данных SPD (Security Policy Database - база данных политики безопасности). SPD служит для соотнесения приходящих IP-пакетов с правилами обработки для них. Записи в SPD состоят из двух полей. В первом хранятся характерные признаки пакетов, по которым можно выделить тот или иной поток информации. Эти поля называются селекторами. Примеры селекторов, которые содержатся в SPD:

  • IP-адрес места назначения
  • IP-адрес отправителя
  • Имя пользователя в формате DNS или X.500
  • Порты отправителя и получателя

Второе поле в SPD содержит политику защиты, соответствующую данному потоку пакетов. Селекторы используются для фильтрации исходящих пакетов с целью поставить каждый пакет в соответствие с определенным SA. Когда поступает пакет, сравниваются значения соответствующих полей в пакете (селекторные поля) с теми, которые содержатся в SPD. При нахождении совпадения в поле политики защиты содержится информация о том, как поступать с данным пакетом: передать без изменений, отбросить или обработать. В случае обработки, в этом же поле содержится ссылка на соответствующую запись в SAD. Затем определяется SA для пакета и сопряжённый с ней индекс параметров безопасности (SPI), после чего выполняются операции IPsec (операции протокола AH или ESP). Если пакет входящий, то в нём сразу содержится SPI - проводится соответствующая обработка.

Политика безопасности

Политика безопасности хранится в SPD (База данных политики безопасности). SPD может указать для пакета данных одно из трёх действий: отбросить пакет, не обрабатывать пакет с помощью IPSec, обработать пакет с помощью IPSec. В последнем случае SPD также указывает, какой SA необходимо использовать (если, конечно, подходящий SA уже был создан) или указывает, с какими параметрами должен быть создан новый SA. SPD является очень гибким механизмом управления, который допускает очень хорошее управление обработкой каждого пакета. Пакеты классифицируются по большому числу полей, и SPD может проверять некоторые или все поля для того, чтобы определить соответствующее действие. Это может привести к тому, что весь трафик между двумя машинами будет передаваться при помощи одного SA, либо отдельные SA будут использоваться для каждого приложения, или даже для каждого TCP соединения. Системы, реализующие IPSec, должны поддерживать две базы данных:

  • базу данных политики безопасности (Security Policy Database, SPD);
  • базу данных протокольных контекстов безопасности (Security Association Database, SAD);

Все IP-пакеты (входящие и исходящие) сопоставляются с упорядоченным набором правил политики безопасности. При сопоставлении используется фигурирующий в каждом правиле селектор - совокупность анализируемых полей сетевого уровня и более высоких протокольных уровней. Первое подходящее правило определяет дальнейшую судьбу пакета:

  • пакет может быть ликвидирован;
  • пакет может быть обработан без участия средств IPSec;
  • пакет должен быть обработан средствами IPSec с учетом набора протокольных контекстов, ассоциированных с правилом;

Таким образом, системы, реализующие IPSec, функционируют как межсетевые экраны, фильтруя и преобразуя потоки данных на основе предварительно заданной политики безопасности.

Протокольный контекст безопасности в IPSec - это однонаправленное "соединение" (от источника к получателю), предоставляющее обслуживаемым потокам данных набор защитных сервисов в рамках какого-то одного протокола (AH или ESP). В случае симметричного взаимодействия партнерам придется организовать два контекста (по одному в каждом направлении). Если используются и AH, и ESP, потребуется четыре контекста.

Элементы базы данных протокольных контекстов содержат следующие поля (в каждом конкретном случае некоторые значения полей будут пустыми):

  • используемый в протоколе AH алгоритм аутентификации, его ключи и т.п.;
  • используемый в протоколе ESP алгоритм шифрования, его ключи, начальный вектор и т.п.;
  • используемый в протоколе ESP алгоритм аутентификации, его ключи и т.п.;
  • время жизни контекста;
  • режим работы IPSec: транспортный или туннельный;
  • максимальный размер пакетов;
  • группа полей (счетчик, окно, флаги) для защиты от воспроизведения пакетов;

Пользователями протокольных контекстов, как правило, являются прикладные процессы. Вообще говоря, между двумя узлами сети может существовать произвольное число протокольных контекстов, так как число приложений в узлах произвольно. В качестве пользователей управляющих контекстов обычно выступают узлы сети (поскольку в этих контекстах желательно сосредоточить общую функциональность, необходимую сервисам безопасности всех протокольных уровней эталонной модели для управления криптографическими ключами).

Управляющие контексты - двусторонние, т. е. любой из партнеров может инициировать новый ключевой обмен. Пара узлов может одновременно поддерживать несколько активных управляющих контекстов, если имеются приложения с существенно разными криптографическими требованиями. Например, допустима выработка части ключей на основе предварительно распределенного материала, в то время как другая часть порождается по алгоритму Диффи-Хелмана.

Протокольный контекст для IPSec идентифицируется целевым IP-адресом, протоколом (AH или ESP), а также дополнительной величиной - индексом параметров безопасности (Security Parameter Index, SPI). Последняя величина необходима, поскольку могут существовать несколько контекстов с одинаковыми IP-адресами и протоколами. Далее показано, как используются индексы SPI при обработке входящих пакетов.

IPSec обязывает поддерживать ручное и автоматическое управление контекстами безопасности и криптографическими ключами. В первом случае все системы заранее снабжаются ключевым материалом и иными данными, необходимыми для защищенного взаимодействия с другими системами. Во втором - материал и данные вырабатываются динамически, на основе определенного протокола - IKE, поддержка которого обязательна.

Протокольный контекст создается на базе управляющего с использованием ключевого материала и средств аутентификации и шифрования последнего. В простейшем случае, когда протокольные ключи генерируются на основе существующих. Когда вырабатывался управляющий контекст, для него было создано три вида ключей:

  • SKEYID_d - ключевой материал, используемый для генерации протокольных ключей;
  • SKEYID_a - ключевой материал для аутентификации;
  • SKEYID_e - ключевой материал для шифрования;

Все перечисленные виды ключей задействованы в обмене. Ключом SKEYID_e шифруются сообщения. Ключ SKEYID_a служит аргументом хэш-функций и тем самым аутентифицирует сообщения. Наконец, протокольные ключи - результат применения псевдослучайной (хэш) функции к SKEYID_d с дополнительными параметрами, в число которых входят одноразовые номера инициатора и партнера. В результате создание протокольного контекста оказывается аутентифицированным, защищенным от несанкционированного ознакомления, от воспроизведения сообщений и от перехвата соединения.

Сообщения (1) и (2) могут нести дополнительную нагрузку, например, данные для выработки "совсем новых" секретных ключей или идентификаторы клиентов, от имени которых ISAKMP-серверы формируют протокольный контекст. В соответствии с протоколом IKE, за один обмен (состоящий из трех показанных сообщений) формируется два однонаправленных контекста - по одному в каждом направлении. Получатель контекста задает для него индекс параметров безопасности (SPI), помогающий находить контекст для обработки принимаемых пакетов IPSec.

Протокольные контексты играют вспомогательную роль, будучи лишь средством проведения в жизнь политики безопасности; она должна быть задана для каждого сетевого интерфейса с задействованными средствами IPSec и для каждого направления потоков данных (входящие/исходящие). Согласно спецификациям IPSec, политика рассчитывается на бесконтекстную (независимую) обработку IP-пакетов, в духе современных фильтрующих маршрутизаторов. Разумеется, должны существовать средства администрирования базы данных SPD, так же, как и средства администрирования базы правил межсетевого экрана, однако этот аспект не входит в число стандартизуемых.

С внешней точки зрения, база данных политики безопасности (SPD) представляет собой упорядоченный набор правил. Каждое правило задается как пара:

  • совокупность селекторов;
  • совокупность протокольных контекстов безопасности;

Селекторы служат для отбора пакетов, контексты задают требуемую обработку. Если правило ссылается на несуществующий контекст, оно должно содержать достаточную информацию для его (контекста) динамического создания. В этом случае требуется поддержка автоматического управления контекстами и ключами. В принципе, функционирование системы может начинаться с задания базы SPD при пустой базе контекстов (SAD); последняя будет наполняться по мере необходимости.

Дифференцированность политики безопасности определяется селекторами, употребленными в правилах. Например, пара взаимодействующих хостов может использовать единственный набор контекстов, если в селекторах фигурируют только IP-адреса; с другой стороны, набор может быть своим для каждого приложения, если анализируются номера TCP- и UDP-портов. Аналогично, два защитных шлюза способны организовать единый туннель для всех обслуживаемых хостов или же расщепить его (путем организации разных контекстов) по парам хостов или даже приложений.

Все реализации IPSec должны поддерживать селекцию следующих элементов:

  • исходный и целевой IP-адреса (адреса могут быть индивидуальными и групповыми, в правилах допускаются диапазоны адресов и метасимволы "любой";
  • имя пользователя или узла в формате DNS или X.500;
  • транспортный протокол;
  • номера исходного и целевого портов (здесь также могут использоваться диапазоны и метасимволы);

Обработка исходящего и входящего трафика, не является симметричной. Для исходящих пакетов просматривается база SPD, находится подходящее правило, извлекаются ассоциированные с ним протокольные контексты и применяются соответствующие механизмы безопасности. Во входящих пакетах для каждого защитного протокола уже проставлено значение SPI, однозначно определяющее контекст. Просмотр базы SPD в таком случае не требуется; можно считать, что политика безопасности учитывалась при формировании соответствующего контекста. (Практически это означает, что ISAKMP-пакеты нуждаются в особой трактовке, а правила с соответствующими селекторами должны быть включены в SPD.)

Отмеченная асимметрия отражает определенную незавершенность архитектуры IPSec. В более раннем документе RFC 1825 понятия базы данных политики безопасности и селекторов отсутствовали. В новой редакции сделано полшага вперед - специфицирован просмотр базы SPD как обязательный для каждого исходящего пакета, но не изменена обработка входящих пакетов. Извлечение контекста по индексу SPI эффективнее, чем просмотр набора правил, но при таком подходе, затрудняется оперативное изменение политики безопасности. Что касается эффективности просмотра правил, то ее можно повысить методами кэширования, широко используемыми при реализации IP.

