«Цифровые устройства обработки информации: цифровой фотоаппарат» - Урок. Цифровые устройства обработки информации

Цифровые устройства

Наименование параметра Значение
Тема статьи: Цифровые устройства
Рубрика (тематическая категория) Компьютеры

Аналоговые устройства

К аналоговым устройствам относятся функциональные электронные узлы, предназначенные для выполнения различных операций и преобразований над аналоговыми сигналами. В структурном отношении, аналоговые устройства можно представить в виде:

1. Двухполюсника

Uвых(t)
Uвх(t)
Uвх2(t)

Имеет 2 пары входных зажимов, к которым подключаются источники сигналов, а к выходным зажимам подключают нагрузку. Представляет собой передаточное звено с управляющими параметрами.

К цифровым устройствам относятся функциональные узлы, предназначенные для выполнения операций над объектами информации в виде цифровых сигналов. Для представления цифровых сигналов служат кодовые слова. Особенности: для построения используется простейший алфавит – две буквы, обозначаемые символами 0 и 1. Кодовое слово – число в 2 СС. Число букв в кодовом слове фиксировано.

Слово содержит n букв или разрядов. В цифровых устройствах объектом информации являются двоичные числа, а не функции времени.

Принципы функционирования цифровых устройств:

1) Для выполнения команды отводится определœенное время, для этого используется генератор тактовых импульсов, он формулирует управляющий сигнал

2) После начала операции происходит преобразование всœех входных кодовых слов в требуемые выходные

3) Выходные кодовые слова отправляются на хранение в память цифровой системы или во внешние устройства для выполнения действий

Способы обработки кодовых слов:

Для реализации операций над кодовыми словами, крайне важно их в виде электрических сигналов. Распространение получил потенциальный способ представления. Логический ноль соответствует низкому уровню сигнала(напряжение), логическая единица- высокому. Операции над кодовыми словами могут выполняться двумя способами: последовательно(по разрядно) и параллельно.

Простейшие преобразователи информации:

Компьютер состоит из миллионов элементов: транзисторов, диодов, регистров, входящих в состав интегральных схем. Но изучение работы ПК облегчается регулярностью его структуры, что означает: компьютер состоит из большого количества простейших элементов, всœего несколько типов. Элементы образуют небольшое количество типовых схем.

По степени сложности выполненных функций различают:

1) Элементы – простейшая часть, выполняющая операции над отдельными битами. Различают логически(и, или, не, и-не, или-не), запоминающие(триггеры различных типов) и вспомогательные, служащие для усиления и формирования сигналов.

2) Узлы – состоят из элементов и выполняют операции над словами. Различают комбинационные и накапливающие(последовательностные)

Комбинационные построены исключительно на логических элементах;

Накапливающие включают логические элементы и элементы памяти;

К узлам ПК относят: регистры, счетчики, сумматоры, мультиплексоры и т.д.

3) Устройства – состоят из нескольких узлов, выполняют одну или ряд однотипных операций над машинными словами К устройствам относят АЛУ, устройство памяти, устройство управления, ЗУ, устройство ввода/вывода.

Цифровые устройства - понятие и виды. Классификация и особенности категории "Цифровые устройства" 2017, 2018.

  • - Тема 4. Комбинационные цифровые устройства.

    4-1. Понятие комбинационного цифрового устройства, микросхемы комбинационного типа малой степени интеграции. Под комбинационным цифровым устройством (КЦУ) понимается цифровое устройство, обеспечивающее преобразование совокупности N входных цифровых сигналов в M... .


  • - Лекция 8. Цифровые устройства – дешифратор, мультиплексор.

    Комбинационное устройство (КУ) - это устройство с m входами и n выходами. Если КУ выполнено на базе идеальных, т.е. безинерционных элементов, состояние выходов однозначно определяется состоянием входов в тот же момент времени. Однако, инерционность элементов и наличие... .


  • - Аналого-цифровые устройства

    ВОПРОС №1 СХЕМОТЕХНИКА АНАЛОГО-ЦИФРОВЫХ УСТРОЙСТВ ЛЕКЦИЯ №14 Современные системы связи, телевидение, аудио-, видеоаппаратура нового поколения переходят на цифровой стандарт качества, который предусматривает прием, передачу и обработку сигналов...

  • Тема урока: «Цифровые устройства обработки информации : цифровая видеокамера »

    Цель урока:

    создать условия для формирования у учащихся представления о видах и назначении цифровых устройств для обработки информации;

    продолжить развивать навыки обработки информации с помощью различных устройств;

    продолжить воспитывать бережное отношение к компьютерной технике , выполнение правил безопасного поведения в кабинете

    ХОД УРОКА:

    1. Организационный момент.

    2. Повторение материала предыдущего урока:
    1) о каком устройстве мы говорили на прошлом уроке?

    2) Какие основные элементы фотоаппарата вы можете назвать?

    3) Каковы достоинства цифровых фотокамер?

    4) Где хранятся изображения в фотоаппарате?

    5) Как осуществляется передача изображений с фотоаппарата?

    3. Изучение нового материала.

    К сегодняшнему уроку вы подготовили сообщения о цифровых видеокамерах – устройствах, которое намного расширяет возможности современных компьютеров. Знакомство с этим устройством мы проведем по тому же плану, что и знакомство с цифровым фотоаппаратом, т. е:

    1 – основные элементы видеокамеры

    2– достоинства цифровых видеокамер

    3– устройства для записи информации в видеокамере

    4 - передача информации с видеокамеры в компьютер

    5– веб-камеры

    Предоставим слово представителям групп.

    (учащиеся делают сообщения, при необходимости сопровождают рассказ иллюстрациями)

    Материал, который может быть предложен учащимся, находится в приложении 1.

    4. Практикум по переносу видео в компьютер

    Так же как и на прошлом уроке, можно снимать фрагменты выступлений учащихся, их деятельность на уроке . На практике показать, как перенести видео (на крайний случай с фотоаппарата). Форма работы – индивидуальная.

    5. Монтаж видеофильма об изучении Цифровых устройств обработки информации

    Работа с видеоредактором MoveMaker (фронтально):

    MoveMaker .

    2. Загрузить видео изображения – Запись видео - Импорт видео.

    3. Загрузить фото – Запись видео - Импорт изображений

    4. Расположить видеофрагменты и фотографии на панель раскадровки (перетаскиванием)

    5. Добавить переходы: Монтаж фильма – Просмотр видеопереходов – Выбрать видеопереход – перетащить его на панель раскадровки в область между кадрами.

    6. Добавит эффекты: Монтаж фильма – Просмотр эффектов – Выбрать эффект – перетащить его на панель раскадровки непосредственно на кадр. Для усиления эфеекта, его можно использовать несколько раз.

