Что такое рендер? Рендеринг, методы и программы. Использование комплекса ZWSOFT для визуализации. Официальные системные требования

02Окт

Что такое Рендер (Рендеринг)

Рендер (Рендеринг) — это процесс создания финального изображения или последовательности из изображений на основе двухмерных или трехмерных данных. Данный процесс происходит с использованием компьютерных программ и зачастую сопровождается трудными техническими вычислениями, которые ложатся на вычислительные мощности компьютера или на отдельные его комплектующие части.

Процесс рендеринга так или иначе присутствует в разных сферах профессиональной деятельности, будь то киноиндустрия, индустрия видеоигр или же видеоблогинг. Зачастую, рендер является последним или предпоследним этапом в работе над проектом, после чего работа считается завершенной или же нуждается в небольшой постобработке. Также стоит отметить, что нередко рендером называют не сам процесс рендеринга, а скорее уже завершенный этап данного процесса или его итоговый результат.

слова «Рендер».

Слово Рендер (Рендеринг) — это англицизм, который зачастую переводится на русский язык словом “Визуализация ”.

Что такое Рендеринг в 3D?

Чаще всего, когда мы говорим о рендере, то имеем в виду рендеринг в 3D графике. Сразу стоит отметить, что на самом деле в 3D рендере нету трех измерений как таковых, которые мы зачастую можем увидеть в кинотеатре надев специальные очки. Приставка “3D” в название скорее говорит нам о способе создание рендера, который и использует 3-х мерные объекты, созданные в компьютерных программах для 3D моделирования. Проще говоря, в итоге мы все равно получаем 2D изображение или их последовательность (видео) которые создавались (рендерелись) на основе 3-х мерной модели или сцены.

Рендеринг — это один из самых сложных в техническом плане этапов в работе с 3D графикой. Чтоб объяснить эту операцию простым языком, можно привести аналогию с работами фотографов. Для того, чтоб фотография предстала во всей красе, фотографу нужно пройти через некоторые технические этапы, например, проявление пленки или печать на принтере. Примерно такими же техническими этапами и обременены 3d художники, которые для создания итогового изображения проходят этап настройки рендера и сам процесс рендеринга.

Построение изображения.

Как уже говорилось ранее, рендеринг — это один из самых сложных технических этапов, ведь во время рендеринга идут сложные математические вычисления, выполняемые движком рендера. На этом этапе, движок переводит математические данные о сцене в финальное 2D-изображение. Во время процесса идет преобразование 3d-геометрии, текстур и световых данных сцены в объединенную информацию о цветовом значение каждого пикселя в 2D изображение. Другими словами, движок на основе имеющихся у него данных, просчитывает то, каким цветом должен быть окрашено каждый пиксель изображения для получения комплексной, красивой и законченной картинки.

Основные типы рендеринга:

В глобальном плане, есть два основных типа рендеринга, главными отличиями которых является скорость, с которой просчитывается и финализируется изображение, а также качество картинки.

Что такое Рендеринг в реальном времени?

Рендеринг в реальном времени зачастую широко используется в игровой и интерактивной графике, где изображение должно просчитываться с максимально большой скоростью и выводиться в завершенном виде на дисплей монитора моментально.

Поскольку ключевым фактором в таком типе рендеринга есть интерактивность со стороны пользователя, то изображение приходится просчитывать без задержек и практически в реальном времени, так как невозможно точно предсказать поведение игрока и то, как он будет взаимодействовать с игровой или с интерактивной сценой. Для того, чтоб интерактивная сцена или игра работала плавно без рывков и медлительности, 3D движку приходится рендерить изображение со скоростью не менее 20-25 кадров в секунду. Если скорость рендера будет ниже 20 кадров, то пользователь будет чувствовать дискомфорт от сцены наблюдая рывки и замедленные движения.

Большую роль в создание плавного рендера в играх и интерактивных сценах играет процесс оптимизации. Для того, чтоб добиться желаемой скорости рендера, разработчики применяют разные уловки для снижения нагрузки на рендер движок, пытаясь снизить вынужденное количество просчетов. Сюда входит снижение качества 3д моделей и текстур, а также запись некоторой световой и рельефной информации в заранее запеченные текстурные карты. Также стоит отметить, что основная часть нагрузки при просчете рендера в реальном времени ложиться на специализированное графическое оборудование (видеокарту -GPU), что позволяет снизить нагрузку с центрального процессора (ЦП) и освободить его вычислительные мощности для других задач.

Что такое Предварительный рендер?