ISAKMP/Oakley

Протокол ISAKMP определяет общую структуру протоколов, которые используются для установления SA и для выполнения других функций управления ключами. ISAKMP поддерживает несколько Областей Интерпретации (DOI), одной из которых является IPSec-DOI. ISAKMP не определяет законченный протокол, а предоставляет "строительные блоки" для различных DOI и протоколов обмена ключами. Протокол Oakley - это протокол определения ключа, использующий алгоритм замены ключа Диффи-Хеллмана. Протокол Oakley поддерживает идеальную прямую безопасность (Perfect Forward Secrecy - PFS). Наличие PFS означает невозможность расшифровки всего траффика при компрометации любого ключа в системе.

IKE

Поскольку обе стороны диалога должны знать секретные значения, используемые в процессе хэширования или шифрования, возникает вопрос о том, как происходит обмен этими данными. Собственные ключи требуют ручного ввода секретных значений на обоих концах, предположительно, переданных с помощью какого-либо внешнего механизма, а IKE (Internet Key Exchange) представляет собой сложный механизм для проведения этого онлайн.

IKE - протокол обмена ключами по умолчанию для ISAKMP, на данный момент являющийся единственным. IKE находится на вершине ISAKMP и выполняет, собственно, установление как ISAKMP SA, так и IPSec SA. IKE поддерживает набор различных примитивных функций для использования в протоколах. Среди них можно выделить хэш-функцию и псевдослучайную функцию (PRF). "Хэш-функция" - это функция, устойчивая к коллизиям. Под устойчивостью к коллизиям понимается тот факт, что невозможно найти два разных сообщения m1 и m2, таких, что H(m1)=H(m2), где H - хэш функция. Что касается псеводслучайных функций, то в настоящее время вместо специальных PRF используется хэш функция в конструкции HMAC (HMAC - механизм аутентификации сообщений с использованием хэш функций). Для определения HMAC нам понадобится криптографическая хэш функция (обозначим её как H) и секретный ключ K. Мы предполагаем, что H является хэш функцией, где данные хэшируются с помощью процедуры сжатия, последовательно применяемой к последовательности блоков данных. Мы обозначим за B длину таких блоков в байтах, а длину блоков, полученных в результате хэширования - как L (L

ipad = байт 0x36, повторённый B раз; opad = байт 0x5C, повторённый B раз.

IKE совмещает в себе три основных направления (отдельных протокола):

  • ISAKMP (Internet Security Association and Key Management Protocol) - протокол ассоциаций безопасности и управления ключами в интернете; это общее описание (framework) для обеспечения аутентификации и обмена ключей без указания конкретных прикладных алгоритмов;
  • Oakley (Oakley key determination protocol) - протокол определения ключей Окли; он описывает последовательности обмена ключами - моды (mode) и описывает предоставляемые ими функции;
  • SKEMI (Secure Key Exchange Mechanism for Internet) - механизм безопасного обмена ключами в Интернете; он описывает многофункциональные технологии, предоставляющие анонимность, неотрекаемость (аппелируемость) и быстрое обновление ключей;

IKE содержит две фазы согласования ключей. В первой фазе происходит создание защищенного канала, во второй - согласование и обмен ключами, установление SA. Первая фаза использует один из двух режимов: основной (англ. Main Mode) или агрессивный (англ. Aggressive Mode). Различие между ними в уровне защищенности и скорости работы. Основной режим, более медленный, защищает всю информацию, передаваемую между узлами. Агрессивный режим для ускорения работы оставляет ряд параметров открытыми и уязвимыми для прослушивания, его рекомендуется использовать только в случае, когда критическим вопросом является скорость работы. Во второй фазе используется быстрый режим (англ. Quick Mode), названный так потому, что не производит аутентификации узлов, считая, что это было сделано в первой фазе. Эта фаза обеспечивает обмен ключами, с помощью которых происходит шифрование данных.
IKE (произносится айк, аббр. от Internet Key Exchange) - протокол, связывающий все компоненты IPsec в работающее целое. В частности, IKE обеспечивает первоначальную аутентификацию сторон, а также их обмен общими секретными ключами.

Существует возможность вручную установить ключ для сессии (не путать с pre-shared key для аутентификации). В этом случае IKE не используется. Однако этот вариант не рекомендуется и используется редко. Традиционно, IKE работает через порт 500 UDP.

Существует IKE и более новая версия протокола: IKEv2. В спецификациях и функционировании этих протоколов есть некоторые различия. IKEv2 устанавливает параметры соединения за одну фазу, состоящую из нескольких шагов. Процесс работы IKE можно разбить на две фазы.

Первая фаза

IKE создает безопасный канал между двумя узлами, называемый IKE security association (IKE SA). Также, в этой фазе два узла согласуют сессионный ключ по алгоритму Диффи-Хеллмана. Первая фаза IKE может проходить в одном из двух режимов:

Основной режим

Состоит из трёх двусторонних обменов между отправителем и получателем: Во время первого обмена согласуются алгоритмы и хэш-функции, которые будут использоваться для защиты IKE соединения, посредством сопоставления IKE SA каждого узла. Используя алгоритм Диффи-Хеллмана, стороны обмениваются общим секретным ключом. Также узлы проверяют идентификацию друг друга путём передачи и подтверждения последовательности псевдослучайных чисел. По зашифрованному IP-адресу проверяется идентичность противоположной стороны. В результате выполнения основного режима создается безопасный канал для последующего ISAKMP - обмена (этот протокол определяет порядок действий для аутентификации соединения узлов, создания и управления SA, генерации ключей, а также уменьшения угроз, таких как DoS-атака или атака повторного воспроизведения).

Агрессивный режим

Этот режим обходится меньшим числом обменов и, соответственно, числом пакетов. В первом сообщении помещается практически вся нужная для установления IKE SA информация: открытый ключ Диффи-Хеллмана, для синхронизации пакетов, подтверждаемое другим участником, идентификатор пакета. Получатель посылает в ответ все, что надо для завершения обмена. Первому узлу требуется только подтвердить соединение. С точки зрения безопасности агрессивный режим слабее, так как участники начинают обмениваться информацией до установления безопасного канала, поэтому возможен несанкционированный перехват данных. Однако, этот режим быстрее, чем основной. По стандарту IKE любая реализация обязана поддерживать основной режим, а агрессивный режим поддерживать крайне желательно.

Вторая фаза

В фазе два IKE существует только один, быстрый, режим. Быстрый режим выполняется только после создания безопасного канала в ходе первой фазы. Он согласует общую политику IPsec, получает общие секретные ключи для алгоритмов протоколов IPsec (AH или ESP), устанавливает IPsec SA. Использование последовательных номеров обеспечивает защиту от атак повторной передачи. Также быстрый режим используется для пересмотра текущей IPsec SA и выбора новой, когда время жизни SA истекает. Стандартно быстрый режим проводит обновление общих секретных ключей, используя алгоритм Диффи-Хеллмана из первой фазы.

Дополнительно

Со временем стало ясно, что только одного PSK недостаточно для обеспечения безопасности. Например, в случае компрометации рабочей станции сотрудника атакующий смог бы сразу получить доступ ко всей внутренней сети предприятия. Поэтому была разработана фаза 1.5 прямо между первой и второй классическими фазами. К слову, эта фаза обычно не используется в стандартном site-to-site VPN-соединении, а применяется при организации удаленных VPN-подключений (наш случай). Эта фаза содержит в себе два новых расширения - Extended Authentication (XAUTH) и Mode-Configuration (MODECFG).

XAUTH - это дополнительная аутентификация пользователей в пределах IKE-протокола. Эту аутентификацию еще иногда называют вторым фактором IPsec. MODECFG служит для передачи дополнительной информации клиенту, это может быть IP-адрес, маска, DNS-сервер и прочее. Видно, что эта фаза просто дополняет ранее рассмотренные, но полезность ее несомненна.

IKEv2 vs IKEv1

Оба протокола работают по UDP-порту с номером 500, но между собой несовместимы, не допускается ситуация, чтобы на одном конце туннеля был IKEv1, а на другом - IKEv2. Вот основные отличия второй версии от первой:

MD5, SHA-1 и др.

Настройка соединения IPsec включает в себя все виды криптографических решений, но это существенно упрощается тем, что любое данное соединение может использовать не более двух или (редко) трех одновременно.

Аутентификация вычисляет Integrity Check Value (ICV) содержимого пакета, и, как правило, используется криптографический хэш-алгоритм , такой как MD5 или SHA-1. Он включает в себя секретный ключ, известный обоим сторонам, что позволяет получателю вычислить ICV таким же образом. Если получатель получает такое же значение, то это значит, что отправитель успешно аутентифицировался (опираясь на предположение, что криптографические хэши практически невозможно обратить). AH всегда обеспечивает аутентификацию, а для ESP это необязательно. Шифрование использует секретный ключ для шифрования данных перед передачей, что защищает реальное содержимое пакета от прослушки. Существует довольно много вариантов для алгоритмов, распространенными являются DES , 3DES, Blowfish и AES . Возможны и другие.