    7. Добавление тиров и надписей: Монтаж фильма – Создание названий и титров – Выбрать эффект титров или надписи – ввести текст, установить форматирование – нажать кнопку «Готово».

    8. Добавление музыки: Запись видео – импорт звука и музыки – перетащить фрагмент на панель раскадровки.

    9. Сохранение фильма в формате WMV – Завершение создания фильма – Сохранение фильма на компьютере - Подтверждать запросы мастера сохранения фильма.

    Данный алгоритм выдать учащимся как памятку. Работу выполняем все вместе, учитель показывает все тоже самое на экране.

    6. Домашнее задание: На следующем уроке учащимися будет выполняться проект по созданию фильма. Для этого им предстоит продумать тематику проекта, какие фрагменты и фотографии они будут использовать. На уроке им предстоит отснять материал и смонтировать небольшой фильм. (Тематика разнообразна: Моя школа, Мой класс, Наш кабинет информатики, Наши учителя и т. д.) Работа предполагается в группах по 2-3 человека.

    Приложение 1. Видеокамеры

    Видеокамеры в первую очередь делятся на цифровые и аналоговые. Здесь я не буду рассматривать аналоговые камеры (VHS , S -VHS , VHS -C , Video -8, Hi -8) по вполне понятным причинам. Им место в комиссионке, или на верхней полке в кладовке (а вдруг когда-нибудь раритетом станет), но обработка аналогового видео рассмотрена будет обязательно, так как кассет, я думаю, у каждого найдется немало. Итак, современные бытовые видеокамеры различаются по виду носителя видеоинформации, по способу записи (кодировке) видеоинформации, по размеру и количеству матриц, ну и, само собой по оптике.

    1.1.1. По виду носителя информации камеры делятся на:

    HDV -камеры: новейший и судя по всему основной в будущем формат. Размер кадра до 1920*1080. Представьте себе, каждый кадр – это 2-х мегапиксельная фотография, и вы поймете какое качество видео. Строго говоря, HDV – это формат записи, так как есть камеры HDD , работающие по формату HDV . Но я специально поставил этот формат в этот ряд, так как большинство существующих HDV -камер пишут на кассеты. Если деньги для вас не проблема, эти камеры для вас.

    DV -камеры: основной формат бытовых цифровых видеокамер. Размер кадра 720*576 (PAL ) и 720*480 (NTSC ). Качество записи во многом зависит от оптики и качества (и количества) матриц. DV -камеры делятся на собственно DV (mini -DV ) – камеры и камеры Digital -8. Какую именно покупать, зависит от вас, с одной стороны mini -DV – камеры более распространенны, с другой, если до этого у вас была камера Video -8, есть смысл обратить внимание на камеры Digital -8, так как эти камеры свободно записывают на любые кассеты формата 8 (Video -8, Hi -8, Digital -8(могут, конечно, ругаться, мол, слабовата Video -8 для меня, но пишут на них запросто)), кроме того, записывая на кассеты лучшего качества (Hi -8, Digital -8), вы получите более продолжительную запись по сравнению с mini -DV .

    DVD -камеры. Я не отношусь к поклонникам данного вида камер. Качество записи у них ниже, чем у DV -камер, да и диска при наилучшем для них качестве хватает минут на 20. Но! Если вы не притязательны к качеству (тем более что на экране обыкновенного телевизора разница не так и заметна) и у вас нет желания заморачиваться с изготовлением фильма, последующей кодировкой в DVD -формат, вы вполне можете пользоваться DVD -камерой. Тем более что собрать полноценный DVD из полученных файлов на DVD 1,4 Гб (используемый в DVD -камерах), можно довольно быстро с помощью специализированных программ (например, CloneDVD и DVD -lab ).

    Флэш-камеры. Запись производится на флэш-карточку в форматах MPEG 4 и MPEG 2. Продолжительность зависит от объема карточки, выбранного размера кадра и качества кодировки. MPEG 2 предпочтительней, так как качество выше, но места занимает больше. Но ни тот, ни другой формат при обработке камерой видеоинформации для записи на карточку не смогут обеспечить качество, хоть немного приближенное к DV . Поэтому порекомендовать подобные камеры можно для подарка детям или для съемок в экстремальных условиях, так как неоспоримым преимуществом этих камер является компактность и отсутствие механических частей (исключение – трансфокатор).

    HDD -камеры. Запись производится на встроенный жесткий диск. Запись может производится во всех форматах от HDV до MPEG 4 (зависит от модели). Возможно, как и флэш-камеры – это будущее бытовых видеокамер, но в отличие от последних HDD -камеры уже сейчас могут обеспечить великолепное качество HDV , либо до 20-ти часов записи неплохого качества MPEG 2 на 30-ти Gb диск. Но посмотрим на это великолепие с другой стороны, запись 1 часа формата DV занимает на жестком диске 13-14 Gb , и, произведя нехитрые вычисления, скажите что проще переставить кассету или переписывать в компьютер видео через 2,3-3 часа записи (к хорошему качеству привыкаешь быстро).

    HDV -камеры

    Высокая цена

    DV(miniDV) -камеры

    Де-факто основной стандарт домашней видеозаписи

    Проблема выбора, в этом стандарте мирно уживаются дешевые «мыльницы» и полупрофессиональные модели

    DV(Digital-8) -камеры

    Запись и воспроизведение на любые кассеты формата 8

    Более продолжительная запись на 1 кассету по сравнению с miniDV

    Небольшая распространенность формата

    DVD -камеры

    Записал, достал диск из камеры, поставил в плеер

    Невысокое качество записи

    Небольшое время записи на диск

    Флэш-камеры

    Отсутствие механических частей (за исключением трансфокатора), как следствие более высокая надежность

    Невысокое качество записи

    HDD -камеры

    Гораздо большее время записи по сравнению с кассетными аппаратами

    Высокая скорость перезаписи информации на жесткий диск компьютера

    Частое «скидывание» видео в компьютер

    В «полевых» условиях необходим ноутбук с достаточно большим жестким диском

    Высокая цена

    1.1.2. Любая цифровая видеокамера использует компрессию (сжатие) оцифрованного видео, потому что на данный момент просто не существует носителей способных выдержать некомпрессированное видео (одна минута несжатого видео PAL 720*576 без звука занимает примерно 1,5 Гб на жестком диске, нехитрые подсчеты позволяют увидеть, что на один час уже потребуется 90 Гб). И еще необходимо обработать этот огромный объем информации, даже простая перезапись 90 Гб потребует около пяти часов. Поэтому производителям видеокамер просто необходимо использовать компрессию оцифрованного видео. Современные видеокамеры используют следующие виды компрессии: DV , MPEG 2, MPEG 4 (DivX , XviD ).

