Акселерометры. Акселерометр – что это

Наверняка вы не раз слышали о том, что многие смартфоны оснащены акселерометром. Рассказываем неопытным пользователям, что это такое и зачем нужно.

Выражаясь понятным языком, акселерометр (еще его называют G-сенсор) - это датчик, определяющий угол наклона смартфона или планшета относительно земной поверхности. Он измеряет ускорение, сопоставляя три пространственные оси координат: X (ширина), Y (длина) и Z (высота).

Программное обеспечение гаджета на основе данных акселерометра меняет ориентацию экрана телефона. Если вы повернете устройство со встроенным G-сенсором на 90 градусов, дисплей перевернет изображение автоматически.

В смартфоне акселерометр установлен в виде небольшого чипа или датчика, размером в несколько раз меньше 10-копеечной монеты. Несмотря на это, он обеспечивает множество функций современных Android-устройств.

Зачем нужен G-сенсор?

Любители спорта могут использовать акселерометр для определения количества пройденных шагов с помощью специальных приложений-шагомеров. Они могут быть встроены в смартфон, либо их придется скачать из Google Play.

Для фанатов игровых приложений на смартфонах G-сенсор - просто находка. Он позволит управлять процессом игры поворотами смартфона. Так как акселерометр реагирует на малейшие изменения угла наклона, приложение мгновенно будет отвечать на любое ваше действие. Это применимо к играм различных жанров, особенно гонкам.

Также автоповорот экрана добавит удобства при просмотре фильмов и фотографий, а также чтении электронных книг.

Если вы часто ходите в лес за грибами или по другим причинам, знайте, что у вас в кармане наверняка есть компас. Как правило, это предустановленное приложение, которое работает с помощью G-сенсора.

Установив приложение «уровень», можно забыть о громоздком строительном приспособлении. И здесь все суть в акселерометре - он позволит определить ровность стены или точный угол ее наклона.

Конечно, если вы всем этим не пользуетесь, акселерометр будет вам даже немного мешать постоянной сменой ориентации экрана. Но его всегда можно отключить, зайдя в настройки экрана.

Заключение

Несмотря на свои скромные размеры, акселерометр добавляет смартфонам много разнообразных возможностей. По этой причине производители оснащают G-сенсором в большинство современных устройств.

Что же такое МЭМС (MEMS)? Под этой аббревиатурой скрывается название «микроэлектромеханические системы» (Microelectromechanical systems). Они представляют собой миниатюрные устройства, содержащие микроэлектронные и микромеханические компоненты. Само название МЭМС, скажем прямо, совсем не на слуху у пользователей. Однако каждый день мы пользуемся множеством девайсов, основанных на базе этих решений. Самым простым примером микроэлектромеханической системы может служить акселерометр, который используется во всех современных смартфонах, игровых консолях и жестких дисках. Однако существует множество других систем, применение которых отнюдь не ограничивается потребительской электроникой. Решения на основе МЭМС находят применение в автомобильной промышленности, военной отрасли, а также медицине.

История и архитектура

Для начала немного истории. По большому счету, началом развития МЭМС можно считать 1954 год. Именно тогда был открыт пьезорезистивный эффект кремния и германия, который лег в основу первых датчиков давления и ускорения. Через 20 лет - в 1974 году - компанией National Semiconductor впервые было налажено массовое производство датчиков давления. А в 1990-х годах рынок микроэлектромеханических систем значительно вырос благодаря началу использования различных миниатюрных сенсоров в автомобильной электронике.

MEMS-системы получили приставку «микро-» из-за своих размеров. Составные части таких устройств имеют размеры от 1 до 100 мкм, а размеры готовых систем варьируются от 20 мкм до 1 мм.

MEMS-сенсор

В плане архитектуры МЭМС-устройство состоит из нескольких взаимодействующих механических компонентов и микропроцессора, который обрабатывает данные, получаемые от этих компонентов. Какого-то стандарта для механических элементов нет: по своему типу они могут сильно различаться в зависимости от назначения конкретного устройства.