К предварительному рендеру прибегают тогда, когда скорость не стоит в приоритете, и нужды в интерактивности нет. Данный тип рендера используется чаще всего в киноиндустрии, в работе с анимацией и сложными визуальными эффектами, а также там, где нужен фотореализм и очень высокое качество картинки.

В отличие от Рендера в реальном времени, где основная нагрузка приходилась на графические карты(GPU) В предварительном рендере нагрузка ложится на центральный процессор(ЦП) а скорость рендера зависит от количества ядер, многопоточности и производительности процессора.

Нередко бывает, что время рендера одного кадра занимает несколько часов или даже несколько дней. В данном случаи 3D художникам практически не нужно прибегать к оптимизации, и они могут использовать 3D модели высочайшего качества, а также текстурные карты с очень большим разрешением. В итоге, картинка получается значительно лучше и фото-реалистичней по сравнению с рендером в реальном времени.

Программы для рендеринга.

Сейчас, на рынке присутствует большое количество рендеринг движков, которые отличаются между собой скоростью, качеством картинки и простотой использования.

Как правило, рендер движки являются встроенными в крупные 3D программы для работы с графикой и имеют огромный потенциал. Среди наиболее популярных 3D программ (пакетов) есть такой софт как:

  • 3ds Max;
  • Maya;
  • Blender;
  • Cinema 4d и др.

Многие из этих 3D пакетов имеют уже идущие в комплекте рендер движки. К примеру, рендер-движок Mental Ray присутствует в пакете 3Ds Max. Также, практически любой популярный рендер-движок, можно подключить к большинству известных 3d пакетов. Среди популярных рендер движков есть такие как:

  • V-ray;
  • Mental ray;
  • Corona renderer и др.

Хотелось бы отметить, что хоть и процесс рендеринга имеет очень сложные математические просчеты, разработчики программ для 3D-рендеринга всячески пытаются избавить 3D-художников от работы со сложной математикой лежащей в основе рендер-программы. Они пытаются предоставить условно-простые для понимания параметрические настройки рендера, также материальные и осветительные наборы и библиотеки.

Многие рендер-движки сыскали славу в определенных сферах работы с 3д графикой. Так, например, “V-ray” имеет большую популярность у архитектурных визуализаторов, из-за наличия большого количества материалов для архитектурной визуализации и в целом, хорошего качества рендера.

Методы визуализации.

Большинство рендер движков использует три основных метода вычисления. Каждый из них имеет как свои преимущества, так и недостатки, но все три метода имеют право на своё применение в определенных ситуациях.

1. Scanline (сканлайн).

Сканлайн рендер — выбор тех, кто приоритет отдаст скорости, а не качеству. Именно за счет своей скорости, данный тип рендера зачастую используется в видеоиграх и интерактивных сценах, а также во вьюпортах различных 3D пакетов. При наличие современного видеоадаптера, данный тип рендера может выдавать стабильную и плавную картинку в реальном времени с частотой от 30 кадров в секунду и выше.

Алгоритм работы:

Вместо рендеринга «пикселя по пикселю», алгоритм функционирования «scanline» рендера заключается в том, что он определяет видимую поверхность в 3D графике, и работая по принципу «ряд за рядом», сперва сортирует нужные для рендера полигоны по высшей Y координате, что принадлежит данному полигону, после чего, каждый ряд изображения просчитывается за счет пересечения ряда с полигоном, который является ближайшим к камере. Полигоны, которые больше не являются видимыми, удаляются при переходе одного ряда к другому.

Преимущество данного алгоритма в том, что отсутствует необходимость передачи координат о каждой вершине с основной памяти в рабочую, а транслируются координаты только тех вершин, которые попадают в зону видимости и просчета.

2. Raytrace (рейтрейс).

Этот тип рендера создан для тех, кто хочет получить картинку с максимально качественной и детализированной прорисовкой. Рендеринг именно этого типа, имеет очень большую популярность у любителей фотореализма, и стоит отметить что не спроста. Довольно часто с помощью рейтрейс-рендеринга мы можем увидеть потрясающе реалистичные кадры природы и архитектуры, которые отличить от фотографии удастся не каждому, к тому же, нередко именно рейтрейс метод используют в работе над графиков в CG трейлерах или кино.

К сожалению, в угоду качеству, данный алгоритм рендеринга является очень медлительным и пока что не может использоваться в риал-тайм графике.

Алгоритм работы:

Идея Raytrace алгоритма заключается в том, что для каждого пикселя на условном экране, от камеры прослеживается один или несколько лучей до ближайшего трехмерного объекта. Затем луч света проходит определенное количество отскоков, в которые может входить отражения или преломления в зависимости от материалов сцены. Цвет каждого пикселя вычисляется алгоритмически на основе взаимодействия светового луча с объектами в его трассируемом пути.