    DV – основной вид сжатия видео в современных цифровых видеокамерах, его используют HDV , miniDV , Digital 8 и некоторые HDD -камеры. Высокое качество данного вида компрессии, я думаю, еще долго ведущим среди других форматов.

    MPEG 2 – формат, используемый для записи DVD . Хотя и имеет несколько худшее качество записи по сравнению с DV , но в зависимости от битрейта (грубо говоря, количество байтов, выделяемых на одну секунду видео) используя данный вид компрессии можно получить видео достаточно высокого качества (вспомните лицензионные DVD ).

    MPEG 4 – честно говоря, производители цифровой аппаратуры (фото и видео) серьезно «подмочили» репутацию данного формата. Чтобы «выжать» из этого формата все возможное необходимо использовать достаточно мощный компьютер и потратить приличное количество времени. Поэтому и получается, что конечное видео в формате MPEG 4 на видеокамерах и фотоаппаратах невысокого разрешения и невысокого (мягко говоря) качества. Что используется DivX или XviD не так уж важно, разницу (небольшую), опять же, можно увидеть лишь при обработке видео на компьютере.

    1.1.3. Немаловажное, а скорее основное, влияние на конечный результат оказывает качество матрицы, используемой для оцифровки оптического сигнала, проходящего через линзу видеокамеры. Чем она больше, тем лучше. При выборе видеокамеры не поленитесь заглянуть в спецификацию и посмотреть количество эффективно используемых пикселей («точек» на матрице). Например, в спецификации к видеокамере Sony ХХХХХХХ написано, что при размере кадра 720*576 (0,4 Мегапикселей) для видео используется 2 Мегапикселей матрицы. Естественно это самым положительным образом сказывается на конечном результате, так как при любой кодировке (компрессии) жестко действует закон: чем лучше исходный материал, тем лучше результат, а чем больше света попадет на матрицу, тем меньше будет цифровых шумов, тем в более темное время можно будет использовать видеокамеру и т. д. Все вышесказанное в тройном размере относится к трехматричным камерам, кроме всего прочего система трех матриц позволяет существенно уменьшить цветовые шумы за счет того, что разделение света на цветовые составляющие RGB (обязательное условие для получения видеосигнала) производится не электроникой, а оптической призмой, затем каждая матрица обрабатывает свой цвет.

    Косвенно о размере и качестве матрицы можно судить по встроенному в видеокамеру цифровому фотоаппарату, чем больше у него разрешение, тем лучше.

    1.1.4. С оптикой видеокамеры все просто: чем больше, тем лучше. Чем больше диаметр объектива, тем больше света попадет на матрицу. Чем больше оптическое увеличение объектива…Впрочем, на этом стоит остановиться поподробнее. Первое что хочется сказать: НИКОГДА не смотрите на гордые надписи на боку видеокамеры (Х120, Х200, Х400 и т. д.). Смотреть нужно только на оптическое увеличение объектива (либо на камере (optical zoom ), либо на самом объективе). Конечно, цифровое увеличение использовать можно, но не стоит забывать, что цифровое увеличение - это ограничение количества эффективно используемых пикселей матрицы (см. рисунок). А всего лишь 2-х кратное цифровое увеличение (например, при 10-ти кратном объективе, это будет 20-ти кратное общее увеличение) приведет к уменьшению эффективно используемых пикселей на матрице в 4 раза!

    Ну и неплохо бы иметь оптический стабилизатор, так как в камерах с цифровым стабилизатором используется не вся площадь матрицы.

    Веб-камеры

    Веб-камеры – это недорогие сетевые стационарные устройства, передающие информацию, обычно видеозапись, по беспроводным или кросскоммутируемым каналам Internet и Ithernet. Основное назначение «комнатных» веб-камер заключается в использовании их для работы с видеопочтой и проведения телеконференций. Широкое применение такие камеры нашли в «беби-ситинге» - они отлично справляются с ролью видеонянь, передавая изображение предоставленного самому себе ребенка. «Уличные» антивандальные веб-камеры выполняют роль охранных видеонаблюдателей. Возможность захвата изображения в режиме видеокамеры или фотоаппарата - это дополнительные возможности веб-камер. Ожидать высокого качества от записываемых видеороликов или цифрового фото в данном случае не стоит. Потому что нет смысла оснащать веб-камеры качественной оптикой и дорогой электроникой - передача видеоданных в режиме реального времени требует невероятно высокой компрессии, неизбежно приводящей к потере качества изображения. Хотя получение шикарной картинки с помощью веб-камер принципиально невозможно, именно качество получаемого изображения является основной характеристикой, позволяющей субъективно сравнивать и выбирать камеры этого типа. Впрочем, на предпочтение также могут повлиять интересный дизайн, программная комплектация и различные опции вроде поддержки скинов и дополнительных коммуникационных интерфейсов. Все веб-камеры оснащены функцией детектора движения и аудиовходом, позволяющим передавать звуковую информацию, их также часто оборудуют разъёмами для подключения различных внешних датчиков и устройств вроде осветительных приборов и сигнализации. Мировая практика показывает, что основными производителя веб-камер становятся компании, изготавливающие компьютерную периферию (Genius , Logitech, SavitMicro) или сетевое оборудование (D-Link , SavitMicro ), а не видео - или фототехнику, что еще раз подчеркивает различие применяемых технологий.

    Форматы сжатия видео изображения

    В качестве начального шага обработки изображения форматы сжатия MPEG 1 и MPEG 2 разбивают опорные кадры на несколько равных блоков, над которыми затем производится дискетное косинусное преобразование (DCT). По сравнению с MPEG 1, формат сжатия MPEG 2 обеспечивает лучшее разрешение изображения при более высокой скорости передачи видео данных за счет использования новых алгоритмов сжатия и удаления избыточной информации, а также кодирования выходного потока данных. Также формат сжатия MPEG 2 дает возможность выбора уровня сжатия за счет точности квантования. Для видео с разрешением 352х288 пикселей формат сжатия MPEG 1 обеспечивает скорость передачи 1,2 – 3 Мбит/с, а MPEG 2 – до 4 Мбит/с.

    По сравнению с MPEG 1, формат сжатия MPEG 2 обладает следующими преимуществами:

    Как и JPEG2000, формат сжатия MPEG 2 обеспечивает масштабируемость различных уровней качества изображения в одном видеопотоке.

    В формате сжатия MPEG 2 точность векторов движения увеличена до 1/2 пикселя.

    Пользователь может выбрать произвольную точность дискретного косинусного преобразования.