Атаки на AH, ESP и IKE

Все виды атак на компоненты IPSec можно разделить на следующие группы: атаки, эксплуатирующие конечность ресурсов системы (типичный пример - атака "Отказ в обслуживании", Denial-of-service или DOS-атака), атаки, использующие особенности и ошибки конкретной реализации IPSec и, наконец, атаки, основанные на слабостях самих протоколов. AH и ESP. Чисто криптографические атаки можно не рассматривать - оба протокола определяют понятие "трансформ", куда скрывают всю криптографию. Если используемый криптоалгоритм стоек, а определенный с ним трансформ не вносит дополнительных слабостей (это не всегда так, поэтому правильнее рассматривать стойкость всей системы - Протокол-Трансформ-Алгоритм), то с этой стороны все нормально. Что остается? Replay Attack - нивелируется за счет использования Sequence Number (в одном единственном случае это не работает - при использовании ESP без аутентификации и без AH). Далее, порядок выполнения действий (сначала шифрация, потом аутентификация) гарантирует быструю отбраковку "плохих" пакетов (более того, согласно последним исследованиям в мире криптографии, именно такой порядок действий наиболее безопасен, обратный порядок в некоторых, правда очень частных случаях, может привести к потенциальным дырам в безопасности; к счастью, ни SSL , ни IKE, ни другие распространенные протоколы с порядком действий "сначала аутентифицировать, потом зашифровать", к этим частным случаям не относятся, и, стало быть, этих дыр не имеют). Остается Denial-Of-Service атака. Как известно, это атака, от которой не существует полной защиты. Тем не менее, быстрая отбраковка плохих пакетов и отсутствие какой-либо внешней реакции на них (согласно RFC) позволяют более-менее хорошо справляться с этой атакой. В принципе, большинству (если не всем) известным сетевым атакам (sniffing, spoofing, hijacking и т.п.) AH и ESP при правильном их применении успешно противостоят. С IKE несколько сложнее. Протокол очень сложный, тяжел для анализа. Кроме того, в силу опечаток (в формуле вычисления HASH_R) при его написании и не совсем удачных решений (тот же HASH_R и HASH_I) он содержит несколько потенциальных "дыр" (в частности, в первой фазе не все Payload в сообщении аутентифицируются), впрочем, они не очень серьезные и ведут, максимум, к отказу в установлении соединения.От атак типа replay, spoofing, sniffing, hijacking IKE более-менее успешно защищается. С криптографией несколько сложнее, - она не вынесена, как в AH и ESP, отдельно, а реализована в самом протоколе. Тем не менее, при использовании стойких алгоритмов и примитивов (PRF), проблем быть не должно. В какой-то степени можно рассматривать как слабость IPsec то, что в качестве единственного обязательного к реализации криптоалгоритма в нынешних спецификациях указывается DES (это справедливо и для ESP, и для IKE), 56 бит ключа которого уже не считаются достаточными. Тем не менее, это чисто формальная слабость - сами спецификации являются алгоритмо-независимыми, и практически все известные вендоры давно реализовали 3DES (а некоторые уже и AES).Таким образом, при правильной реализации, наиболее "опасной" атакой остается Denial-Of-Service.

Как работает IPsec

В работе протоколов IPsec можно выделить пять этапов:

Использование

Протокол IPsec используется, в основном, для организации VPN-туннелей. В этом случае протоколы ESP и AH работают в режиме туннелирования. Кроме того, настраивая политики безопасности определенным образом, протокол можно использовать для создания межсетевого экрана. Смысл межсетевого экрана заключается в том, что он контролирует и фильтрует проходящие через него пакеты в соответствии с заданными правилами. Устанавливается набор правил, и экран просматривает все проходящие через него пакеты. Если передаваемые пакеты попадают под действие этих правил, межсетевой экран обрабатывает их соответствующим образом. Например, он может отклонять определенные пакеты, тем самым прекращая небезопасные соединения. Настроив политику безопасности соответствующим образом, можно, например, запретить веб-трафик. Для этого достаточно запретить отсылку пакетов, в которые вкладываются сообщения протоколов HTTP и HTTPS. IPsec можно применять и для защиты серверов - для этого отбрасываются все пакеты, кроме пакетов, необходимых для корректного выполнения функций сервера. Например, для Web-сервера можно блокировать весь трафик, за исключением соединений через 80-й порт протокола TCP, или через порт TCP 443 в случаях, когда применяется HTTPS . С помощью IPsec здесь обеспечивается безопасный доступ пользователей к серверу. При использовании протокола ESP, все обращения к серверу и его ответы шифруются. Однако за VPN шлюзом (в домене шифрования) передаются открытые сообщения. Другие примеры использования IPsec:

Оценка протокола

Протокол IPSec получил неоднозначную оценку со стороны специалистов. С одной стороны, отмечается, что протокол IPSec является лучшим среди всех других протоколов защиты передаваемых по сети данных, разработанных ранее (включая разработанный Microsoft PPTP). По мнению другой стороны, присутствует чрезмерная сложность и избыточность протокола. Так, Niels Ferguson и Bruce Schneier в своей работе "A Cryptographic Evaluation of IPsec" отмечают, что они обнаружили серьёзные проблемы безопасности практически во всех главных компонентах IPsec. Эти авторы также отмечают, что набор протоколов требует серьёзной доработки для того, чтобы он обеспечивал хороший уровень безопасности. В работе приведено описание ряда атак, использующих как слабости общей схемы обработки данных, так и слабости криптографических алгоритмов.

Преимущества и недостатки

IPsec имеет следующие преимущества:

  • Открытый промышленный стандарт. IPSec предоставляет открытый промышленный стандарт как альтернативу проприетарным технологиям безопасности на основе IP. Это позволяет сетевым администраторам извлечь выгоду из полученной оперативной совместимости.
  • Прозрачность. IPSec существует ниже транспортного уровня, что делает его прозрачным для пользователей и приложений, что означает, что нет необходимости изменять сетевые приложения на рабочем столе пользователя, если IPSec реализован в брандмауэре или маршрутизатор.
  • Аутентификация. Стойкие службы аутентификации предотвращают принятие данных за счет использования ложно заявленных идентичностей.
  • Конфиденциальность. Службы конфидениальности предотвращают доступ к важным данным во время их передачи между сторонами.
  • Проверка подлинности происхождения и целостности данных. Проверка подлинности источника данных и целостность обеспечивается значением хэш-кода аутентификации сообщения (HMAC), который входит в каждый пакет.
  • Динамическое перекодирование. Динамическое перекодирование в ходе текущих соединений исключает ручную переконфигурацию секретных ключей и помогает защититься от определения секретного ключа.
  • Безопасные ссылки из конца в конец. IPSec для Windows 2000 предоставляет защищенные ссылки из конца в конец для пользователей частных сетей в пределах одного домена или через какой-либо доверенный домен на предприятии.
  • Централизованное управление. Сетевые администраторы используют политики IPSec для обеспечения надлежащего уровня безопасности в зависимости от пользователя, рабочей группы или по другим критериям. Централизованное управление снижает административные расходы.
  • Гибкость. Гибкость IPSec для Windows 2000 позволяет применять политики в масштабах всего предприятия или к одной рабочей станции.

Хотя IPSec наиболее популярное и, пожалуй, наилучшее решение для создания виртуальных частных сетей, имеются и некоторые ограничения. В случае его применения в транспортном режиме не исключается возможность атак со стороны, что вызвано некоторыми ограничениями протокола ISAKMP. Взлом сессии IPSec вполне вероятен, если не используется заголовок аутентификации AH. При таком типе атаки данные злоумышленника могут быть вставлены в полезную передающуюся информацию, например, в случае Unix-систем достаточно вставить в поток команду rm -R, чтобы получатель в итоге недосчитался многих, а то и всех файлов на жестком диске. Поскольку трафик IPSec маршрутизируем, различные практические реализации IPSec могут подвергнуться более "изящной" атаке - подмене изначального маршрута. Оговоримся, что данный вид атаки возможен лишь при использовании IPSec в транспортном режиме, если же он применяется для построения туннеля, вся роутинговая информация в этом случае шифруется и подобный вид атаки успеха иметь не будет.

Специалисты компании AT&T Research отмечают, что многие потенциально слабые места IPSec являются следствием определенных недостатков алгоритмов шифрования, использованных в конкретной реализации IPSec. Следовательно, с увеличением надежности этих алгоритмов IPSec может стать намного более защищенным.

В настоящее время IPSec - это часть IPv6, но не IPv4. Хотя, конечно же, имеются и реализации IPSec для протокола IP четвертой версии. В реализации для IPv6 некоторые слабые места IPSec, которые все же присутствуют в версии для IPv4, устранены. Так, например, поля фрагментации в заголовке пакета IPv4 потенциально могут быть изменены, поэтому при функционировании IPSec в транспортном режиме злоумышленник может перехватить пакет и изменить поле фрагментации, а затем вставить необходимые данные в передаваемый поток. В IPv6 же промежуточные маршрутизаторы не допускают изменения полей фрагментации.

Конкуренты

Многие продукты, которые могут использовать IPSec, взаимодействуют с альтернативной технологией шифрования, именуемой "Уровень защищенных сокетов" (Secure Sockets Layer, SSL). Основное различие между IPSec и SSL в том, что IPSec работает на уровне сети, обеспечивая защиту сетевого соединения от начала и до конца. SSL же действует на уровне приложений, обеспечивая защиту лишь выбранному приложению, например веб-браузеру или программе для работы с электронной почтой. Хотя как IPSec, так и SSL призваны обеспечить конфиденциальность обмена информацией, что достигается совершенно различными способами. SSL был разработан компанией Netscape для защиты трафика HTTP, проходящего через программу-браузер. SSL - протокол уровня отдельной сессии, и в этом отношении он, несомненно, проигрывает IPSec, который позволяет построить постоянный туннель, не зависящий от проходящего сквозь него сетевого трафика. Протокол SSL основан на клиент-серверной модели и обычно используется для защиты на отрезке "хост-хост". В связи с тем, что IPSec взаимодействует на сетевом уровне, возможны такие варианты, как "подсеть-подсеть", "сеть-сеть" или "сеть-хост". Это наводит на мысль, что IPSec допускает маршрутизацию, а SSL - нет.

Хотя многие пользователи считают SSL и IPSec конкурирующими разработками, данное утверждение не совсем точно, поскольку IPSec и SSL призваны решать различные проблемы. Если для развертывания IPSec требуется предварительное планирование инфраструктуры, то с SSL все намного проще. Как правило, если и клиент, и сервер изначально способны работать с SSL, то процедура настройки защищенной сессии сводится к крайне тривиальному набору действий, доступному даже начинающему пользователю.

Сравнение IPSec и SSL

Ниже приведена таблица сравнения IPSec и SSL.