В качестве материалов для производства МЭМС могут использоваться как и традиционный кремний, так и другие материалы: например, полимеры, металлы и керамика. Чаще всего механические системы изготавливаются из кремния. Его основные преимущества заключаются в физических свойствах. Так, кремний очень надежен - он может работать в течение триллионов циклов операций и при этом не разрушаться. Что касается полимеров, то этот материал хорош тем, что его можно производить в больших количествах и, что самое важное, с множеством различных характеристик под конкретные задачи. Ну а металлы (золото, медь, алюминий), в свою очередь, обеспечивают высокие показатели надежности, хоть и уступают по качеству своих физических свойств кремнию.

Стоит отдельно упомянуть и о таких материалах, как нитриды кремния, алюминия и титана. Благодаря своим свойствам они широко используются в микроэлектромеханических системах с пьезоэлектрической архитектурой.

Что касается технологий производства МЭМС, то здесь используется несколько основных подходов. Это объемная микрообработка, поверхностная микрообработка, технология LIGA (Litographie, Galvanoformung и Abformung - литография, гальваностегия, формовка) и глубокое реактивное ионное травление. Объемная обработка считается самым бюджетным способом производства МЭМС. Ее суть заключается в том, что из кремниевой пластины путем химического травления удаляются ненужные участки материала, в результате чего на пластине остаются только необходимые механизмы.

Результат, полученный с помощью объемной обработки

Глубокое реактивное ионное травление почти полностью повторяет процесс объемной микрообработки, за исключением того, что для создания механизмов используется плазменное травление вместо химического. Полной противоположностью этим двум процессам является процесс поверхностной микрообработки, при котором необходимые механизмы «выращиваются» на кремниевой пластине путем последовательного нанесения тонких пленок. И, наконец, технология LIGA использует методы рентгенолитографии и позволяет создавать механизмы, высота которых значительно превышает ширину.

В целом, все МЭМС можно разделить на две большие категории: сенсоры и актуаторы. Различаются они принципом своей работы. Если задача сенсора состоит в преобразовании физических воздействий в электрические сигналы, то актуатор выполняет прямо противоположную работу, переводя сигнал в какие-либо действия. Тот же акселерометр является сенсором, а в качестве примера устройства, использующего актуаторы, можно привести DLP-проектор (Digital Light Processing).

DLP-проектор BenQ использует актуаторы

Ну а теперь мы поговорим о каждом устройстве в отдельности.

Акселерометры

Самым распространенным МЭМС-устройством является акселерометр. Как уже говорилось выше, сфера его использования чрезвычайно обширна. Она охватывает мобильные телефоны, ноутбуки, игровые приставки, а также более серьезные устройства, такие как автомобили. Само предназначение акселерометра заключается в измерении кажущегося ускорения. В случае с мобильными телефонами он используется для многих целей. Например, для смены ориентации экрана. Или же выполнения каких-либо функций при «встряхивании» устройства. Кроме этого, не стоит забывать и об играх - они, пожалуй, составляют основную сферу применения акселерометров. Нынче уже сложно представить «продвинутую» игрушку, в которой не было бы реализовано управление посредством наклона телефона. Одним словом, акселерометр стал неотъемлемой частью смартфонов. Кстати, впервые он был установлен в мобильный телефон Nokia 5500. Благодаря акселерометру телефон можно было использовать как шагомер. Любители утренних пробежек были в восторге! Но, конечно, только после выхода Apple iPhone акселерометры достигли пика популярности. Да и в целом интерес к MEMS начал расти вместе с развитием платформ iOS и Android.

Nokia 5500 - первый телефон с акселерометром

Акселерометры также имеются в различных контроллерах игровых консолей, будь то обыкновенный геймпад или несколько иное устройство, например, контроллер движения PlayStation Move. Кстати, акселерометр используется и в анонсированном на днях шлеме виртуальной реальности Sony Project Morpheus.