Метод Raycasting.

Алгоритм работает на основе «бросания» лучей как будто с глаз наблюдателя, сквозь каждый пиксель экрана и нахождения ближайшего объекта, который преграждает путь такого луча. Использовав свойства объекта, его материала и освещения сцены, мы получаем нужный цвет пикселя.

Нередко бывает, что «метод трассировки лучей» (raytrace) путают с методом «бросания лучей» (raycasting). Но на самом деле, «raycasting» (метод бросания луча) фактически является упрощенным «raytrace» методом, в котором отсутствует дальнейшая обработка отбившихся или заломленных лучей, а просчитывается только первая поверхность на пути луча.

3. Radiosity.

Вместо «метода трассировки лучей», в данном методе просчет работает независимо от камеры и является объектно-ориентированным в отличие от метода «пиксель по пикселю». Основная функция “radiosity” заключается в том, чтобы более точно имитировать цвет поверхности путем учета непрямого освещения (отскок рассеянного света).

Преимуществами «radiosity» являются мягкие градуированные тени и цветовые отражения на объекте, идущие от соседних объектов с ярким окрасом.

Достаточно популярна практика использования метода Radiosity и Raytrace вместе для достижения максимально впечатляющих и фотореалистичных рендеров.

Что такое Рендеринг видео?

Иногда, выражение «рендерить» используют не только в работе с компьютерной 3D графикой, но и при работе с видеофайлами. Процесс рендеринга видео начинается тогда, когда пользователь видеоредактора закончил работу над видеофайлом, выставил все нужные ему параметры, звуковые дорожки и визуальные эффекты. По сути, все что осталось, это соединить все проделанное в один видеофайл. Этот процесс можно сравнить с работой программиста, когда он написал код, после чего все что осталось, это скомпилировать весь код в работающую программу.

Как и у 3D дизайнера, так и у пользователя видеоредактора, процесс рендеринга идет автоматически и без участия пользователя. Все что требуется, это задать некоторые параметры перед стартом.

Скорость рендеринга видео зависит от продолжительности и качества, которое требуется на выходе. В основном, большая часть просчета ложиться на мощность центрального процессора, поэтому, от его производительности и зависит скорость видео-рендеринга.

Категории: , / / от
Данное руководство поможет вам собрать идеальный ПК для рендеринга и анимации.

original text by logicalincrements.com

Актуальность: Ноябрь 2018

Рендеринг - это процесс визуализации 2D или 3D моделей, создания из них изображений или анимаций с помощью определенных компьютерных программ. Если вы хотите собрать ПК именно для этих целей, если вы хотите получить от него максимум отдачи в плане производительности на каждый потраченный рубль, то данный гайд именно для вас.Собирая ПК самостоятельно, вы не переплачиваете за лишний и ненужный функционал, вы собираете машину строго под ваши рабочие потребности. Наше руководство вам в этом поможет.

Сперва мы разберем, какие компоненты ПК важны для подобной творческой работы, а затем мы выжмем из них максимум производительности! Поехали.

Секция 1: Примеры сборок ПК для рендеринга и анимации

Данные сборки отлично подойдут для рендеринга изображений и видео в таких программах как Maya, Cinema 4D, Blender, Modo и т.д. Подробнее о том, почему были выбраны именно эти комплектующие, можно почитать в ниже.

Важно: Так как вы самостоятельно собираете ПК, не забудьте отдельно приобрести операционную систему. Дабы избежать проблем с совместимостью, мы рекомендуем Windows. Приобрести его можно .

Бюджетная сборка для рендеринга и анимации

Данная бюджетная сборка основана на отличной производительности младшей линейки процессоров Intel Kaby Lake. Корпус в данной сборке довольно дешевый, а сэкономленные деньги были вложены в двухканальную DDR4 память, видеокарту среднего класса с 4GB VRAM и вместительный жесткий диск. Несмотря на бюджетность сборки, в ней нет никаких компромиссов - ни в плане качества комплектующих, ни в плане объема хранилища.

В данной сборке даже есть SSD, на который можно установить систему и пару часто используемых программ.

CPU Кулер: Сток

Сбалансированная сборка для рендеринга и анимации

Как обычно, сборки средне-высокого уровня выдают отличную производительность за свои деньги! Мы сами используем видеокарту из данной сборки, поэтому можем лично поручиться за ее отличную производительность, особенно когда дело доходит до рендеринга и анимации.

В сборках данного уровня присутсвует SSD бо́льшего объема, на котором можно уже хранить не только операционную систему и часто используемое ПО, но и проекты, над которыми вы работаете в данный момент.