Особенности IPSec SSL
"Аппаратная независимость" Да Да
"Код" Не требуется изменений для приложений. Может потребовать доступ к исходному коду стека TCP/IP. Требуются изменения в приложениях. Могут потребоваться новые DLL или доступ к исходному коду приложений.
Защита IP пакет целиком. Включает защиту для протоколов высших уровней. Только уровень приложений.
Фильтрация пакетов Основана на аутентифицированных заголовках, адресах отправителя и получателя, и т.п. Простая и дешёвая. Подходит для роутеров Основана на содержимом и семантике высокого уровня. Более интеллектуальная и более сложная.
Производительность Меньшее число переключений контекста и перемещения данных. Большее число переключений контекста и перемещения данных. Большие блоки данных могут ускорить криптографические операции и обеспечить лучшее сжатие.
Платформы Любые системы, включая роутеры В основном, конечные системы (клиенты/серверы), также firewalls.
Firewall/VPN Весь трафик защищён Защищён только трафик уровня приложений. ICMP, RSVP, QoS и т.п. могут быть незащищены.
Прозрачность Для пользователей и приложений Только для пользователей.
Текущий статус Появляющийся стандарт. Широко используется WWW браузерами, также используется некоторыми другими продуктами.

Источники

Ссылки

  • Unixwiz.net [Электронный ресурс]: An Illustrated Guide to IPsec / Дата обращения: 19.12.2017. Режим доступа:

Протоколы IPSec Организация защищенного канала http://www.сайт/lan/protokoly-ipsec http://www.сайт/@@site-logo/logo.png

Протоколы IPSec

Организация защищенного канала

Протоколы IPSec

Организация защищенного канала с помощью AH, ESP и IKE.

Internet Protocol Security (IPSec) называют в стандартах Internet системой. Действительно, IPSec - это согласованный набор открытых стандартов, имеющий сегодня вполне очерченное ядро, и в то же время он может быть достаточно просто дополнен новыми протоколами, алгоритмами и функциями.

Основное назначение протоколов IPSec - обеспечение безопасной передачи данных по сетям IP. Применение IPSec гарантирует:

  • целостность, т. е. что данные при передаче не были искажены, потеряны или продублированы;
  • аутентичность, т. е. что данные были переданы тем отправителем, который доказал, что он тот, за кого себя выдает;
  • конфиденциальность, т. е. что данные передаются в форме, предотвращающей их несанкционированный просмотр.

(Заметим, что в соответствии с классическим определением понятие безопасности данных включает еще одно требование - доступность данных, что в рассмотренном контексте может быть интерпретировано как гарантия их доставки. Протоколы IPSec не решают данную задачу, оставляя ее протоколу транспортного уровня TCP.)

ЗАЩИЩЕННЫЕ КАНАЛЫ НА РАЗНЫХ УРОВНЯХ

IPSec - это только одна из многих, хотя и самая популярная на сегодня, технология безопасной передачи данных по общедоступной (незащищенной) сети. Для технологий такого назначения используется обобщенное название - защищенный канал (secure channel). Термин «канал» подчеркивает тот факт, что защита данных обеспечивается между двумя узлами сети (хостами или шлюзами) вдоль некоторого виртуального пути, проложенного в сети с коммутацией пакетов.

Защищенный канал можно построить с помощью системных средств, реализованных на разных уровнях модели OSI (см. Рисунок 1). Если для защиты данных используется протокол одного из верхних уровней (прикладного, презентационного или сеансового), то такой способ защиты не зависит от того, какие сети (IP или IPX, Ethernet или ATM) применяются для транспортировки данных, что можно считать несомненным достоинством. С другой стороны, приложение при этом становится зависимым от конкретного протокола защиты, т. е. для приложений такой протокол не является прозрачным.

Защищенному каналу на самом высоком, прикладном уровне свойственен еще один недостаток - ограниченная область действия. Протокол защищает только вполне определенную сетевую службу - файловую, гипертекстовую или почтовую. Например, протокол S/MIME защищает исключительно сообщения электронной почты. Поэтому для каждой службы необходимо разрабатывать соответствующую защищенную версию протокола.

Наиболее известным протоколом защищенного канала, работающим на следующем, презентационном уровне, стал протокол Secure Socket Layer (SSL) и его новая открытая реализация Transport Layer Security (TLS). Снижение уровня протокола превращает его в гораздо более универсальное средство защиты. Теперь единым протоколом защиты могут воспользоваться любые приложения и любые протоколы прикладного уровня. Однако приложения необходимо переписывать по-прежнему - в них должны быть встроены явные вызовы функций протокола защищенного канала.

Чем ниже в стеке реализованы средства защищенного канала, тем проще их сделать прозрачными для приложений и прикладных протоколов. На сетевом и канальном уровнях зависимость приложений от протоколов защиты исчезает совсем. Однако здесь мы сталкиваемся с другой проблемой - зависимостью протокола защиты от конкретной сетевой технологии. Действительно, в разных частях крупной составной сети, вообще говоря, используются разные канальные протоколы, поэтому проложить защищенный канал через эту гетерогенную среду с помощью единого протокола канального уровня невозможно.

Рассмотрим, например, протокол защищенного канала Point-to-Point Tunneling Protocol (PPTP), работающий на канальном уровне. Он основан на протоколе PPP, который широко используется в соединениях «точка-точка», например при работе по выделенным линиям. Протокол PPTP не только обеспечивает прозрачность средств защиты для приложений и служб прикладного уровня, но и не зависит от применяемого протокола сетевого уровня: в частности, протокол PPTP может переносить пакеты как в сетях IP, так и в сетях, работающих на основе протоколов IPX, DECnet или NetBEUI. Однако, поскольку протокол PPP используется далеко не во всех сетях (в большинстве локальных сетей на канальном уровне работает протокол Ethernet, а в глобальных - протоколы ATM, frame relay), то PPTP нельзя считать универсальным средством.

Работающий на сетевом уровне протокол IPSec является компромиссным вариантом. С одной стороны, он прозрачен для приложений, а с другой - он может работать практически во всех сетях, так как основан на широко распространенном протоколе IP: в настоящее время в мире только 1% компьютеров не поддерживает IP вообще, остальные 99% используют его либо как единственный протокол, либо в качестве одного из нескольких протоколов.

РАСПРЕДЕЛЕНИЕ ФУНКЦИЙ МЕЖДУ ПРОТОКОЛАМИ IPSEC

Ядро IPSec составляют три протокола: протокол аутентификации (Authenti-cation Header, AH), протокол шифрования (Encapsulation Security Payload, ESP) и протокол обмена ключами (Internet Key Exchange, IKE). Функции по поддержанию защищенного канала распределяются между этими протоколами следующим образом:

  • протокол AH гарантирует целостность и аутентичность данных;
  • протокол ESP шифрует передаваемые данные, гарантируя конфиденциальность, но он может также поддерживать аутентификацию и целостность данных;
  • протокол IKE решает вспомогательную задачу автоматического предоставления конечным точкам канала секретных ключей, необходимых для работы протоколов аутентификации и шифрования данных.

Как видно из краткого описания функций, возможности протоколов AH и ESP частично перекрываются. Протокол AH отвечает только за обеспечение целостности и аутентификации данных, в то время как протокол ESP более мощный, так как может шифровать данные, а кроме того, выполнять функции протокола AH (хотя, как увидим позднее, аутентификация и целостность обеспечиваются им в несколько урезанном виде). Протокол ESP может поддерживать функции шифрования и аутентификации/целостности в любых комбинациях, т. е. либо и ту и другую группу функций, либо только аутентификацию/целостность, либо только шифрование.

Для шифрования данных в IPSec может быть применен любой симметричный алгоритм шифрования, использующий секретные ключи. В основе обеспечения целостности и аутентификации данных также лежит один из приемов шифрования - шифрование с помощью односторонней функции (one-way function), называемой также хэш-функцией (hash function) или дайджест-функцией (digest function).

Эта функция, примененная к шифруемым данным, дает в результате значение-дайджест, состоящее из фиксированного небольшого числа байт. Дайджест передается в IP-пакете вместе с исходным сообщением. Получатель, зная, какая односторонняя функция шифрования была применена для составления дайджеста, заново вычисляет его, используя исходное сообщение. Если значения полученного и вычисленного дайджестов совпадают, это значит, что содержимое пакета во время передачи не было подвергнуто никаким изменениям. Знание дайджеста не дает возможности восстановить исходное сообщение и поэтому не может быть использовано для защиты, но зато оно позволяет проверить целостность данных.

Дайджест является своего рода контрольной суммой для исходного сообщения. Однако имеется и существенное отличие. Использование контрольной суммы - это средство проверки целостности передаваемых сообщений по ненадежным линиям связи, и оно не направлено на борьбу со злонамеренными действиями. В самом деле, наличие контрольной суммы в передаваемом пакете не помешает злоумышленнику подменить исходное сообщение, добавив к нему новое значение контрольной суммы. В отличие от контрольной суммы при вычислении дайджеста используется секретный ключ. Если для получения дайджеста применялась односторонняя функция с параметром (в качестве которого выступает секретный ключ), известным только отправителю и получателю, любая модификация исходного сообщения будет немедленно обнаружена.

Разделение функций защиты между двумя протоколами AH и ESP вызвано применяемой во многих странах практикой на ограничение экспорта и/или импорта средств, обеспечивающих конфиденциальность данных путем шифрования. Каждый из этих двух протоколов может использоваться как самостоятельно, так и одновременно с другим, так что в тех случаях, когда шифрование из-за действующих ограничений применять нельзя, систему можно поставлять только с протоколом AH. Естественно, защита данных только с помощью протокола AH во многих случаях будет недостаточной, так как принимающая сторона в этом случае будет уверена только в том, что данные были отправлены именно тем узлом, от которого они ожидаются, и дошли в том виде, в котором были отправлены. От несанкционированного просмотра по пути следования данных протокол AH защитить не может, так как не шифрует их. Для шифрования данных необходимо применять протокол ESP, который может также проверить их целостность и аутентичность.

БЕЗОПАСНАЯ АССОЦИАЦИЯ

Для того чтобы протоколы AH и ESP могли выполнять свою работу по защите передаваемых данных, протокол IKE устанавливает между двумя конечными точками логическое соединение, которое в стандартах IPSec носит название «безопасная ассоциация» (Security Association, SA). Установление SA начинается со взаимной аутентификации сторон, потому что все меры безопасности теряют смысл, если данные передаются или принимаются не тем или не от того лица. Выбираемые далее параметры SA определяют, какой из двух протоколов, AH или ESP, применяется для защиты данных, какие функции выполняет протокол защиты: например, только аутентификацию и проверку целостности или, кроме того, еще и защиту от ложного воспроизведения. Очень важным параметром безопасной ассоциации является так называемый криптографический материал, т. е. секретные ключи, используемые в работе протоколов AH и ESP.