Особое значение имеет акселерометр, применяемый в ноутбуках, а точнее, в их жестких дисках. Всем известно, что винчестеры - устройства довольно хрупкие, и в случае с лэптопами вероятность их повреждения возрастает в разы. Так, при падении ноутбука акселерометр фиксирует резкое изменение ускорения и отдает команду на парковку головки жесткого диска, предотвращая и повреждение устройства, и потерю данных.

Акселерометр InvenSense MPU-6500

По схожему принципу акселерометр влияет на работу автомобильного видеорегистратора. При резком ускорении, торможении и перестроении транспортного средства видеозапись помечается специальным маркером, который защищает ее от стирания и перезаписи, что значительно облегчает дальнейшие разборы дорожно-транспортных происшествий.

В целом самым большим и перспективным рынком для акселерометров и других МЭМС является автомобильная промышленность. Дело в том, что в отличие от рынка мобильных и игровых устройств, где акселерометры используются в развлекательных целях, в автомобилях на работе акселерометра основываются буквально все системы безопасности. С их помощью работают система развертывания подушек безопасности, антиблокировочная система тормозов, система стабилизации, адаптивный круиз-контроль, адаптивная подвеска, система Traction Control - и это далеко не полный список! Учитывая, что производители автомобилей уделяют особое внимание безопасности, количество применяемых акселерометров и других МЭМС будет лишь расти.

Краш-тест автомобиля Opel Vectra. В 90-е годы подушки безопасности зачастую были только опцией

Но несмотря на то, что рамки использования акселерометра довольно четко определены, разработчики продолжают думать над тем, в каких еще целях можно применять это устройство. Например, ученые из Национального института геофизики и вулканологии Италии Антонио Д’Аллесандро (Antonino D"Alessandro) и Джузеппе Д’Анна (Giuseppe D"Anna) предложили использовать акселерометр мобильного телефона как датчик землетрясений. Очень интересно! Исследования проводились с акселерометром iPhone, и результаты сравнивались с показаниями полноценного датчика землетрясений компании Kinemetrics. Как оказалось, мобильный гаджет способен улавливать сильные землетрясения силой более 5 баллов по шкале Рихтера, но только если он находится вблизи эпицентра подземных толчков. Результаты не настолько впечатляют, однако ученые уверены: чувствительность акселерометров будет только расти, и в будущем они смогут определять и менее сильные землетрясения. Остается лишь вопрос: зачем акселерометру телефона измерять силу подземных толчков, когда есть датчики землетрясения? Все дело в том, что ученые ставят своей целью создание в будущем целой сети из смартфонов в сейсмически активных районах. В теории, при землетрясениях данные со смартфонов будут поступать в аналитический центр, что позволит определять наиболее пострадавшие от стихии районы и правильно координировать спасательные операции. Идея более чем интересная и, главное, действительно востребованная в некоторых уголках мира, однако сейчас сложно представить, как она будет реализована на практике.

Теперь поговорим о самой конструкции акселерометра. Существует несколько видов устройств в зависимости от их архитектуры. Работа акселерометра может основываться на конденсаторном принципе. Подвижная часть такой системы представляет собой обыкновенный грузик, который смещается в зависимости от наклона устройства. По мере его смещения изменяется емкость конденсатора, а именно меняется напряжение. Исходя из этих данных, можно получить смещение грузика, а вместе с тем и искомое ускорение.

Акселерометр, основанный на конденсаторном принципе. На фото изображены обкладки конденсатора (capacitor plates), неподвижная часть (proof mass), пружина (spring)

Самым распространенным типом акселерометров являются пьезоэлектрические системы. Так же как и в конденсаторных акселерометрах, в их основе лежит грузик, который давлением воздействует на пьезокристалл. Под давлением он вырабатывает электрический ток, что позволяет рассчитать искомое ускорение, зная параметры всей системы.

Существует и еще один тип акселерометров, который в корне отличается от конденсаторного и пьезоэлектрического. Такие акселерометры называются термальными. Их архитектура предусматривает использование пузырька воздуха. При ускорении пузырек отклоняется от своего начального положения, и это фиксируется датчиками. Зная, на сколько сместился пузырек при движении, можно рассчитать величину ускорения.