    В формат сжатия MPEG 2 включены дополнительные режимы прогнозирования.

    Формат сжатия MPEG 2 использовал снятый сейчас с производства видеосервер AXIS 250S компании AXIS Communications, 16-канальный видеонакопитель VR-716 компании JVC Professional, видеорегистраторы компании FAST Video Security и многие другие устройства системы видеонаблюдения.

    Формат сжатия MPEG 4

    MPEG4 использует технологию так называемого фрактального сжатия изображений. Фрактальное (контурно-основанное) сжатие подразумевает выделение из изображения контуров и текстур объектов. Контуры представляются в виде т. н. сплайнов (полиномиальных функций) и кодируются опорными точками. Текстуры могут быть представлены в качестве коэффициентов пространственного частотного преобразования (например, дискретного косинусного или вейвлет-преобразования).

    Диапазон скоростей передачи данных, который поддерживает формат сжатия видео изображений MPEG 4, гораздо шире, чем в MPEG 1 и MPEG 2. Дальнейшие разработки специалистов направлены на полную замену методов обработки, используемых форматом MPEG 2. Формат сжатия видео изображений MPEG 4 поддерживает широкий набор стандартов и значений скорости передачи данных. MPEG 4 включает в себя методы прогрессивного и чересстрочного сканирования и поддерживает произвольные значения пространственного разрешения и скорости передачи данных в диапазоне от 5 кбит/с до 10 Мбит/с. В MPEG 4 усовершенствован алгоритм сжатия, качество и эффективность которого повышены при всех поддерживаемых значениях скорости передачи данных. Разработка компании JVC Professional – веб-камера VN-V25U, входящая в линию сетевых устройств works, использует для обработки видео изображений формат сжатия MPEG 4.

    Видео форматы

    Видео формат определяет структуру видео файла, то как хранится файл на носителе информации(CD, DVD, жестком диске или канале связи). Обычно разные форматы имеют различные расширения файла(*.avi, *. mpg, *.mov и др)

    MPG - Видеофайл, в котором содержится видео, закодированное MPEG1 или MPEG2.

    Как вы замечали, обычно MPEG-4 фильмы имеют расширение AVI. Формат AVI (Audi o-Video Interleaved) был разработан корпорацией Microsoft для хранения и воспроизведения видеороликов. Представляет собой контейнер, в котором может быть что угодно, начиная от MPEG1 и заканчивая MPEG4. Он может содержать в себе потоки 4 типов - Video, Audio, MIDI, Text. Причем видеопоток может быть только один, тогда как аудио - несколько. В частности, AVI может содержать и только один поток - либо видео, либо аудио. Сам формат AVI не накладывает совершенно никаких ограничений на тип используемого кодека, ни для видео, ни для аудио - они могут быть любыми. Таким образом, в AVI файлах могут совершенно спокойно сочетаться любые видео - и аудиокодеки.

    RealVideo формат, созданный компанией RealNetworks. RealVideo используется для живой телевизионной трансляции в Интернете. Например, телекомпания CNN одной из первых стала вещать в Сети. Обладает небольшим размером файла и самым низким качеством, зато вы, не особенно загружая свой канал связи, сможете посмотреть последний выпуск теленовостей на сайте выбранной вами телекомпании. Расширения RM, RA, RAM.

    ASF - Потоковый формат от Microsoft.

    WMV - Видеофайл, записанный в формате Windows Media.

    DAT - Файл, скопированный с VCD(VideoCD)\SVCD диска. Содержит в себе MPEG1\2 видеопоток.

    MOV - Формат Apple Quicktime.

    Подключение к ПК или телевизору

    Самый простой разъем - AV-выход RCA - попросту говоря "тюльпаны" - имеется в любой видеокамере, приспособлен для подключения к любой телевидеотехнике, и обеспечивает передачу аналогового видео с наибольшими потерями в качестве. Гораздо ценнее наличие в цифровых видеокамерах таких аналоговых входов - это позволяет оцифровывать Ваши архивы аналоговых записей, если у Вас прежде цифровой имелась аналоговая видеокамера. В "цифре" продлится срок их хранения, а также появится возможность редактирования их на компьютере. Видеокамеры форматов Hi8, Super VHS (-С), mini-DV (DV) и Digital8 оснащены S-video-разъемом, который, в отличие от RCA, передает раздельно сигналы цветности и яркости, что значительно уменьшает потери, заметно улучшает качество изображения. Наличие S-video-входа в цифровых моделях дает те же преимущества обладателям архивов записей Hi 8 или Super VHS. Встроенный инфракрасный передатчик LaserLink в видеокамерах Sony, с помощью приемного устройства IFT-R20, позволяет смотреть отснятый материал по телевизору, не подключаясь к нему проводами. Просто поставьте видеокамеру рядом с телевизором на расстоянии до 3 м и включайте "PLAY". Более усовершенствованный передатчик Super LaserLink, которым оснащаются все последние модели работает на большем расстоянии (до 7 м). Наличие в видеокамере монтажных разъемов позволяет осуществлять линейный монтаж, синхронизировав видеокамеру с видеомагнитофонами и монтажной декой. В таком случае на всех скомутированных между собой устройствах контролируются синхронно показания счетчика ленты и все основные режимы: воспроизведение, запись, стоп, пауза и перемотка. В видеокамерах Panasonic для этой цели служит разъем Control-M, в видеокамерах Sony - Control-L (LANC). Спецификации их несовместимы, поэтому рекомендуем уточнять соответствие интерфейса у видеомагнитофона и видеокамеры.

    Разъем RS-232-C ("цифровой фотовыход")

    Разъем для подключения видеокамеры к последовательному порту компьютера для передачи неподвижных кадров в цифровом виде и управления видеокамерой с ПК. В "навороченных" моделях вместо RS-232-C встроен еще более быстрый "фотовыход" - USB-интерфейс. Все видеокамеры mini-DV и Digital8 оснащены DV-выходом (i. LINK или IEEE 1394 или FireWire), обеспечивающим быструю передачу цифрового аудио/видеосигнала без потерь качества. Для этого Вам необходимо иметь другое устройство с поддержкой DV-формата - DV-видеомагнитофон или компьютер с DV-платой. Ценнее конечно же видеокамеры, имеющие, кроме выхода, также DV-вход. Некоторые фирмы производят одну и ту же модель в двух вариантах: т. н. "европейском" (без входов) и "азиатском" (с входами). Это объясняется высокими таможенными пошлинами в Европе на импорт цифровых видеомагнитофонов, к каковым справедливо можно отнести и видеокамеру с DV-входом. IEEE-1394, FireWire и i. LINK - это три названия одного и того же высокоскоростного цифрового последовательного интерфейса, который служит для передачи любых видов цифровой информации. IEEE-1394 (IEEE - Institute of Electrical and Electronics Engineers) Обозначение стандарта интерфейса, разработанного корпорацией Apple (под фирменным названием FireWire). Обозначение принято американским Институтом инженеров по электротехнике и радиоэлектронике (IEEE). Большинство видеокамер mini-DV и Digital8 оборудованы интерфейсом IEEE-1394, с помощью которого видеоинформация, представленная в цифровой форме, пересылается непосредственно на компьютер. Аппаратная часть включает в себя недорогой адаптер и четырехжильный или шестижильный кабель. Позволяет передавать данные со скоростью до 400 Мбит/с.