Система IPSec разрешает применять и ручной способ установления безопасной ассоциации, при котором администратор конфигурирует каждый конечный узел таким образом, чтобы они поддерживали согласованные параметры ассоциации, включая и секретные ключи.

Протокол AH или ESP функционирует уже в рамках установленного логического соединения SA, с его помощью и осуществляется требуемая защита передаваемых данных с использованием выбранных параметров.

Параметры безопасной ассоциации должны устраивать обе конечные точки защищенного канала. Поэтому при использовании автоматической процедуры установления SA протоколы IKE, работающие по разные стороны канала, выбирают параметры в ходе переговорного процесса, подобно тому, как два модема определяют максимально приемлемую для обеих сторон скорость обмена. Для каждой задачи, решаемой протоколами AH и ESP, предлагается несколько схем аутентификации и шифрования - это делает IPSec очень гибким средством. (Заметим, что выбор функции получения дайджеста для решения задачи аутентификации никак не влияет на выбор алгоритма для шифрования данных.)

Для обеспечения совместимости в стандартной версии IPsec определен некоторый обязательный «инструментальный» набор: в частности, для аутентификации данных всегда может быть использована одна из функций односторонней шифрации MD5 либо SHA-1, а в число алгоритмов шифрования непременно входит DES. При этом производители продуктов, включающих IPSec, вольны расширять протокол за счет других алгоритмов аутентификации и шифрования, что они с успехом и делают. Например, многие реализации IPSec поддерживают популярный алгоритм шифрования Triple DES, а также сравнительно новые алгоритмы - Blowfish, Cast, CDMF, Idea, RC5.

Стандарты IPSec позволяют шлюзам использовать как одну ассоциацию SA для передачи трафика всех взаимодействующих через Internet хостов, так и создавать для этой цели произвольное число ассоциаций SA, например по одной на каждое соединение TCP. Безопасная ассоциация SA представляет собой в IPSec однонаправленное (симплексное) логическое соединение, поэтому при двустороннем обмене данными необходимо установить две ассоциации SA.

ТРАНСПОРТНЫЙ И ТУННЕЛЬНЫЙ РЕЖИМЫ

Протоколы AH и ESP могут защищать данные в двух режимах: транспортном и туннельном. В транспортном режиме передача IP-пакета через сеть выполняется с помощью оригинального заголовка этого пакета, а в туннельном режиме исходный пакет помещается в новый IP-пакет и передача данных по сети выполняется на основании заголовка нового IP-пакета. Применение того или иного режима зависит от требований, предъявляемых к защите данных, а также от роли, которую играет в сети узел, завершающий защищенный канал. Так, узел может быть хостом (конечным узлом) или шлюзом (промежуточным узлом). Соответственно, имеются три схемы применения IPSec: «хост-хост», «шлюз-шлюз» и «хост-шлюз».

В первой схеме защищенный канал, или, что в данном контексте одно и то же, безопасная ассоциация, устанавливается между двумя конечными узлами сети (см. Рисунок 2). Протокол IPSec в этом случае работает на конечном узле и защищает данные, поступающие на него. Для схемы «хост-хост» чаще всего используется транспортный режим защиты, хотя разрешается и туннельный.

В соответствии со второй схемой, защищенный канал устанавливается между двумя промежуточными узлами, так называемыми шлюзами безопасности (Security Gateway, SG), на каждом из которых работает протокол IPSec. Защищенный обмен данными может происходить между любыми двумя конечными узлами, подключенными к сетям, которые расположены позади шлюзов безопасности. От конечных узлов поддержка протокола IPSec не требуется, они передают свой трафик в незащищенном виде через заслуживающих доверие сети Intranet предприятий. Трафик, направляемый в общедоступную сеть, проходит через шлюз безопасности, который и обеспечивает его защиту с помощью IPSec, действуя от своего имени. Шлюзы могут использовать только туннельный режим работы.

Схема «хост-шлюз» часто применяется при удаленном доступе. Здесь защищенный канал организуется между удаленным хостом, на котором работает IPSec, и шлюзом, защищающим трафик для всех хостов, входящих в сеть Intranet предприятия. Удаленный хост может использовать при отправке пакетов шлюзу как транспортный, так и туннельный режим, шлюз же отправляет пакет хосту только в туннельном режиме. Эту схему можно усложнить, создав параллельно еще один защищенный канал - между удаленным хостом и каким-либо хостом, принадлежащим внутренней сети, защищаемой шлюзом. Такое комбинированное использование двух SA позволяет надежно защитить трафик и во внутренней сети.

Наталья Олифер

Операции с документом

    pre-shared key : Два даемона racoon подключаются друг к другу, подтверждают, что они именно те, за кого себя выдают (используя секретный ключ, заданный вами, по умолчанию в файле /etc/racoon/psk.txt). Затем даемоны генерируют новый секретный ключ и используют его для шифрования трафика через VPN. Они периодически изменяют этот ключ, так что даже если атакующий сломает один из ключей (что теоретически почти невозможно) это не даст ему слишком много – он сломал ключ, который два даемона уже сменили на другой. Предварительный ключ(pre-shared key) не используется для шифрования трафика через VPN соединение это просто маркер, позволяющий управляющим ключами даемонам доверять друг другу. Права на файл psk.txt должны быть 0600 (т.е. запись и чтение только для root).

    IPsec состоит из двух протоколов:

    Encapsulated Security Payload (ESP), защищающей данные IP пакета от вмешательства третьей стороны путем шифрования содержимого с помощью симметричных криптографических алгоритмов (таких как Blowfish,3DES, AES).

    Authentication Header (AH), защищающий заголовок IP пакета от вмешательства третьей стороны и подделки путем вычисления криптографической контрольной суммы и хеширования полей заголовка IP пакета защищенной функцией хеширования. К пакету добавляется дополнительный заголовок с хэшем, позволяющий аутентификацию информации пакета.

ESP и AH могут быть использованы вместе или по отдельности, в зависимости от обстоятельств.

esp и ah - пакеты ipsec, формируются ядром после того как хосты, при помощи racoon, договорятся о ключе по протоколу isakmp (500/udp).

Режимы работы IPsec(транспортный, туннельный)

Существует два режима работы IPsec: транспортный режим и туннельный режим(когда в транспортном режиме работают только маршрутизаторы).

IPsec может быть использован или для непосредственного шифрования трафика между двумя хостами (транспортный режим); или для построения "виртуальных туннелей" между двумя подсетями, которые могут быть использованы для защиты соединений между двумя корпоративными сетями (туннельный режим). Туннельный режим обычно называют виртуальной частной сетью (Virtual Private Network, vpn).

В транспортном режиме шифруется (или подписывается) только информативная часть IP-пакета. Маршрутизация не затрагивается, так как заголовок IP пакета не изменяется (не шифруется). Транспортный режим как правило используется для установления соединения между хостами. Он может также использоваться между шлюзами, для защиты туннелей, организованных каким-нибудь другим способом (IP tunnel, GRE туннели и др.).

В туннельном режиме IP-пакет шифруется целиком. Для того, чтобы его можно было передать по сети, он помещается в другой IP-пакет. По существу, это защищённый IP-туннель. Туннельный режим может использоваться для подключения удалённых компьютеров к виртуальной частной сети или для организации безопасной передачи данных через открытые каналы связи (например, Интернет) между шлюзами для объединения разных частей виртуальной частной сети. В туннельном режиме инкапсулируется весь исходный IP пакет, и добавляется новый IP заголовок.

Если используется IPsec совместно с GRE туннели , который инкапсулирует исходный пакет и добавляет новый IP заголовок, логично использовать транспортный режим.

Режимы IPsec не являются взаимоисключающими. На одном и том же узле некоторые SA могут использовать транспортный режим, а другие - туннельный.

Security Associations (SA) . Для возможности проводить инкапсуляцию/декапсуляцию стороны участвующие в процессе обмена должны иметь возможность хранить секретные ключи, алгоритмы и IP адреса. Вся эта информация хранится в Ассоциациях Безопасности (SA), SA в свою очередь хранятся в Базе данных Ассоциаций Безопасности (SAD). Конфигурирование Security Association , позволяет задать например mode transport | tunnel | ro | in_trigger | beet - режим безопасной ассоциации. Соответственно, может принимать одно из значений, означающих транспортный, тоннельный, beet (Bound End-to-End Tunnel), оптимизации маршрута (route optimization) или in_trigger режимы. (последние два используются в контексте mobile ipv6).

Security Policy (SP) - политика безопасности, хранится в SPD (База данных политик безопасности). SA специфицирует, как IPsec предполагает защищать трафик, SPD в свою очередь хранит дополнительную информацию, необходимую для определения какой именно трафик защищать и когда. SPD может указать для пакета данных одно из трёх действий: отбросить пакет, не обрабатывать пакет с помощью IPSec, обработать пакет с помощью IPSec. В последнем случае SPD также указывает, какой SA необходимо использовать (если, конечно, подходящий SA уже был создан) или указывает, с какими параметрами должен быть создан новый SA. SPD является очень гибким механизмом управления, который допускает очень хорошее управление обработкой каждого пакета. Пакеты классифицируются по большому числу полей, и SPD может проверять некоторые или все поля для того, чтобы определить соответствующее действие. Это может привести к тому, что весь трафик между двумя машинами будет передаваться при помощи одного SA, либо отдельные SA будут использоваться для каждого приложения, или даже для каждого TCP соединения.

IPSec (сеть-сеть) между серверами FreeBSD

    Шаг 1 : Создание и тестирование "виртуального" сетевого подключения.

    • Настройте оба ядра с device gif . В версии FreeBSD поддержка gif включена в ядро.