Гироскопы

Еще одним интересным датчиком, часто используемым вместе с акселерометром, является гироскоп. Его основное предназначение заключается в измерении угловых скоростей относительно одной или нескольких осей. Собственно, комбинация акселерометра и гироскопа позволяет отследить и зафиксировать движение в трехмерном пространстве.

Первым из мобильных устройств, обладающих гироскопом, стал Apple iPhone 4, после чего наличие этой МЭМС стало чуть ли не обязательным требованиям для любого смартфона. Функциональность гироскопа пользователи смогли оценивать во многих мобильных играх, где вместо одного из двух виртуальных джойстиков появилась кнопка выстрела. Ну а целиться уже приходилось путем позиционирования смартфона в пространстве, что стало возможно как раз благодаря наличию гироскопа.

Гироскоп, используемый в Apple iPhone 4

Кроме мобильных устройств, гироскопы присутствуют в контроллерах для игровых приставок PlayStation, Xbox и Wii, где они функционируют вместе с акселерометрами. Также эти системы используются в камерах в целях оптической стабилизации для получения качественных снимков.

Архитектура гироскопов во многом схожа с таковой у акселерометров. Многие из этих устройств имеют конденсаторную структуру. Такой дизайн, например, использует в своих продуктах компания STMicroelectronics. В основе их гироскопа лежит механический элемент, работающий по принципу камертона и использующий эффект Кориолиса для преобразования угловой скорости в перемещение чувствительной структуры. Немного поясним этот процесс.

Две подвижные массы находятся в постоянном движении, причем в противоположных направлениях, которые обозначены на рисунке синим цветом. При изменении угловой скорости начинает действовать сила Кориолиса, обозначенная желтым цветом. При этом направление силы Кориолиса перпендикулярно направлению движения масс. Сила Кориолиса вызывает смещение масс, пропорциональное величине угловой скорости. Поскольку система имеет конденсаторную структуру, то любое смещение вызывает изменение электрической емкости. И таким образом угловая скорость преобразуется в электрический параметр. Тут же стоит отметить, что благодаря использованию специальных камертонов гироскопы STMicroelectronics нечувствительны к случайной вибрации. При таком нежелательном воздействии на подвижные массы они обе будут смещаться в одном направлении, тем самым не изменяя емкости конденсатора.

Так выглядит чип гироскопа производства STMicroelectronics

Магнитометры и барометры

Еще одной интересной микроэлектромеханической системой является магнитометр. Он, как и обычный магнитный компас, отслеживает ориентацию устройства в пространстве относительно магнитных полюсов Земли. Полученная же информация используется в основном в картографических и навигационных приложениях.

В дополнение к магнитометру часто используется МЭМС-барометр. Впервые барометр появился в устройстве Samsung Galaxy Nexus, вышедшем в 2011 году. Опять же, его функциональность ничем не отличается от традиционного - он измеряет атмосферное давление в текущем местоположении устройства. При этом барометр уменьшает время подключения к системе GPS. Сама же суть работы сенсора заключается в сравнении внешнего атмосферного давления по отношению к вакуумной камере внутри самого датчика. Это позволяет определять местоположение пользователя с точностью до 50 см по высоте и значительно расширяет возможности навигации пользователя, поскольку также позволяет определить местоположение по вертикали. К примеру, мобильный телефон с барометром поможет определить ваш маршрут на любом этаже торгового центра, с чем не справляется система GPS, указывая лишь местоположение на плоскости.

Большинство современных смартфонов оснащается акселерометром. Однако не все знают, что это такое и зачем акселерометр устанавливают в телефон.

Акселерометр или G-сенсор – это датчик, определяющий угол наклона электронного устройства по отношению к земной поверхности. На основании данных от датчика программное обеспечение понимает положение смартфона, и поворачивает изображение на дисплее. Иными словами, именно акселерометр способствует автоматическому повороту экрана в альбомную ориентацию при повороте телефона.