    i. LINK

    Цифровой вход/выход на базе стандарта IEEE 1394. Позволяет передавать отснятый видеоматериал на компьютер. Модели видеокамер с i. Link повышают гибкость работы за счет интерактивного монтажа, электронного хранения и рассылки изображений.

    FireWire

    Зарегистрированный товарный знак фирмы Apple, принимавшей активное участие в разработке стандарта. Название FireWire ("огненный провод") принадлежит фирме Apple и может использоваться только для описания ее изделий, а по отношению к таким устройствам на PC принято употреблять термин IEEE-1394, то есть непосредственно название стандарта;

    Карта памяти

    На этой карте Вы можете хранить в электронном виде фотографии, видеоролики, музыку. С ее помощью можно передавать изображение на компьютер.

    Memory Stick

    Карта памяти Memory Stick - фирменная разработка Sony - способна хранить одновременно записи изображения, речи, музыки, графики и текстовые файлы. Весом всего 4 грамма и по размеру не превосходящая пластинки жвачки, карта памяти надежна, имеет защиту от случайного стирания, 10-штырьковое соединение для большей надежности, частоту передачи данных - 20 МГц, скорость записи - 1,5 Мб/сек., скорость чтения - 2,45 Мб/сек. Вместимость цифровых стоп-кадров на карте емкостью 4 Мб (MSA-4A): в формате JPEG 640x480 режим SuperFine - 20 кадров, Fine - 40 кадров, Standard - 60 кадров; в формате JPEG 1152x864 режим SuperFine - 6 кадров, Fine - 12 кадров, Standard - 18 кадров. Вместимость MPEG Movies на карте емкостью 4 Мб (MSA-4A): в режиме Presentation (320x2,6 по 15 секунд; в режиме Video Mail (160x1,6 по 60 секунд.

    SD Memory Card

    SD-карта - карта памяти нового стандарта размером с почтовую марку позволяет хранить любые виды данных, включая разнообразные фото-, видео - и аудиоформаты. На данный момент доступны SD-карты емкостью 64, 32, 16 и 8 МB. До конца 2001 года в продажу поступят SD-карты емкостью до 256 МB. Одна SD-карта емкостью 64 Mb содержит примерно такое же количество музыки, как один CD-диск. Так как скорость передачи данных на SD-карту - 2 Мб/сек., перезапись с CD-диска займет всего 30 секунд. Поскольку SD Memory Card - это полупроводниковый носитель информации, вибрация не оказывает на нее никакого влияния, то есть здесь невозможен пропуск в звучании, встречающийся у вращающихся носителей типа CD или MD. Максимальное время звуковой записи на SD-карту 64 Mb: 64 минуты высокого качества (128 кбит/сек), 86 минут стандартного (96 кбит/сек) или 129 минут в LP-режиме (64 кбит/сек).

    Тема урока: «Цифровые устройства обработки информации: цифровой фотоаппарат»

    Цель урока:

    Создать условия для формирования у учащихся представления о видах и назначении цифровых устройств для обработки информации;

    Развивать навыки обработки информации с помощью различных устройств;

    Воспитывать бережное отношение к компьютерной технике, выполнение правил безопасного поведения.

    Учащиеся должны знать:

    Возможности применения цифровых фотоаппаратов.

    Обеспечение урока:

      презентация «Цифровой фотоаппарат»;

      мультимедийный проектор и экран;

      цифровой фотоаппарат;

    ХОД УРОКА:

      Организационный момент.

    Приветствие, организация учащихся на совместную результативную деятельность.

      Объяснение нового материала.

    Вопр. Какие наиболее распространенные цифровые устройства обработки информации вам известны?:

    Сегодня мы рассмотрим цифровые фотокамеры. Изучать материал вы будете следующим образом: каждый из вас вытянет карточку с заданием и изучит материал. Потом, по номерам карточек вы сформируетесь в группы (пары), вместе обсудите материал и выберите способ донести его до остальных. В конце урока у нас должно с вами сформироваться представление о цифровом фотоаппарате как средстве обработки и передачи информации в компьютер по следующему плану:

      Общий вид, составные части.

      Достоинства.

      Дополнительные возможности.

      Способы хранения информации

      Связь с ПК и другими устройствами.

    Карточка №1

      Общий вид, составные части:

    В основном устройство цифровой камеры повторяет конструкцию аналоговой. Главное их различие в светочувствительном элементе, на котором формируется изображение: в аналоговых фотоаппаратах это пленка, в цифровых – матрица. Свет через объектив попадает на матрицу, где формируется картинка, которая затем записывается в память. Состоит камера из двух основных частей – корпуса и объектива. В корпусе находятся матрица, затвор (механический или электронный, а иногда и тот и другой сразу), процессор и органы управления. Объектив, съемный или жестковстроенный, состоит из группы линз, размещенных в пластиковом или металлическом корпусе.

    Карточка №2

      Достоинства

      Наглядность и оперативность. При съёмке на «цифру» вы видите результат сразу же после нажатия на кнопку спуска затвора.

      Экономичность. Цена на цифровой фотоаппарат снижается до уровня цены на обычный пленочный. Необходимо учесть еще и стоимость расходных материалов (пленки, реактивов и т.д.)

      Компактность. Небольшие размеры фотоаппарата являются одним из самых важных критериев для фотографа-любителя.

      Независимость, надежность, удобство хранения. Нет зависимости от мастера по печати фотографий, более долгий срок хранения.

      Дополнительные возможности. Современные цифровые камеры зачастую обладают целым рядом дополнительных возможностей, принципиально недоступных для плёночных собратьев. Среди них, например, видеозапись, режим съёмки панорам или запись аудиокомментариев. Кроме того, специальные алгоритмы обработки изображений, реализованные в программном обеспечении камер, позволяют отчасти заменить такие традиционные фотографические инструменты, как, например, светофильтры и плёнки для разных типов освещения.

      Цифровая обработка.