      Отредактируйте /etc/rc.conf на маршрутизаторах и добавьте следующие строки (подставляя IP адреса где необходимо). A.B.C.D - реальный IP первого маршрутизатора, W.X.Y.Z - реальный IP второго маршрутизатора. # IPsec №1 gateway > ee /etc/rc.conf ... # IPsec to S through ISP_V gif_interfaces="gif0" # gifconfig_gif0="local-ip(A.B.C.D) remote-ip (W.X.Y.Z)" gifconfig_gif0="194.x.x.x 91.x.x.x" ifconfig_gif0="inet 10.26.95.254 192.168.1.254 netmask 255.255.255.255" static_routes="vpn vpn1" route_vpn="-net 192.168.1.0/24 192.168.1.254" route_vpn1="-net 192.168.35.0/24 192.168.1.254" # IPsec №2 gateway > ee /etc/rc.conf ... # IPsec na G through ISPGate gif_interfaces="gif0" # gifconfig_gif0="W.X.Y.Z A.B.C.D" gifconfig_gif0="91.x.x.x 194.x.x.x" ifconfig_gif0="inet 192.168.1.254 10.26.95.254 netmask 255.255.255.255" static_routes="vpn" route_vpn="-net 10.26.95.0/24 10.26.95.254"

      Отредактируйте скрипт брандмауэра на обеих маршрутизаторах и добавьте # IPFW ipfw add 1 allow ip from any to any via gif0 # PF set skip on gif0

Теперь ping должны ходить между сетями.

    Защита соединения с помощью IPsec

    Шаг 2 : Защита соединения с помощью IPsec

    • Настройте оба ядра: > sysctl -a | grep ipsec

      если команда ничего не вывела, значит нужно пересобрать ядра на обоих маршрутизаторах с параметрами

      # IPSEC for FreeBSD 7.0 and above options IPSEC options IPSEC_FILTERTUNNEL device crypto # IPSEC for FreeBSD 6.3 options IPSEC # IP security options IPSEC_ESP # IP security (crypto; define w/ IPSEC) options IPSEC_DEBUG # Необязательно. debug for IP security

      Устанавливаем порт ipsec-tools. > cd /usr/ports/security/ipsec-tools > make config > make install clean > ee /etc/rc.conf racoon_enable="YES" ipsec_enable="YES" > mkdir -p /usr/local/etc/racoon/cert > cp /usr/local/share/examples/ipsec-tools/racoon.conf /usr/local/etc/racoon/racoon.conf > cd /usr/local/etc/racoon/cert/

      Создаем SSL сертификаты на каждом хосте. Копируем с одной на другую файлики *.public. В принципе, имена ключей неважны, можно называть и по IP, с соответствующими расширениями.

      > openssl req -new -nodes -newkey rsa:1024 -sha1 -keyform PEM -keyout your.key1.private -outform PEM -out your.key1.pem > openssl x509 -req -in your.key1.pem -signkey your.key.private -out your.key1.public

    Создаем файл ipsec.conf. Настройка на шлюзе #1 (где есть публичный IP адрес A.B.C.D) для включения шифрования всего предназначенного W.X.Y.Z трафика. A.B.C.D/32 и W.X.Y.Z/32 это IP адреса и сетевые маски, определяющие сети или хосты, к которым будет применяться данная политика. В данном случае мы хотим применить их к трафику между этими двумя хостами. Параметр ipencap сообщает ядру, что эта политика должна применяться только к пакетам, инкапсулирующим другие пакеты. Параметр -P out сообщает, что эта политика применяется к исходящим пакетам, и ipsec – то, что пакеты будут зашифрованы.

Оставшаяся часть строки определяет, как эти пакеты будут зашифрованы. Будет использоваться протокол esp, а параметр tunnel показывает, что пакет в дальнейшем будет инкапсулирован в IPsec пакет. Повторное использование A.B.C.D и W.X.Y.Z предназначено для выбора используемых параметров безопасности, и наконец параметр require разрешает шифрование пакетов, попадающих под это правило.

Это правило соответствует только исходящим пакетам. Вам потребуется похожее правило, соответствующее входящим пакетам.

> ee /etc/ipsec.conf spdadd A.B.C.D/32 W.X.Y.Z/32 ipencap -P out ipsec esp/tunnel/A.B.C.D-W.X.Y.Z/require; spdadd W.X.Y.Z/32 A.B.C.D/32 ipencap -P in ipsec esp/tunnel/W.X.Y.Z-A.B.C.D/require;

Настройка на шлюзе #2 аналогична только меняются IP местами.

Настройка утилиты racoon

> ee /usr/local/etc/racoon/racoon.conf path include "/usr/local/etc/racoon"; path certificate "/usr/local/etc/racoon/cert/"; # following line activates logging & should deactivated later log debug; # если директива listen не задана, racoon слушает все доступные # адреса интерфейсов. listen { #isakmp::1 ; isakmp 202.249.11.124 ; #admin ; # administrative port for racoonctl. #strict_address; # requires that all addresses must be bound. } # описываем удалённый хост (на второй машине - идентично, # тока другой IP и ключи) remote 217.15.62.200 { exchange_mode aggressive,main; my_identifier asn1dn; peers_identifier asn1dn; # сертификаты этой машины certificate_type x509 "via.epia.public" "via.epia.private"; # сертификат удлённой машины peers_certfile x509 "test.su.public"; proposal { encryption_algorithm 3des; hash_algorithm sha1; authentication_method rsasig; dh_group 2 ; } } sainfo anonymous { pfs_group 2; encryption_algorithm 3des; authentication_algorithm hmac_sha1; compression_algorithm deflate; }

    Настройка пакетного фильтра PF, где esp_peers шлюз с которым создается шифрованный туннель. Разрешаем прохождение пакетов ESP и IPENCAP в обе стороны.

#pass IPSec pass in on $ext_if_a inet proto udp from { $esp_peers } to ($ext_if_a) port isakmp pass in on $ext_if_a inet proto esp from { $esp_peers } to ($ext_if_a) # pass out on $ext_if_a inet proto udp from { $esp_peers } to ($ext_if_a) port isakmp pass out on $ext_if_a inet proto esp from { $esp_peers } to ($ext_if_a)

Cмотрим логи /var/log/security и /var/log/messages.

Как только параметры безопасности установлены, вы можете просмотреть их используя setkey(8). Запустите

> /etc/rc.d/ipsec start > /usr/local/etc/rc.d/racoon start > setkey -D # список созданных защищенных каналов > setkey -DP # покажет список политик безопасности

на любом из хостов для просмотра информации о параметрах безопасности.

    Проверка работоспособности:

    ping между сетями должен работать

    Запускаем для прослушки физического интерфейса на котором построен туннель (а не виртуального gif0). В другом окне например ping -ем удаленную серую сеть (например, ping 192.168.1.11) tcpdump -i em0 -n host 91 .x.x.81 ... 16 :15 :54.419117 IP x.x.x.x >

tcpdump Linux примеры использования должен показывать ESP пакеты.

IPSec (сеть-сеть) между серверами Linux

# aptitude install ipsec-tools racoon

    Алгоритм настройки IPsec

    Настройка пакета racoon

    Создание политики безопасности

    Виртуальные интерфейсы. Они нужны для маршрутизации сетей находящихся в локальных сетях. Два соединенных сервера будут видеть себя без интерфейсов(иногда без них не заводится и между серверами, странно вообще-то).

Ниже приведены конфиги для случая с предопределёнными ключами.

> nano /etc/racoon/racoon.conf path include "/etc/racoon"; path pre_shared_key "/etc/racoon/psk.txt"; #path certificate "/etc/racoon/certs"; remote 10.5.21.23 { exchange_mode aggressive,main; doi ipsec_doi; situation identity_only; my_identifier address; #Определяет метод идентификации, который будет использоваться при проверке подлинности узлов. lifetime time 2 min; initial_contact on; proposal { encryption_algorithm 3des; hash_algorithm sha1; authentication_method pre_shared_key; # Определяет метод проверки подлинности, используемый при согласовании узлов. dh_group 2; } proposal_check strict; } sainfo anonymous # Отмечает, что SA может автоматически инициализировать соединение с любым партнёром при совпадении учётных сведений IPsec. { pfs_group 2; lifetime time 2 min ; encryption_algorithm 3des, blowfish 448, des, rijndael ; authentication_algorithm hmac_sha1, hmac_md5 ; compression_algorithm deflate ; }

Создадим политику безопасности

> nano pol.cfg #!/sbin/setkey -f flush; spdflush; spdadd 10.5.21.24 10.5.21.23 any -P out ipsec esp/transport//require; spdadd 10.5.21.23 10.5.21.24 any -P in ipsec esp/transport//require; > chmod +x pol.cfg > ./pol.cfg

Создадим выполняемый файл для создания интерфейсов и запустим его.

>nano tun.sh #!/bin/sh ip tunnel del tun0 ip tunnel add tun0 mode ipip remote 10.5.21.23 local 10.5.21.24 dev eth0 # создаем интерфейс tun0 и устанавливаем туннель # между хостами (здесь нужно использовать реальные IP адреса сетевых интерфейсов). ifconfig tun0 10.0.9.1 pointopoint 10.0.9.2 # назначаем интерфейсу IP адреса, для текущего хоста и для другого конца # туннеля (не обязательно). ifconfig tun0 mtu 1472 ifconfig tun0 up # ниже можно прописать нужные нам маршруты, например так route add -net ... netmask 255.255.255.0 gw ... route add -net ... netmask 255.255.255.0 gw ... > ./tun.sh

Для автоматической загрузки правил файл tun.sh правильно поместить для Debian в директорию /etc/network/if-up.d

Все IPSec тунель между сетями настроен.

iptables IPSec

$IPT -A INPUT -p udp -m udp -s xxx.xxx.xxx.xxx -d xxx.xxx.xxx.xx --dport 500 -j ACCEPT $IPT -A INPUT -p esp -j ACCEPT $IPT -A INPUT -p ah -j ACCEPT $IPT -A INPUT -p ipencap -j ACCEPT $IPT -A INPUT -p udp -m udp -s xxx.xxx.xxx.xxx -d xxx.xxx.xxx.xx --dport 4500 -j ACCEPT

IPsec «узел-узел» без виртуальных интерфесов

Задача . При помощи IPSec (pre_shared_key) соединить два сервера (Debian 5 и Debian 7). У обоих реальные IP. Никаких сетей пробрасывать не надо. Должен шифроваться трафик между этими IP. То есть строим транспортный режим (между двумя хостами).