В данной сборке также присутствует шестиядерный процессор с новой архитектурой от Intel.

В отличие от предыдущей бюджетной сборки, здесь все нижеупомянутые вкусняшки запакованы в полноценный mid-tower корпус. Кулер здесь также намного эффективнее и тише стокового.

Высокопроизводительная сборка для рендеринга и анимации

Вот мы и вышли на профессиональный уровень. Данная сборка выдает великолепную производительность, но она непропорциональна увеличению цены. Здесь уже ощущается легкий холодок закона убывающей отдачи.

В данной сборке мы имеем R7 2700X, обладающий одной из самых высоких показателей производительностью на одно ядро, а также в многопоточном режиме. Соответственно, данная конфигурация идеально подойдет для создания, редактирования и анимирования 3D моделей. В рендеринге данная сборка уступит более дорогим вариантам, к сожалению.

В сборке мы имеем также мощный и эффективный кулер, великолепную видеокарту для CUDA-рендеринга, три терабайта на хранение ваших шедевров, высококачественный блок питания.

Если вы любите поиграть в игры, то данная сборка потянет практически любую игру в разрешении 4K.

Важно: Если ваше ПО использует CPU для рендеринга, обратите внимание на секцию с альтернативными вариантами комплектующих для данной сборки.

Сборка для профессионалов

Предупреждаем, вы стоите на краю водопада. Дальше только тьма, сумасшедшая производительность и астрономические ценники.

Высокие тактовые частоты, 8 ядер, 16 потоков - в данном CPU великолепное сочетание многопотоковой производительности и производительности на ядро. Отлично сбалансирован.

1 TB экстремально быстрого SSD превратит запуск системы, ее выключение, доступ к файлам и работу программ в одно сплошное удовольствие.

Кулер: Fractal Design Celsius S24

Кузница Богов!

Если деньги для вас не проблема, а по жизни хочется самого лучшего, вот вам сборочка:

У AMD Threadripper 2990WX 32 ядра and 64 потока. Две RTX 2080 Ti, 64GB RAM и 2TB молниеносного SSD, а также экстремально надежный и эффективный БП – тихая, эстетичная, колоссальная вычислительная мощь.

БП: Seasonic Prime Titanium 1200W

Кулер: Corsair H115i

Секция №2: Выбираем комплектующие для рендеринга


CPU

Давным давно, рендеринг производился исклчюительно с помощью мощностей процессора, поэтому он был центральным компонентом сборок ПК для подобных задач.

На сегодняшний день, главным игроком в этой сфере является видеокарта. Тем не менее, процессор не утратил своей значимости, так как помимо рендеринга, процессор используется абсолютно для всех задач, которые выполняются на компьютере. Следовательно, слабый процессор не является оптимальным выбором, даже если вы для рендеринга используете только видеокарту.

Актуальная 8000 серия процессоров Intel на сегодняшний день обладает самой оптимальной комбинацией производительности на ядро и в многопточном режиме. AMD Ryzen все еще остается отличным выбором с прекрасной многопточной производительностью, но в производительности на ядро он уступает решениям от команды синих.

Видеокарта

В отличие от других дизайнерских задач, значение видеокарты для рендеринга трудно переоценить, так как от нее зависит скорость выполнения данного процесса. GPU-рендеринг намного быстрее - в некоторых случаях аж в 10 раз!

Ваш выбор в данном случае скорее всего падет на NVIDIA:

Если сравнивать оба способа рендеринга с помощью GPU (OpenCL от AMD и собственная разработка NVIDIA - CUDA), у CUDA производительность значительно лучше. В то время как OpenCL совместим практически с любыми видеокартами, CUDA экслюзивен только NVIDIA.

RAM

Об оперативной памяти можно особо не беспокоиться. Большинство ПК потребительского уровня на сегодняшний день используют DDR4. В сборках бюджетного уровня память как правило находится в двухканальном режиме, а в сборках высокого уровня - в четырехканальном. Два модуля памяти по 4GB в двухканальном режиме будут более производитльнее, чем один модуль на 8GB. Четырехканальный режим (4 модуля по 4GB), в свою очередь, слегка быстрее двухканального (2 модуля по 8GB).

Важно: Если в материнской плате только 2 слота под оперативную память, лучше взять 1 модуль на 8GB, так как это даст вам возможность добавить память в будущем и иметь в общей сложности 16GB.

Хранилище

Blender (Бесплатно)

Blender разработана компанией The Blender Foundation, и является бесплатной программой для 3D дизайна с открытым исходным кодом. У нее достаточно высокий порог вхождения, но настолько функциональных и мощных решений вы просто не найдете. Тем более задаром.