      Печать. Практически все современные «цифровики» и принтеры поддерживают протокол PictBridge, предусматривающий прямой обмен данными между камерой и печатающим устройством.

    Карточка №3

      Дополнительные возможности

      Скоростная съемка. Скоростная съемка - это режим, в котором камера снимает кадры не поодиночке, как обычно, а сериями – в надежде на то, что хотя бы один кадр в серии получится удачным.

      Брэкетинг (вилка) автофокуса (экспозиции, баланса белого, вспышки). Это специальный режим, в котором камера делает несколько (обычно 3) снимка подряд с вариацией того или иного параметра.

      Съемка панорам («stitch assist»). Эта функция служит для облегчения панорамной съемки. Панорама – это серия кадров, снятая с некотором смещением по горизонтали или вертикали, и впоследствии «склеенная» на компьютере в одно большое изображение.

      Макросъемка. Функция макросъемки (макрорежим) – это специальный режим работы автофокуса, в котором становится возможной фокусировка по очень близко расположенным объектам.

      Датчик ориентации. Многие камеры имеют так называемый датчик положения или ориентации. Суть его работы проста: в момент съемки датчик определяет, в каком положении находится камера – в обычном или в портретном (повернута на 90 градусов). Если зафиксировано портретное положение, то после спуска затвора возможно два варианта (в зависимости от производителя аппарата). Либо -файл записывается «как есть», но в его заголовке делается специальная пометка о «портретности», либо необходимый поворот на 90 градусов выполняется процессором камеры, и кадр сразу пишется, «как надо.

      Голосовые комментарии к снимкам. Некоторые камеры позволяют сопровождать только что снятые кадры краткими голосовыми комментариями. При всей кажущейся вычурности, это довольно полезная возможность. Например, во время экскурсии по незнакомому городу фотограф может отмечать, какую достопримечательность он только что сфотографировал, и в дальнейшем это значительно облегчит разбор отснятого материала.

      Видео. Практически все цифровые фотокамеры (кроме зеркальных), присутствующие на рынке, позволяют снимать видеоролики.

      Спецэффекты. Почти все аппараты имеют в качестве дополнительной возможности набор спецэффектов (или так называемых фильтров). Среди них обычно присутствует отбрасывание цветовой информации (монохромное изображение), «сепия», повышение или понижение цветовой интенсивности и т.д.

    Карточка №4

      Способы хранения информации.

    а) Встроенная память фотоаппарата (обычно очень мала, позволяет хранить до 10 фотографий)

    б) Флэш-память или карты памяти

    На данный момент среди форматов флэш-памяти можно выделить трех безусловных лидеров – это Secure Digital, CompactFlash и Memory Stick.

    Secure Digital - это стандарт, созданный альянсом компаний SanDisk, Matsushita Electric (Panasonic) и Toshiba. Физические размеры модуля довольно малы и составляют 24x32x1,4 мм, что позволяет использовать память этого типа в суперкомпактных фотоаппаратах. Кроме того, стандартом предусмотрена защита от несанкционированного копирования (что позволяет выпускать в этом формате, например, книги), а также защита от случайной перезаписи (на модуле памяти имеется механический переключатель). По данным на 2004 г, Secure Digital является наиболее популярным формат на рынке.

    Модуль памяти Secure Digital

    Стандарт CompactFlash, созданный фирмой SanDisk, предусматривает модули двух типов (Type I и Type II), отличающихся толщиной. Размеры карт составляют 42,8x36,4x3,3 мм и 42,8x36,4x5 мм соответственно. CompactFlash – наименее компактный из всех форматов, зато помимо памяти в нем производится огромное количество различной периферии для карманных компьютеров: модемы, GPS-модули, WiFi- и Bluetooth-адаптеры и т.д. Кроме того, в этом формате выпускаются миниатюрные жесткие диски IBM/Hitachi Microdrive и Sony Microdrive объемом от 2 до 4 Гб (ожидается также 6-гигабайтный диск от Western Digital). Впрочем, целесообразность приобретения компактных жестких дисков (в свете обвального падения цен на флэш-память) довольно сомнительна.

    Модуль памяти CompactFlash

    Авторство формата Memory Stick принадлежит фирме Sony. Этот формат имеет два базовых типа корпуса – Memory Stick и Memory Stick Duo. Первый обладает размерами 50x21,5x2,8 мм, второй – 31x20x1,6 мм. В тех же форм-факторах существуют также высокоскоростные модификации с возможностью адресовать более 128 Мбайт. Они обозначаются индексом Pro (Memory Stick Pro и Memory Stick Pro Duo, соответственно).

    Модуль памяти Memory Stick Pro

    Secure Digital и CompactFlash являются открытыми стандартами, свободными от каких-либо лицензионных платежей. Memory Stick – стандарт закрытый и лицензируемый, так что за рамками продукции Sony он не получил особого распространения. Модули этого формата стоят почти вдвое дороже остальных, поскольку в их цену включены лицензионные отчисления (роялти).

    Также на рынке присутствуют и другие типы памяти (например, стандарт xD, разработанный не так давно компаниями Olympus и Fujifilm), устаревающие стандарты MMC и SmartMedia и т.д. Однако они распространены гораздо меньше, и мы не будем останавливаться на них подробно.

    Карточка № 5

      Интерфейс с компьютером и принтером

    Фотоаппарат подключается к компьютеру для копирования отснятого материала из флэш-памяти, а также, в случае необходимости, для обновления программного обеспечения («прошивки») камеры. Соединение с принтером необходимо, очевидно, для прямой печати с камеры по протоколу PictBridge.

    Подавляющее большинство камер подключается к компьютеру или принтеру по интерфейсу USB (Universal Serial Bus). Для этого (со стороны камеры) используется либо стандартный разъем «mini-B», либо нестандартный фирменный. Очевидно, что первый вариант несколько предпочтительнее, поскольку «в случае чего» стандартный кабель вы легко купите в любом магазине за символические деньги, в то время как за фирменным придется побегать (да и обойдется он существенно дороже).

    На данный момент распространено две версии стандарта USB: 1.1 и более новая 2.0. Первая обеспечивает пропускную способность 12 Мбит/с, вторая – 480 Мбит/с. Соответственно, если вы используете достаточно быструю флэш-память, интерфейс USB 2.0 будет предпочтительнее. Впрочем, вы всегда можете извлечь память из фотоаппарата и воспользоваться внешним устройством для чтения флэш-карт – так называемым карт-ридером (модуль памяти будет представлена как носитель с файловой системой FAT16/32).

    Самый простой разъем - AV-выход RCA - попросту говоря "тюльпаны" - приспособлен для подключения к любой телевидеотехнике, и обеспечивает просмотр изображений на телеэкране.