Настройка сводится к двум пунктам

    Настройка пакета racoon

    Создание политики безопасности: нужно указать режим transport и any spdadd x.x.x.x/32 y.y.y.y/32 any -P out ipsec esp/transport//require; spdadd y.y.y.y/32 x.x.x.x/32 any -P in ipsec esp/transport//require;

IPSec (GRE) (узел-сеть) между Debian и Cisco

Задача: построить IPsec в туннельном режиме. Описание RFC протокола SIP сигнализация между поставщиком (Cisco) и клиентом (Debian 5) шифруется IPsec, а RTP минуя туннель идет кратчайшим маршрутом через обычный Интернет.

    Клиент tunnel-endpoint is: 193.xxx.xxx.xxx

    Сервер tunnel-endpoint is: 62.xxx.xxx.xxx

    Клиент Sip Server is: 193.xxx.xxx.xxx

    Сервер SIP Servers are: 62.xxx.237.xxx/26 and 62.xxx.246.xxx/26

да и перед настрокой туннеля (перед auto tun0) прописать pre-up modprobe ip_gre

# modprobe ip_gre

Скрипт для создания GRE туннели туннеля в Debian:

#!/bin/sh -e modprobe ip_gre #ip tunnel del tun0 ip tunnel add tun0 mode gre remote 62.xxx.xxx.xxx local 193.xxx.xxx.xxx dev eth0 ifconfig tun0 mtu 1472 ifconfig tun0 up route add -net 62.xxx.237.xxx netmask 255.255.255.192 dev tun0 route add -net 62.xxx.246.xxx netmask 255.255.255.192 dev tun0

Утилиты

    Для управления можно использовать утилиту racoonctl racoonctl show-sa esp

    Cписок созданных защищенных каналов > setkey -D

    список политик безопасности > setkey -DP

Мониторинг IPsec

Мониторинг IPsec в Debian 5.0 2.6.26-2-686-bigmem i686. В уровень детализации логов log notify или log debug устанавливается в файле racoon.conf.

# tail -F /var/log/syslog | grep racoon

IPSec Openswan

OpenSWAN начал разрабатываться как форк прекратившего в настоящее своё существование проекта FreeS/WAN (Free Secure Wide-Area Networking), релизы продолжают выпускаться под свободной GNU General Public License. В отличие от проекта FreeS/WAN, OpenSWAN разрабатывается не только специально под операционную систему GNU/Linux. OpenSWAN обеспечивает стек протоколов IpSec: AH и ESP для ядра Linux,а также инструментарий для управления ими.

OpenSWAN для ветки ядра 2.6 предоставляет встроенную, NETKEY реализацию IpSec, так и собственную KLIPS.

CentOS 6.6 поддерживает только Openswan в основных пакетах.

Задача . Создать шифрованный туннель между CentOS 6.6 и Debian 7.8 Wheezy. GRE туннели + Openswan (type=transport)

    Openswan будет шифровать наш трафик в транспортном режиме(host-to-host), не вмешиваясь в маршрутизацию. Установим пакеты на обоих серверах yum install openswan aptitude install openswan

    На обоих концах туннеля настраиваем Правила iptables . Открыть 500 порт, по которому идет обмен сертификатам и ключами. iptables -A INPUT -p udp --dport 500 -j ACCEPT iptables -A INPUT -p tcp --dport 4500 -j ACCEPT iptables -A INPUT -p udp --dport 4500 -j ACCEPT # Более строго выпишем правила для IPSec IPT ="/sbin/iptables" $IPT -A INPUT -p udp -s x.x.x.x -d x.x.x.x --dport 500 -m comment --comment "IpSec" -j ACCEPT $IPT -A INPUT -p tcp -s x.x.x.x -d x.x.x.x --dport 4500 -m comment --comment "IpSec" -j ACCEPT $IPT -A INPUT -p udp -s x.x.x.x -d x.x.x.x --dport 4500 -m comment --comment "IpSec" -j ACCEPT

    Подготовка конфигурационных файлов. Используемые файлы и директории / etc/ ipsec.d/ / etc/ ipsec.conf

    Проверка системы на правильность окружения для IPsec ipsec verify

    Добавить в конец файла sysctl.conf

    # IPSec Verify Compliant # Разрешить пересылку пакетов между интерфейсами для IPv4 net.ipv4.ip_forward = 1 # отключаем icmp redirect net.ipv4.conf.all.send_redirects = 0 net.ipv4.conf.all.accept_redirects = 0 net.ipv4.conf.default.send_redirects = 0 net.ipv4.conf.default.accept_redirects = 0

    Применим параметры ядра без перезагрузки

    Первым конфигурационным файлом является /etc/ipsec.conf. Задаем явно в разделе config setup config setup protostack =netkey plutoopts ="--perpeerlog" dumpdir =/ var/ run/ pluto/ nat_traversal =yes virtual_private =% v4:10.0.0.0/ 8 ,% v4:192.168.0.0/ 16 , % v4:172.16.0.0/ 12 ,% v4:25.0.0.0/ 8 ,% v6:fd00::/ 8 ,% v6:fe80::/ 10 oe =off #plutostderrlog=/dev/null

    В первую очередь вам необходимо сформировать ключи, используемые шлюзами для аутентификации. В Debian это ключ можно создать при инсталляции. Запускаем на обеих системах ipsec newhostkey, генерируя нужные нам ключи. ipsec newhostkey --output / etc/ ipsec.secrets ipsec showhostkey --left ipsec showhostkey --right

    Независимо от того, как вы сконфигурируете сервер, всегда рассматривайте вашу подсеть как расположенную «слева» (left), а подсеть, к которой доступ осуществляется дистанционно, сайт, как расположенный «справа» (right). Следующая конфигурация выполняется на сервере VPN на стороне Left. На другом сервере должен быть точно такие настройки для этого соединения. conn gagahost-to-miraxhost auto =start left =188 .x.x.x leftrsasigkey =0sN4vI6ooUyMyL ... right =91 .x.x.x rightrsasigkey =0sfAhuo4SQ0Qt ... type =transport scp / etc/ ipsec.conf admin@ 192.168.35.254:/ home/ admin/

Диагностика IPSec Openswan

Запуск сервиса и поиск возникающих проблем.

Openwan logs (pluto) : /var/log/auth.log /var/log/syslog /var/log/pluto/peer/a/b/c/d/a.b.c.d.log

Если на обоих серверах нет ошибок, то туннель должен сейчас подняться. Вы можете проверить туннель с помощью команды ping с следующим образом. Если туннель не поднят, то частная подсеть на стороне B не должна быть доступна со стороны А, т. е. команда ping не должна работать. После того, как туннель будет поднят, попробуйте команду ping для доступа к частной подсети на стороне B со стороны A. Это должно работать.

Кроме того, в таблице маршрутизации сервера должны появиться маршруты к частной подсети.

# ip route via dev eth0 src default via dev eth0

    Команды проверки состояний соединений: ipsec verify service ipsec status ip xfrm state list - управления SAD, возможности шире, чем у setkey ipsec addconn --checkconfig - проверка конфигурации ipsec auto --status - подробное состояние ip xfrm monitor

    Политики ipsec, согласно которым принимается решение какой трафик направлять в туннель ip xfrm pol show

    tcpdump Linux примеры использования запускаем для прослушки физического интерфейса на котором построен туннель (а не виртуального GRE). В другом окне например ping -ем удаленную серую сеть (например, ping 192.168.1.11). tcpdump должен показывать ESP пакеты. tcpdump -i em0 -n host 91 .x.x.81 ... 16 :15 :54.419117 IP x.x.x.x > 91 .x.x.81: ESP(spi =0x01540fdd,seq =0xa20) , length 92 ...

Протокол Encapsulating Security Payload (ESP) обеспечивает конфиденциальность данных. Кроме того, он позволяет идентифицировать отправителя данных, а также обеспечить целостность данных и защиту от воспроизведения информации.

Отличие протокола ESP от протокола Authentication Header (AH) состоит в том, что ESP выполняет шифрование данных. При этом оба протокола обеспечивают идентификацию, проверку целостности и защиту от воспроизведения информации. При работе с ESP для шифрования и расшифровки данных обе конечные системы применяют общий ключ.

Если одновременно применяются средства шифрования и идентификации данных, то отвечающая система вначале идентифицирует пакет, а если идентификация выполнена успешно, то расшифровывает пакет. Такой способ обработки пакетов снижает нагрузку на систему и уменьшает риск взлома защиты с помощью атаки типа "отказ в обслуживании".

Два способа использования ESP

Протокол ESP может применяться двумя способами: в режиме открытой передачи и в режиме туннеля. В режиме открытой передачи заголовок ESP указывается после заголовка IP дейтаграммы. Если у дейтаграммы уже есть заголовок IPSec, то заголовок ESP помещается перед этим заголовком. Концевик ESP и идентификационные данные, если они есть, указываются после поля данных.

В режиме открытой передачи заголовок IP не идентифицируется и не зашифровывается. В этом случае адреса, указанные в заголовке, могут быть перехвачены во время передачи дейтаграммы по сети. Для обмена данными в режиме открытой передачи требуется меньше ресурсов, чем при работе в режиме туннеля. Однако такой режим обеспечивает более низкий уровень защиты. В большинстве случаев при работе с протоколом ESP применяется режим открытой передачи.

В режиме туннеля создается новый заголовок IP, который становится самым внешним заголовком дейтаграммы. После него помещается заголовок ESP, а затем - сама дейтаграмма (заголовок IP и данные). Концевик ESP и идентификационные данные, если они есть, добавляются в конец поля данных. Если одновременно применяются средства шифрования и идентификации, то ESP полностью защищает исходную дейтаграмму, так как эта дейтаграмма становится полем данных в новом пакете ESP. Новый заголовок IP не защищается. При установлении соединения между шлюзами следует применять ESP в режиме туннеля.