Также этот датчик фиксирует ускорение перемещения устройства в пространстве, одновременно сопоставив три пространственные координаты. Можно сказать, что сенсор измеряет разницу между проекциями абсолютного и гравитационного ускорения.

На сегодняшний день акселерометры устанавливаются во многих смартфоны. Ведь именно этот сенсор дает возможность пользоваться такими приложениями, как шагомер, или менять положение экрана автоматически с учетом положения самого гаджета. В рамках игры G-сенсор позволяет осуществлять управление без кнопок.

Зачем нужен G-сенсор в смартфоне?

Как мы уже говорили выше, в мобильных телефонах нового поколения акселерометры используются очень часто. Этот сенсор позволяет устанавливать и использовать различные приложения. Если датчика в смартфоне нет, его функциональные возможности значительно сокращаются.

Акселерометр в смартфоне позволяет использовать:

1. Шагомеры или другие подобные сервисы. Благодаря возможности измерять положение устройства в пространстве, а также его ускорение, сенсор обеспечивает корректную работу шагомера. Это незаменимый помощник для поклонников пробежек или прогулок. Нет необходимости покупать отдельный фитнес-трекер, поскольку в телефон можно установить приложение и использовать его в конкретных целях.


2. Игры. Благодаря G-сенсору процесс игры становится настоящим удовольствием, ведь датчик мгновенно реагирует на минимальную смену положения телефона. Можно отказаться от классической консольной системы управления, поскольку корректировать положение можно путем изменения положения телефона в пространстве.

3. Удобный интерфейс. При смене положения смартфона датчик сразу повернет интерфейс устройства в нужное положение. Эксплуатация устройства максимально удобная и комфортная. Особенно удобен автоповорот экрана при просмотре видео или фильмов.

Как калибруется G-сенсор?

Калибровка представляет собой перечень операций по определению соотношения значений некоторых величин, полученных при помощи акселерометра или любого другого измерительного прибора, и эталонных величин. Полученная разница и позволяет выполнить калибровку устройства. Зачем выполнять калибровку? Все просто. Только точная настройка сенсора гарантирует его корректную работу, что в свою очередь обеспечит корректную работу приложений и отдельных функций устройства.


Калибровка выполняется при помощи специальных приложений, которые можно скачать в интернете. Установите на свой телефон соответствующее приложение. Затем положите устройство на идеально ровную поверхность. Если имеет какие-то выступающие элементы, на время калибровки сенсора его лучше снять.

Теперь зайдите в меню приложений и найдите вкладку «калибровка G-сенсора». Через некоторое время приложение выведет на экран смартфона сообщение о том, что сенсор полностью откалиброван.


Функциональные возможности современных смартфонов и планшетов позволяют использовать массу развлекательных приложений и игр, которые ничем не уступают компьютерным аналогам. Для работы некоторых приложений и игр требуется датчик измерения пространственного положения мобильного устройства, который называется акселерометр.

На сегодняшний день акселерометр стал неотъемлемой частью смартфонов и планшетов, а впервые он был установлен в мобильный телефон Nokia 5500 . Благодаря наличию акселерометра этот телефон можно было использовать как шагомер. Однако наличие этой функции в мобильном телефоне привлекала только любителей утренних пробежек, а пика популярности акселерометры достигли только после выхода Apple iPhone.

Сегодня уже невозможно представить "продвинутую" , в которой управление не было бы реализовано наклоном телефона или планшета. Акселерометр значительно облегчает процесс управления различными играми на мобильных устройствах. Благодаря ему, пользователь имеет возможность воздействовать на процесс игры путем перемещения девайса в то или иное положение относительно двух плоскостей. Например, с помощью акселерометра можно управлять гоночной машиной просто поворачивая мобильный телефон или планшет вправо или влево.

Акселерометр - это прибор , измеряющий ускорение объекта при каком-либо перемещении. Сфера применения акселерометра чрезвычайно широка. Она охватывает не только мобильные телефоны и планшеты, но и ноутбуки, видеорегистраторы, автомобили и самолеты. Например, в ноутбуках акселерометр предотвращает повреждение жесткого диска и потерю данных при падении.