    На ознакомление учащихся с материалом и обсуждение отводится 10 минут . Затем учащиеся выступают с сообщениями, которые сопровождаются презентацией учителя.

      Обобщение материала и подведение итогов
      Вопросы к классу:

      1. Что нового вы узнали на уроке?

        Была ли информация полезна? В чем её польза?

        Если бы вам предстояло выбирать фотоаппарат, то на какие его параметры вы бы обратили внимание?

      Практикум по работе с цифровым фотоаппаратом.

    Примечание: во время урока можно фотографировать основные этапы. В конце урока отснятый материал передать в компьютер разными способами.

      Домашнее задание: задается по группам:

    1 группа – основные элементы видеокамеры

    2 группа – достоинства цифровых видеокамер

    3 группа – устройства для записи информации в видеокамере

    4 группа - передача информации с видеокамеры в компьютер

    5 группа – веб-камеры

    Устройством обработки цифровой информации и "мозгом" всей издательской системы является компьютер, который также представляет собой многоуровневую структуру. В нее входят как элементы обработки (процессор), так и несколько типов устройств хранения информации (оперативная память, жесткий диск, видеопамять), а также целый ряд вспомогательных элементов (порты и другие составляющие)

    Работа с графикой, особенно предназначенной для полиграфических целей, требует достаточно значительных параметров используемого компьютера. К сожалению (только для автора), темпы технологического прогресса в этой области необычайно высоки, а сроки написания, подготовки, печатания и распространения книги не поспевают за ними, поэтому мы рассмотрим только принципиальные параметры, которые необходимо понимать каждому дизайнеру, садящемуся за компьютер.

    Персональный компьютер - это, прежде всего, системный блок, в котором располагаются все основные узлы компьютера. "Мозгом" компьютера является микропроцессор - центральное устройство компьютера - электронная схема размером в несколько квадратных сантиметров, которая обеспечивает выполнение всех прикладных программ и управление всеми устройствами. Микропроцессор выполнен в виде сверхбольшой (не по размеру, а по количеству электронных компонентов, число которых достигает нескольких миллионов) интегральной схемы, расположенной на кремниевой пластинке.

    Микропроцессоры могут различаться по следующим основным параметрам:

    Тип (модель) означает поколение микропроцессоров, например существуют процессоры серий, которые обобщенно называются "286", "386", "486", "Pentium".

    Тактовая частота определяет количество элементарных операций, выполняемых в одну секунду. Она измеряется в герцах (Гц). Тактовая частота служит основным параметром, обеспечивающим производительность процессора. Чем выше тип процессора, тем выше тактовая частота. Одна из первых моделей персональных компьютеров располагала процессором с тактовой частотой 4,77 МГц, а последние процессоры перешагнули барьер в 1 ГГц.

    Разрядность определяет количество битов, передаваемых одновременно (синхронно) по информационным шинам. Производительность компьютера также напрямую связана с разрядностью. Этот параметр изменяется скачкообразно: 8 разрядов, затем 16, 32 разряда и, наконец, 64-разрядные шины.

    Компьютер в целом характеризуется и рядом других параметров, влияющих на его производительность.

    Оперативная память (или ОЗУ - оперативное запоминающее устройство) определяет объем памяти, которым "распоряжается" процессор. Оперативная память - это быстрая и энергозависимая (при отключении электропитания информация полностью теряется) память, в которой располагается исполняемая в данный момент программа и необходимые для этого данные. Чем выше это значение, тем больший объем информации может быть одновременно доступен для обработки. Объем оперативной памяти за относительно короткий исторический период увеличивался с 640 Кбайт до десятков Мбайт в современных системах (причем даже в самых скромных конфигурациях). Быстродействие (скорость работы) компьютера напрямую зависит и от величины ОЗУ.

    Видеопамять - это отдельное ОЗУ, расположенное на специализированной видеоплате. Эта память содержит данные, соответствующие текущему изображению на экране.

    В современном персональном компьютере реализован принцип открытой архитектуры, который позволяет практически свободно менять состав устройств (модулей). К главной информационной магистрали подключается большое количество периферийных устройств. При этом очень важно, что одни устройства могут заменяться на другие. Не являются исключением даже микропроцессор и микросхемы оперативной памяти.

    Аппаратное подключение периферийных устройств к информационной магистрали осуществляется через особый блок, который получил название контроллера (иногда его называют адаптером). А программное управление работой внешних устройств обеспечивается также особыми программами - драйверами, которые, как правило, интегрируются в операционную систему.

    РАЗДЕЛ 2. СХЕМОТЕХНИКА ЦИФРОВЫХ ЭЛЕКТРОННЫХ УСТРОЙСТВ

      Основные понятия цифровой электроники

    Назначение радиоэлектронных устройств, как известно, – получение, преобразование, передача и хранение информации, представленной в форме электрических сигналов. Сигналы, действующие в электронных устройствах, и соответственно сами устройства делят на две большие группы: аналоговые и цифровые.

    Аналоговый сигнал – сигнал, непрерывный по уровню и во времени, т.е. такой сигнал существует в любой момент времени и может принимать любой уровень из заданного диапазона.

    Квантованный сигнал – сигнал, который может принимать только определенные квантованные значения, соответствующие уровням квантования. Расстояние между двумя соседними уровнями – шаг квантования.

    Дискретизированный сигнал сигнал, значения которого заданы только в моменты времени, называемые моментами дискретизации. Расстояние между соседними моментами дискретизации – шаг дискретизации
    . При постоянном
    применима теорема Котельникова:
    , где- верхняя граничная частота спектра сигнала.

    Цифровой сигнал - сигнал, квантованный по уровню и дискретизированный во времени. Квантованные значения цифрового сигнала обычно кодируются некоторым кодом, при этом каждый выделенный в процессе дискретизации отсчет заменяется соответствующим кодовым словом, символы которого имеют два значения – 0 и 1.

    Типичными представителями устройств аналоговой электроники являются устройства связи, радиовещания, телевидения. Общие требования, предъявляемые к аналоговым устройствам,– минимальные искажения. Стремление выполнить эти требования приводит к усложнению электрических схем и конструкции устройств. Другая проблема аналоговой электроники – достижение необходимой помехоустойчивости, ибо в аналоговом канале связи шумы принципиально неустранимы.

    Цифровые сигналы формируются электронными схемами, транзисторы в которых либо закрыты (ток близок к нулю), либо полностью открыты (напряжение близко к нулю), поэтому на них рассеивается незначительная мощность и надежность цифровых устройств получается более высокой, чем аналоговых.