Несмотря на очевидную недружелюбность к новичкам, универсальность и доступность данного ПО делает его отличным кандидатом начинающих и любителей.

Бесплатно загрузить Blender можно с официального сайта .

Modo

Modo является программой для моделирования, скульптинга, текстурирования, анимирования и рендеринга 3D моделей. В программе также есть встроенный симулятор физики. В общем, Modo себя позиционирует в качестве модульного швейцарского ножа для труженников креативной сферы.

Несмотря на кажущуюся простоту использования, в данной программе можно создавать довольно сложные проекты: например, Modo использовалась в популярном научном сериале Cosmos (Космос: Пространство и время).

Коммерческая лицензия на одного пользователя обойдется вам в $1799.

ZBrush

ZBrush - программа для 3D моделирования и скульптинга, разработанная компанией Pixologic. Программа широко используется для различных коммерческих задач, видеоигр и CGI графики.

Коммерческую лицензию ZBrush 4R7 на одного пользователя можно приобрести за $795.

Sculptris (бесплатно)

Pixologic также предлагает базовый вариант ПО для скульптинга под названием Sculptris , который предназначен, в первую очередь, новичкам.

AutoCAD

Еще одна программа, разработанная компанией Autodesk. AutoCAD в основном используется для 2D и 3D дизайна в сфере машиностроения, строительства, архитектуры и т.д. Это ПО профессионального уровня, с мощной системой поддержки, с высоким уровнем локализации русскоязычной версии (локализовано все, кроме руководства по программированию), а также с соответствующим ценником.

AutoCAD распространяется по системе подписки , которая обойдется вам в $1400 в год.

Заключение

Итак, приоритетными компонентами в сборке будут видеокарта и процессор. Постарайтесь вложить в них бо́льшую часть вашего бюджета, причем мощность видеокарты должна быть приоритетнее мощности процессора.

Не забудьте про RAM в двухканальном режиме, но не переусердствуйте (8-16 GB будет вполне достаточно). SSD сборке уж точно не повредит, но опять же, не увлекайтесь слишком сильно. 120-240 GB для операционной системы и пары часто используемых программ вполне хватит.

Желательно, но не обязательно, чтобы в вашем корпусе был ходя бы один 5.25” слот для CD/DVD привода, так как:
(1) многие профессиональные программы до сих пор выпускаются на дисках (lol)
(2) если ваши рендеры или анимации впоследствии превращаются в видеоматериалы, вы, возможно, захотите записать их на физический носитель.

Ну вот, побежали рендерить!

Рендеринг, визуализация, как происходит рендеринг, фотореалистичное изображение, программы для рендеринга 3d-моделей | Проектная компания Высь ">

Чем меньше по размерам эти полигоны, тем их больше и тем модель получается более реалистичная. Но в тоже время, чем больше полигонов, тем больше и расчетов необходимо совершить процессору и соответственно больше требуется времени на это. Поэтому детализация модели это очень важный момент, чем больше детализация, тем больше полигонов, тем ниже производительность.

Существуют различные методы построения таких моделей, для сложных моделей, например, животных, людей и т.д. используются методы лепки, точно также, как из пластилина, потянув за край модели она вытягивается, появляются новые полигоны и т.д.

Также возможно использовать и твердотельное моделирование в различных CAD/CAM-системах.

Такая модель несет только лишь математическую модель , которая оговаривает ее геометрию и ничего больше. Для придания цвета на эти полигоны накладывается текстура. Текстура представляет собой обычный рисунок или фотографию, которые и накладываются на модель.

После наложения текстуры модель становится уже более лучше выглядеть, но далеко не фотореалистично, так как реальные поверхности обладают рядом свойств, таких как прозрачность, отражательная способность и т.д. Поэтому модели необходимо назначить материалы и указать их свойства, например, полированный металл и т.д. Материал также представляет собой математическую модель, имеющей различные свойства, через которые можно менять, например, прозрачность воды.

Для более реальной визуализации необходимо задавать все материалы послойно, например, кузов автомобиля имеет слой металла, грунтовки и краски. Так достигается реально крутой результат.

Но на этом еще не всё, для ощущения реальности необходимо разместить сцену, расположить модель нужным образом, настроить освещение и камеру. И осуществить рендеринг , расчет данной картинки с учетом заданных всех настроек материала, освещения и т.д.

В анимации еще сложнее, полигоны меняются, например, человек говорит, моргает и т.д., меняется его текстура и другие свойства. Компьютер осуществляет расчет каждой сцены в режиме реального времени, чем больше анимации, больше изменений, соответственно тем больше ресурсов необходимо компьютеру.