Исходя их вышеизложенного, можно сделать вывод. Встроенный в смартфон или планшет акселерометр нужен для выполнения следующих :

1. Во время пробежек смартфоны и планшеты с акселерометром вы можете использовать как шагомер. Осуществляя контроль за количеством пройденных шагов за определенный отрезок времени, вы сможете улучшить результаты тренировок и оказать влияние на ход спортивных занятий.

2. Акселерометр упраздняет процесс управления игрой , благодаря ответному воздействию мобильного устройства на смену его положения. Развороты экрана помогают геймеру получить максимум удовольствия от игры.

3. Благодаря наличию акселерометра воссоздается определенное на данный момент положение мобильника в пространстве. Например, если вы решили использовать телефон лежа на спине, то датчик пространственного положения перевернет интерфейс девайса, облегчая комфортность восприятия отображаемой на дисплеи информации. Просмотр видео станет более привлекательным, если экран мобильного устройства будет развернут в положении альбомного формата.

Однако у каждого владельца мобильного телефона и планшета, которые используют устройства исключительно для общения, чтения и набора текстов, просмотра фотографий, возникает желание отключить функцию движения, так как при малейшем изменении положения девайса изображение на экране начинает "прыгать" и приходиться его "ловить". Чтобы отключить акселерометр необходимо зайти в пункт "Настройки", отключить функцию "Автоповорот" и в разделе "Приложения" задать необходимое положение экрана .

Для тех, кто не обнаружил акселерометра в своем мобильном устройстве, бесполезно пытаться установить его с помощью какого- то программного обеспечения . Никакая прошивка не сможет добавить эту функцию в мобильное устройство, если самого датчика в нем нет. Другое дело, если при сбоях работы акселерометра нарушается управление, что особенно неприятно во время игр. Например, если вы играете в гонки и держите планшет абсолютно горизонтально, а управляемый вами автомобиль все время уходит в сторону, то это признак того, что акселерометр планшета необходимо откалибровать.

Чтобы откалибровать акселерометр, необходимо произвести следующие простые действия:
1. Скачайте из маркета бесплатную GPS Status & Toolbox и запустите ее.

2. Положите телефон или планшет на абсолютно ровную поверхность. Если у устройства сзади выступает камера или крышка не очень ровная, то попробуйте снять крышку, не вынимая батарею, или найдите другой выход, чтобы найти возможность расположить девайс ровно.

3. Зайдите в пункт "Меню", затем в "Инструменты" ("Tools") и выберите "Калибровка акселерометра " среди трех предложенных вариантов: компас, A-GPS и акселерометр.

4. После этого на экране появиться сообщение с просьбой установить устройство на ровную поверхность. Если ваш мобильник или планшет уж лежат на ровной поверхности, никаких повторных действий производить уже не требуется. Нажмите кнопку "ОК" и дождитесь сообщения "Акселерометр откалиброван ".

Акселерометр — это прибор, позволяющий измерять ускорение тела под действием внешних сил. Схематически, этот прибор можно изобразить в виде массивного тела, которое способно передвигаться вдоль некоторой оси и соединено с корпусом пружинами. Смещение тела относительно центра оси можно измерить с помощью механической стрелки, как показано на рисунке.

В состоянии покоя тело находится на равном удалении от стенок прибора и стрелка указывает на середину шкалы. Если весь прибор толкнуть вправо (кадр B), то груз сместится по оси влево до момента, когда сила растянутой пружины уравновесит внешнюю силу. В этот момент, стрелка повернется и укажет на некоторое значение на шкале. Чем больше внешняя сила, тем дальше смещается груз, тем большее значение показывает стрелка. Когда сила перестанет действовать на тело, груз вернется на прежнее положение и прибор покажет на нулевое значение шкалы.

1. Электронный МЭМС-акселерометр

Разумеется, внешний вид современного акселерометра отличается от этой простой модели с пружинками, но не сильно. Как и прежде, для измерения ускорения нам требуется какое-то массивное тело, которое будет скользить по направляющей и удерживаться в нейтральном положении пружинками. При этом, всё это должно быть очень миниатюрным, чтобы поместиться в тот же смартфон.