Алгоритм защиты информации, применяемый ESP

В протоколе ESP применяется симметричный ключ, с помощью которого данные зашифровываются и расшифровываются конечными системами. Перед обменом данными отправитель и получатель должны согласовать ключ, который они будут применять. Функция VPN поддерживает способы шифрования DES, тройной DES (3DES), RC5, RC4, AES или AES-CBC.

При использовании алгоритма шифрования AES можно включить Расширенный порядковый номер (ESN). ESN позволяет передавать большие объемы данных с высокой скоростью. Соединение VPN применяет 64-битовые порядковые номера вместо 32-битовых номеров над IPSec. Использование 64-битовых порядковых номеров увеличивает период времени до смены ключа, что предотвращает окончание пула порядковых номеров и снижает расход системных ресурсов.

Рабочая группа Internet (IETF) формально описывает алгоритмы в следующих документах RFC:

Эти и другие документы RFC можно найти в Internet на следующем веб-сайте: http://www.rfc-editor.org.

Протокол ESP поддерживает алгоритмы идентификации HMAC-MD5, HMAC-SHA, HMAC-SHA-256 и AES-XCBC-MAC. Оба алгоритма получают на входе данные переменной длины и личный ключ, а на их основе создают данные фиксированной длины (или значение хэш-функции или MAC). Если значения хэш-функции, вычисленные для двух сообщений, совпадают, то с высокой вероятностью эти сообщения одинаковые.

Рабочая группа Internet (IETF) формально описывает алгоритмы в следующих документах RFC:

Эти документы RFC можно просмотреть на следующем веб-сайте: http://www.rfc-editor.org.

0 В этой статье предлагается обзор средств IPSEC (IP Security - система защиты на уровне IP) и соответствующих протоколов IPSec, доступных в продуктах Cisco и используемых для создания виртуальных частных сетей (VPN). В данной статье мы определим, что такое IPSEC, а также какие протоколы и алгоритмы защиты лежат в основе IPSEC.

Введение

IP Security - это комплект протоколов, касающихся вопросов шифрования, аутентификации и обеспечения защиты при транспортировке IP-пакетов; в его состав сейчас входят почти 20 предложений по стандартам и 18 RFC.

Продукты Cisco для поддержки VPN используют набор протоколов IPSec, являющийся на сегодня промышленным стандартом обеспечения широких возможностей VPN. IPSec предлагает механизм защищенной передачи данных в IP-сетях, обеспечивая конфиденци¬альность, целостность и достоверность данных, передаваемых через незащищенные сети типа Internet. IPSec обеспечивает следующие возможности VPN в сетях Cisco:

  • Конфиденциальность данных . Отправитель данных IPSec имеет возможность шифровать пакеты перед тем, как передавать их по сети.
  • Целостность данных . Получатель данных IPSec имеет возможность аутентифицировать сообщающиеся с ним стороны (устройства или программное обеспе¬чение, в которых начинаются и заканчиваются туннели IPSec) и пакеты IPSec, посылаемые этими сторонами, чтобы быть уверенным в том, что данные не были изменены в пути.
  • Аутентификация источника данных . Получатель данных IPSec имеет возмож¬ность аутентифицировать источник получаемых пакетов IPSec. Этот сервис за¬висит от сервиса целостности данных.
  • Защита от воспроизведения . Получатель данных IPSec может обнаруживать и от¬вергать воспроизведенные пакеты, не допуская их фальсификации и проведе¬ния атак внедрения посредника.

IPSec представляет собой основанный на стандартах набор протоколов и алгоритмов защиты. Технология IPSec и связанные с ней протоколы защиты соответствуют открытым стандартам, которые поддерживаются группой IETF (Internet Engineering Task Force - проблемная группа проектирования Internet) и описаны в спецификациях RFC и проектах IETF. IPSec действует на сетевом уровне, обеспечивая защиту и аутентификацию пакетов IP, пересылаемых между устройствами (сторонами) IPSec - такими как маршрутизаторы Cisco, брандмауэры PIX Firewall, клиенты и концентраторы Cisco VPN, а также многие другие продукты, поддерживающие IPSec. Средства поддержки IPSec допускают масштабирование от самых малых до очень больших сетей.

Ассоциации защиты (Security Association ,SA)

IPSec предлагает стандартный способ аутентификации и шифрования соединений между сообщающимися сторонами. Чтобы обеспечить защиту связей, средства IPSec используют стандартные алгоритмы (т.е. математические формулы) шифрования и аутентификации, называемые преобразованиями. В IPSec используются открытые стандарты согласования ключей шифрования и управления соединениями, что обеспечивает возможность взаимодействия между сторонами. Технология IPSec предлагает методы, позволяющие сторонам IPSec "договориться" о согласованном использовании сервисов. Чтобы указать согласуемые параметры, в IPSec используются ассоциации защиты.

Ассоциация защиты (Security Association - SA) представляет собой согласованную политику или способ обработки данных, обмен которыми предполагается между двумя устройствами сообщающихся сторон. Одной из составляющих такой политики может быть алгоритм, используемый для шифрования данных. Обе стороны могут ис¬пользовать один и тот же алгоритм как для шифрования, так и для дешифрования. Действующие параметры SA сохраняются в базе данных ассоциаций защиты (Security Association Database - SAD) обеих сторон.

Два компьютера на каждой стороне SA хранят режим, протокол, алгоритмы и ключи, используемые в SA. Каждый SA используется только в одном направлении. Для двунаправленной связи требуется два SA. Каждый SA реализует один режим и протокол; таким образом, если для одного пакета необходимо использовать два протокола (как например AH и ESP), то требуется два SA.

Протокол IKE (Internet Key Exchange - обмен Internet-ключами) является гибридным протоколом, обеспечивающим специальный сервис для IPSec, а именно аутентификацию сторон IPSec, согласование параметров ассоциаций защиты IKE и IPSec, а также выбор ключей для алгоритмов шифрования, используемых в рамках IPSec. Протокол IKE опира¬ется на протоколы ISAKMP (Internet Security Association and Key Management Protocol - протокол управления ассоциациями и ключами защиты в сети Internet) и Oakley, которые применяются для управления процессом создания и обработки ключей шифрования, используемых в преобразованиях IPSec. Протокол IKE применяется также для формирования ассоциаций защиты между потенциальными сторонами IPSec.
Как IKE, так и IPSec используют ассоциации зашиты, чтобы указать параметры связи.
IKE поддерживает набор различных примитивных функций для использования в протоколах. Среди них можно выделить хэш-функцию и псевдослучайную функцию (PRF).

Хэш-функция – это функция, устойчивая к коллизиям. Под устойчивостью к коллизиям понимается тот факт, что невозможно найти два разных сообщения m1 и m2, таких, что

H(m1)=H(m2), где H – хэш функция.

Что касается псеводслучайных функций, то в настоящее время вместо специальных PRF используется хэш функция в конструкции HMAC (HMAC - механизм аутентификации сообщений с использованием хэш функций). Для определения HMAC нам понадобится криптографическая хэш функция (обозначим её как H) и секретный ключ K. Мы предполагаем, что H является хэш функцией, где данные хэшируются с помощью процедуры сжатия, последовательно применяемой к последовательности блоков данных. Мы обозначим за B длину таких блоков в байтах, а длину блоков, полученных в результате хэширования - как L (L
ipad = байт 0x36, повторённый B раз;
opad = байт 0x5C, повторённый B раз.

Для вычисления HMAC от данных "text" необходимо выполнить следующую операцию:

H(K XOR opad, H(K XOR ipad, text))

Из описания следует, что IKE использует для аутентификации сторон HASH величины. Отметим, что под HASH в данном случае подразумевается исключительно название Payload в ISAKMP, и это название не имеет ничего общего со своим содержимым

Инфраструктура IPSec

Сети VPN на основе IPSec могут быть построены с помощью самых разных устройств Cisco - маршрутизаторов Cisco, брандмауэров CiscoSecure PIX Firewall, программного обеспечения клиента CiscoSecure VPN и концентраторов Cisco VPN серий 3000 и 5000. Маршрутизаторы Cisco имеют встроенную поддержку VPN с соответствующими богатыми возможностями программного обеспечения Cisco IOS, что уменьшает сложность сетевых решений и снижает общую стоимость VPN при возможности построения многоуровневой защиты предоставляемых сервисов. Брандмауэр PIX Firewall является высокопроизводительным сетевым устройством, которое может обслуживать конечные точки туннелей, обеспечивая им высокую пропускную способность и прекрасные функциональные возможности брандмауэра. Программное обеспечение клиента CiscoSecure VPN поддерживает самые строгие требования VPN удаленного доступа для операций электронной коммерции, а также приложений мо¬бильного доступа, предлагая законченную реализацию стандартов IPSec и обеспечивая надежное взаимодействие маршрутизаторов Cisco и брандмауэров PIX Firewall.

Как работает IPSec


IPSec опирается на ряд технологических решений и методов шифрования, но действие IPSec в общем можно представить в виде следующих главных шагов:
  • Шаг 1. Начало процесса IPSec. Трафик, которому требуется шифрование в соответствии с политикой защиты IPSec, согласованной сторонами IPSec, начинает IКЕ-процесс.
  • Шаг 2. Первая фаза IKE . IKE-процесс выполняет аутентификацию сторон IPSec и ведет переговоры о параметрах ассоциаций защиты IKE, в результате чего создается защищенный канал для ведения переговоров о параметрах ассоциаций защиты IPSec в ходе второй фазы IKE.
  • Шаг 3. Вторая фаза IKE . IKE-процесс ведет переговоры о параметрах ассоциации защиты IPSec и устанавливает соответствующие ассоциации защиты IPSec для устройств сообщающихся сторон.
  • Шаг 4. Передача данных . Происходит обмен данными между сообщающимися сторонами IPSec, который основывается на параметрах IPSec и ключах, хранимых в базе данных ассоциаций защиты.
  • Шаг 5. Завершение работы туннеля IPSec . Ассоциации защиты IPSec завершают свою работу либо в результате их удаления, либо по причине превышения предельного времени их существования.
В следующих разделах указанные шаги будут описаны подробнее.