Таким образом за рендерингом скрываются определенные математические формулы векторной математики, геометрии и т.д. и огромный расчет.

Создание фотореалистичного изображения модели состоит из 6 этапов и рендеринг — это 5 этап.

Моделирование или создание объемных объектов . На этом этапе используются очень много различных способов. Самые популярные: использование кривых и полигонов.

Текстурирование – это создание текстуры и материалов поверхностей моделей. Это целое искусство и отдельная отрасль в производстве.

Оснастка – по-другому риггинг. Процесс создания скелета и мышечной массы объекта для дальнейшей анимации.

Анимация – оживление созданного объекта.

Рендеринг – непосредственная визуализация объекта и запись.

Композитинг – объединения всех созданных объектов в одну сцену.

Методы, применяемые к объектам, зависят от выбранного процесса рендеринга:

— Сканирование строк (scanline rendering) – при таком рендеринге объекты визуализируются горизонтально построчно. Он применяется для создания видимой поверхности. Широко применяется в кино индустрии. Так как кадр появляется на экране доли секунды и качество и реалистичности при этом не столь важно. Главный недостаток – для создания теней приходится прибегать к другим методам. На нем работают: Pixar’s RenderMan и Electric Image’s Camera.

— Трассировка лучей (ray tracing rendering) – при таком методе отслеживается взаимодействие световых лучей с поверхностью предмета. Применяется в обработке фотографии и создании фото 3D моделей. Главный недостаток – большие временные затраты. На нем работают: Softimage, NewTek LightWave или Discreet 3D Studio MAX.

Основной этап визуализации – ретуширование. Его используют для получения изображения высокого качества. Он использует ряд методов для визуализации поверхности при различном освещении:
— отражение света;
— поглощение света;
— рассеивание света;
— смешивание различных источников освещения.

Программы для визуализации делятся на два вида: Real-Time и Non-Real-Time . Выбор зависит от поставленных целей и конечного результата.

Real-Time

Такие рендеры (программы) работают на методе сканирования строк. Они были созданы для быстроты обработки, но при этом значительно теряется качество изображения. Эти программы были созданы для создания игр, симуляторов времени и включены во многие пакеты 3d моделирования. Для достижения ими высокого качества приходится одну и туже сцену просчитывать несколько раз с различных точек видения. Применяются дополнительные трюки.

Non-Real-Time

Эти рендеры используют для создания фотографий очень высокого качества. Их основа метод трассировки лучей и процесс нацелен на результат, но занимает длительное время. Они позволяют создавать изображения высочайшего качества, когда можно разглядеть все подробности в надежде найти недостатки. Они могут обрабатывать большие сложные сцены с различным освещением.

Большинство современных систем используют оба метода. Выбирая самостоятельно в зависимости от поставленной задачи.

Рендеринг сегодня

Индустрия рендеринга не стоит на месте, а постоянно развивается. Создаются все новые и более совершенные программы, которым требуется все меньше и меньше времени на визуализацию объектов. В скором времени, на этот процесс будут уходить секунды . Сама работа с программными пакетами становится гораздо проще, буквально на уровне интуиции. Уже не требуется сложная многочасовая настройка компонентов. Сегодня можно поместить объект в сцену, выбрать материалы для поверхностей и уже получите неплохой результат.

Яркий пример применения рендеринга – это каталог мебели и аксессуаров компании IКЕА. 75% продуктов и 35% интерьеров в каталоге это 100% рендеринг. Но и остальная часть каталога только на четверть состоит из реальных фотографий без добавления визуализации.

А вот уже и ответ, думаю, если статья была бы о гонках, то никто бы и не догадался, что это был рендеринг, за которым скрывается обычная 3d-модель, а не реальная фотография из машины пилота.

Заключение

За прошедшие 15 лет рендеринг превратился в крупную и постоянно развивающуюся индустрию. Это уже давно не просто красивое изображение, а серьезный и крупномасштабный инструмент, используемый во многих отраслях. Его развитие позволило сократить затраты труда и энергоресурсов, представить будущий объект еще на первоначальном этапе и даже заглянуть в космические дали — это многого стоит .

Многие элементы визуального окружения современного человека сегодня создаются с помощью программ компьютерной графики. Без визуализаций, сделанных 3D-художниками, не может обойтись ни архитектурная или дизайнерская студия, ни производители компьютерных игр.

Технология создания подобного изображения - фотореалистического или имитирующего различные художественные техники - состоит из нескольких технологических этапов. Рендер - это важнейший из них, часто заключительный, от которого зависит конечный результат.