    Цифровые устройства более помехоустойчивы, чем аналоговые, так как небольшие посторонние возмущения не вызывают ошибочного срабатывания устройств. Ошибки появляются только при таких возмущениях, при которых низкий уровень сигнала воспринимается как высокий или наоборот. В цифровых устройствах можно также применить специальные коды, позволяющие исправить ошибки. В аналоговых устройствах такой возможности нет.

    Цифровые устройства нечувствительны к разбросу (в допустимых пределах) параметров и характеристик транзисторов и других элементов схем. Безошибочно изготовленные цифровые устройства не нужно настраивать, а их характеристики полностью повторяемы. Все это очень важно при массовом изготовлении устройств по интегральной технологии. Экономичность производства и эксплуатации цифровых интегральных микросхем привела к тому, что в современных радиоэлектронных устройствах цифровой обработке подвергаются не только цифровые, но и аналоговые сигналы. Распространены цифровые фильтры, регуляторы, перемножители и др. Перед цифровой обработкой аналоговые сигналы преобразуются в цифровые с помощью аналого-цифровых преобразователей (АЦП). Обратное преобразование – восстановление аналоговых сигналов по цифровым – выполняется с помощью цифроаналоговых преобразователей (ЦАП).

    При всем многообразии задач, решаемых устройствами цифровой электроники, их функционирование происходит в системах счисления, оперирующих всего двумя цифрами: нуль (0) и единица (1). По виду кодирования двоичных цифр электрическими сигналами элементы цифровой техники делятся на потенциальные (статические) и импульсные (динамические).

    В потенциальных элементах нулю и единице соответствуют два резко отличающихся уровня напряжения. При этом напряжения могут быть как положительными, так и отрицательными относительно корпуса, электрический потенциал которого принимается за ноль. Различают элементы, работающие в положительной и отрицательной логике. В элементах с положительной логикой переход от 0 к 1 совершается с повышением потенциала. В отрицательной логике за логическую 1 принимается более отрицательное напряжение.

    В импульсных элементах логической единице соответствует наличие, а логическому нулю – отсутствие импульса.

    Работа цифровых устройств обычно тактируется достаточно высокочастотным генератором тактовых импульсов. В течение одного такта реализуется простейшая микрооперация – чтение, сдвиг, логическая команда и т.п. Информация представляется в виде цифрового слова. Для передачи слов используется два способа – параллельный и последовательный. Последовательное кодирование применяется при обмене информацией между цифровыми устройствами (например, в компьютерных сетях, модемной связи). Обработка информации в цифровых устройствах, как правило, реализуется при использовании параллельного кодирования информации, обеспечивающего максимальное быстродействие.

    Элементную базу для построения цифровых устройств составляют цифровые интегральные микросхемы (ИМС), каждая из которых реализуется с использованием определенного числа логических элементов (ЛЭ) – простейших цифровых устройств, выполняющих элементарные логические операции.

    Все цифровые устройства можно отнести к одному из двух основных классов: комбинационные (без памяти) и последовательностные (с памятью). Комбинационными называют устройства, состояние выходов которых в любой момент времени однозначно определяется значениями входных переменных в тот же момент времени. Это логические элементы, преобразователи кодов (в том числе шифраторы и дешифраторы), распределители кодов (мультиплексоры и демультиплексоры), компараторы кодов, арифметико-логические устройства (сумматоры, вычитатели, умножители, собственно АЛУ), постоянные запоминающие устройства (ПЗУ), программируемые логические матрицы (ПЛМ).

    Выходное состояние последовательностного цифрового устройства (конечного автомата) в данный момент времени определяется не только логическими переменными на его входах, но еще зависит и от порядка (последовательности) их поступления в предыдущие моменты времени. Иными словами, конечные автоматы должны обязательно содержать элементы памяти, отражающие всю предысторию поступления логических сигналов, и выполняются на триггерах, в то время как комбинационные цифровые устройства могут быть целиком построены только на логических элементах. К числу цифровых устройств последовательностного типа относят триггеры, регистры, счетчики, оперативные запоминающие устройства (ОЗУ), микропроцессорные устройства (микропроцессоры и микроконтроллеры).

    Прежде чем изучать различные цифровые устройства, познакомимся с элементами математического аппарата, используемого при их построении. Его составными частями являются представление о системах счисления и методы описания и преобразования логических функций.

    9. Математические основы цифровой электроники

    9.1. Позиционные системы счисления

    Системой счисления называют способ изображения произвольного числа ограниченным набором символов, называемых цифрами. Номер позиции, определяющий вес, с которым данная цифра складывается в числе, называют разрядом , а системы счисления, обладающие отмеченным свойством, –позиционными.

    В общем случае n - разрядное положительное числоN в произвольной системе счисления с основаниемр представляется суммой вида

    (9.1)

    где a k - отдельные цифры в записи числа, значения которых равны членам натурального ряда в диапазоне от 0 до (р – 1).

    При выполнении вычислений цифровыми электронными устройствами используются элементы с двумя устойчивыми состояниями. По этой причине в цифровой технике широкое распространение получила позиционная двоичная система счисления (с основанием 2). В каждом двоичном разряде, получившем название бит , может стоять 1 или 0. Сама же запись числа (двоичный код) представляет собой последовательность из единиц и нулей. Чтобы отличить двоичное число от десятичного, будем дополнять его справа суффиксомВ (Binaire ), как это принято в специальных машинно-ориентированных языках программирования, называемых ассемблерами.

    Веса соседних разрядов двоичного кода числа отличаются в два раза, а самый правый разряд (младший) имеет вес 1. Поэтому, например

    101101В = 1 . 2 5 + 0 . 2 4 + 1 . 2 3 +1 . 2 2 + 0 . 2 1 + 1 . 2 0 = 45.

    Четыре соседних бита называют тетрадой , группу из 8 бит называютбайтом , а из 16 бит –машинным словом . Совокупность из 1024 (2 10) байт называют килобайтом, из 1024 килобайт – мегабайтом, из 1024 мегабайт – гигабайтом.

    1 Гбайт = 2 10 Мбайт = 2 20 Кбайт = 2 30 байт.

    Современные персональные ЭВМ могут хранить в своей памяти на жестких магнитных дисках цифровую информацию объемом в десятки гигабайт.

    Арифметические операции в двоичной системе счисления исключительно просты и легко реализуются аппаратно. Однако при вводе и выводе информации в цифровое устройство она должна быть представлена в более привычной для человека десятичной системе счисления. Стремление упростить процедуру пересчета двоичных чисел к десятичному эквиваленту привело к использованию двоично-десятичного кода. В этом коде для записи отдельных цифр разрядов десятичного числа используют тетрады их двоичного