На помощь приходит технология МЭМС (микроэлектромеханические системы). С помощью МЭМС удаётся выращивать механический акселерометр на кремниевой подложке таким же методом, которым создаются и обычные микросхемы.

Так выглядит МЭМС акселерометр на снимке, полученном при помощи микроскопа. Схема работы такого прибора представлена ниже.

Чтобы измерить смещение массивного тела вдоль оси прибора здесь применяется дифференциальный конденсатор. В состоянии покоя, расстояния между центральным электродом и двумя обкладками конденсатора (выделены оранжевым цветом) равны. При воздействии силы эти расстояния меняются, что в дальнейшем фиксируется специальной аналоговой измерительной системой.

Современные акселерометры имеют в своем составе сразу три измерительные оси, направленные перпендикулярно друг к другу. Это позволяет измерять ускорение тела в любом направлении.

2. Измерение углов наклона с помощью акселерометра

Все современные смартфоны умеют определять угол своего наклона относительно горизонта. Эта функция используется для автоматического поворота экрана, а также в различных играх, где управление происходит при помощи наклона. И всё это благодаря акселерометру. Но как устройство, определяющее ускорение, может помочь вычислить угол наклона?

Дело в том, что на акселерометр, как и на все тела на этой планете, действует сила гравитации. Эта сила придаёт телам ускорение когда они падают на землю. Повернем акселерометр так, чтобы его ось оказалась в вертикальном положении. В таких условиях груз сместится вниз, растянув при этом верхнюю пружину и сжав нижнюю. В этот момент акселерометр зафиксирует величину ускорения свободного падения — 9.8 м/с².

Попробуем использовать этот факт для вычисления угла наклона акселерометра относительно горизонта. Изобразим на схеме тело, на котором закреплен трёхосевой акселерометр. Обозначим эти три оси как: Xт, Yт и Zт.

Затем повернём тело на угол a вокруг оси относительно системы координат мира X, Y и Z. Предполагается, что ось мира Z направлена вдоль вектора силы гравитации (вверх), а оси X и Y вдоль горизонта. Мы смотрим на всю эту систему сбоку, так что оси мира — X и тела — Xт смотрят на нас, и мы их не видим.

В таком положении акселерометр, находящийся внутри тела зафиксирует проекции силы гравитации на все три оси: Gxт,Gyт,Gzт. При этом проекция Gxт на ось Xт будет равна нулю, так как эта ось расположена вдоль горизонта. Проекции Gyт (зеленый отрезок) и Gzт можно выразить с помощью теоремы о прямоугольном треугольнике:

Gyт = G * cos(b) Gzт = G * sin(b)

Таким образом, зная G и одну из проекций Gyт или Gzт можно вычислить угол b отклонения акселерометра от вектора гравитации Z (от вертикальной оси):

Cos(b) = Gyт/G b = arccos(Gyт/G)

Делая такие вычисления, важно учитывать, что G и Gyт должны измеряться в одинаковых единицах. Например, если мы преобразуем показания акселерометра к единицам гравитации (другими словами G = 1 — земная гравитация), то выражение для угла b примет вид:

B = arccos(Gyт/1) = arccos(Gyт)

И напоследок, вычислим искомый угол a наклона тела относительно горизонта:

A = 90 - b = 90 - arccos(Gyт)

Помним, что Gyт — это число, которое возвращает нам акселерометр.

Заключение

Итак, мы выяснили, что одного лишь акселерометра вполне достаточно, чтобы вычислить угол наклона тела относительно горизонта. В следующем уроке мы рассмотрим конкретный пример работы с датчиком MPU6050 на Ардуино.

Однако, следует учитывать, что вычисление углов с помощью акселерометра возможно только тогда, когда прибор находится в состоянии покоя. Ведь если на прибор во время измерения подействует любая другая сила, акселерометр непременно её зафиксирует и тем самым внесет ошибку в расчеты.