Происхождение термина

Слово "рендер" (или "рендеринг") пришло, как и многое, связанное с IP-технологиями, из английского языка. Происходит оно от старофранцузского rendre , означающего "делать", "дать", "возвратить", "вернуть". Более глубокие корни этого глагола восходят к древней латыни: re - префикс, означающий "назад", и dare - "давать".

Отсюда - один из смыслов современного термина. Рендер - это в том числе процесс воссоздания плоскостного изображения на основе трехмерной модели, содержащей сведения о физических свойствах объекта - его форме, фактуре поверхности, освещенности и так далее.

Рендер и визуализация

Вошедшее сначала в лексикон тех, кто профессионально занимается цифровыми технологиями создания изображений, это слово все чаще применяется и в повседневном обиходе. Предоставить готовый рендер просят, например, при заказе мебели - отдельного объекта или обстановки целого помещения, а при проектировании интерьера или всего здания рендер - это одно из основных средств донести до заказчика смысл идей архитектора или дизайнера.

Имеется синоним, близкий по значению и чаще применяемый в обычной среде, хотя и более громоздкий, - визуализация. Среди профессионалов архитектурной или игровой компьютерной графики сегодня принято иметь узкую специализацию: есть те, кто занимается моделингом - создает трехмерные объекты, и те, кто обеспечивает рендеринг готовой сцены - выставляет освещение, выбирает точку зрения и настраивает, а потом и запускает рендер-программу.

Определения

Это слово имеет несколько значений:

  • Рендер, или рендеринг, - отрисовка, процесс получения технического или художественного плоскостного на основе трехмерных цифровых моделей, созданных при помощи специальных программных пакетов - Blender, 3D Max, CINEMA, Maya и др.
  • Рендер - это, собственно, результат такого процесса - растровая а также изображение героев и окружения в компьютерных играх или созданные тридэшниками видеофайлы, используемые при производстве фильмов - обычных или анимационных.
  • Рендер, или рендерер, - так называют специальный софт, с помощью которого и происходит преобразование 3D-моделей в изображение. Такие программы могут быть встроены в графический пакет или применяться в виде отдельных приложений: RenderMan, Mental Ray, V-ray, Corona, Brasil, Maxwell, FinalRender, Fryrender, Modo и многие другие. Рендеры, как и все, связанное с цифровыми технологиями, постоянно обновляются. Они отличаются алгоритмами, применяемыми для обсчета физических характеристик моделей и их окружения. На их основе создаются целые системы рендеринга, позволяющие создавать свои материалы, светильники, камеры и т. п.

Типы рендера: online и пререндеринг

Различают два основных типа рендера в зависимости от скорости, с которой должно происходить получение готового изображения. Первый - рендеринг в реальном времени, необходимый в интерактивной графике, в основном в компьютерных играх. Здесь нужен быстрый рендер, изображение должно выводиться на экран мгновенно, поэтому многое в сцене рассчитывается заранее и сохраняется в ней в виде отдельных данных. К ним относятся текстуры, определяющие внешний вид объектов и освещение. Программы, используемые для онлайн-рендера, используют в основном ресурсы графической карты и оперативной памяти компьютера и в меньшей степени - процессора.

Для рендера сцен, более сложных визуально, а также там, где вопрос скорости не так актуален, когда гораздо важнее качество рендера, используются другие методы и программы для рендеринга. В этом случае используется вся мощь выставляются самые высокие параметры разрешения текстур, обсчета освещения. Часто применяется и постобработка рендера, позволяющая добиться высокой степени фотореалистичности или нужного художественного эффекта.

Методы просчета сцены

Выбор способов получения изображения зависит от конкретной задачи и часто от и опыта визуализатора. Разрабатываются всё новые системы рендера - или узкоспециализированные, или универсальные. Сегодня в основе самых распространенных программ-рендеров лежат три основных вычислительных метода:

  • Растеризация (Scanline) - метод, при котором изображение создается просчетом не отдельных точек-пикселей, а целых граней-полигонов и крупных участков поверхностей. Текстуры, определяющие свойства объектов, как и свет в сцене, зафиксированы в виде неизменных данных. Получаемое изображение часто не отражает перспективных изменений освещенности, и т. д. Чаще применяется в системах для просчета сцен в играх и в видеопродакшене.
  • Трассировка лучей (Raytracing) - физика сцены просчитывается на основе лучей, исходящих из объектива виртуальной камеры и анализа взаимодействия каждого луча с объектами, с которыми он встречается в сцене. В зависимости от количества и качества таких «отскоков» имитируется отражение или его цвет, насыщенность и т. д. Качество получаемой картинки по сравнению с растеризацией значительно выше, но за её реалистичность приходится платить повышенным расходом ресурсов.
  • Расчет отраженного света (Radiosity) - каждая точка, каждый пиксель изображения наделяется цветом, который не зависит от камеры. На него влияют глобальные и местные источники света и окружение. Такой метод позволяет рассчитать появление на поверхности модели цветовых и световых рефлексов от рядом расположенных объектов.

Практика показывает, что самые продвинутые и популярные системы рендера использует сочетание всех или основных методов. Это позволяет добиться максимального фотореализма и достоверности в отображении физических процессов в данной сцене.

Последовательность рендера

Хотя современный подход в компьютерной графике предпочитает выделить рендер в обособленный этап, который предполагает наличие специальных знаний и навыков, по сути, он неотделим от всего процесса подготовки визуализации. Если, например, проектируется интерьер, рендер будет зависеть от вида применяемых материалов, а у каждой системы визуализации свой алгоритм имитации текстуры и фактуры поверхности.

Это же относится и к способам освещения сцены. Настройка естественного и искусственного света, свойств собственной и падающей тени, силы рефлексов, эффектов самосвечения - следующий этап создания визуализации сцены. Как настроить рендер, зависит от используемого софта и от производительности системы. В каждом пакете и программе-визуализаторе есть свои тонкости и нюансы.

Например, Corona Renderer обладает возможностью регулирования настроек непосредственно в ходе проявления итоговой картинки. В режиме онлайн можно изменять мощность светильников, регулировать цветность, резкость изображения.

Постобработка результатов рендера

Для конкретной задачи логично применять особенные методики визуализации. В архитектуре требуются другие изобразительные средства, чем при создании технической иллюстрации. Рендер экстерьера, например, часто требует от исполнителя владения графическими пакетами по работе с растровыми изображениями, самый популярный из которых - Adobe Photoshop. Причем не всегда это делается для повышения фотореалистичности. Современные тенденции в архитектурной подаче предусматривают имитацию ручной графики - акварели, гуаши, черчения тушью и т. д.

Качественная постобработка рендера обычно начинается с выбора нужного формата файла, получаемого после окончания работы программы. Принято готовое изображение сохранять послойно, задействуя отдельные цветовые каналы. Это позволяет добиться высокого результата при сведении всех слоёв в общее изображение, используя более точную и тонкую цветовую настройку.

Рендер и производительность системы

Выполнение качественной визуализации зависит не только от программного обеспечения процесса. На итоговый результат влияет мощность используемого «железа». Особенно этот фактор влияет на скорость работы - сложная сцена иногда рендерится несколько дней, если компьютер не имеет достаточных объемов оперативной памяти или обладает малопроизводительным процессором.

Как ускорить рендер и улучшить итоговый результат, если ресурсов не хватает? Можно изменить настройки программы, уменьшив до разумных величин разрешение текстур материалов и финишного изображения, изменив параметры светильников так, чтобы свет и тени обсчитывались более крупными участками, без излишней деталировки и т. д. Если есть сеть, можно использовать пакетный рендер, когда для обсчета изображения привлекаются мощности других компьютеров.

Рендер-ферма

Сегодня возможно использование мощностей удаленных компьютерных кластеров, оказывающих услуги по пакетной обработке 3D-файлов. Это высокопроизводительные системы, способные за короткий срок визуализировать самые сложные и насыщенные сцены. Они справятся с любыми визуальными эффектами даже при создании видеофайлов большой длительности.

Связавшись с поставщиком таких услуг, список которых всегда можно найти в Интернете, согласовав стоимость и условия подготовки файлов, можно существенно сэкономить на скорости работы и добиться необходимого уровня качества итогового изображения. В распоряжении таких компаний бывает до нескольких тысяч процессоров и сотни терабайт оперативки. Рендер-ферма рассчитывает стоимость работ, исходя из объема исходного файла и срока выполнения визуализации. Например, стоимость одного кадра разрешением 1920х1080, для рендеринга которого на стандартном оборудовании потребуется 3 часа, составляет около 100 рублей. Сцена просчитывается в течение 8 минут.

Правильный выбор

Ответ на вопрос о том, как сделать рендер небольшого и простого по форме объекта или насыщенной визуальными эффектами анимационной презентации коттеджного поселка, предполагает различный подход. В случае самостоятельного выполнения подобной работы необходимо грамотно выбрать необходимое программное обеспечение и позаботиться о достаточной мощности компьютерного оборудования. В любом случае от последнего этапа работы - рендеринга - будет зависеть, устроит ли вас итоговый результат.